spi通信原理

合集下载

SPI通信

SPI通信

二、通信的SPI 概念2.1、SPI:高速同步串行口SPI:高速同步串行口。

是一种标准的四线同步双向串行总线。

SPI,是英语Serial Peripheral interface的缩写,顾名思义就是串行外围设备接口。

是Motorola首先在其MC68HCXX系列处理器上定义的。

SPI接口主要应用在EEPROM,FLASH,实时时钟,AD转换器,还有数字信号处理器和数字信号解码器之间。

SPI,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时为PCB的布局上节省空间,提供方便,正是出于这种简单易用的特性,现在越来越多的芯片集成了这种通信协议,比如AT91RM9200.SPI总线系统是一种同步串行外设接口,它可以使MCU与各种外围设备以串行方式进行通信以交换信息。

外围设置FLASHRAM、网络控制器、LCD显示驱动器、A/D转换器和MCU等。

SPI总线系统可直接与各个厂家生产的多种标准外围器件直接接口,该接口一般使用4条线:串行时钟线(SCK)、主机输入/从机输出数据线MISO、主机输出/从机输入数据线MOSI和低电平有效的从机选择线SS(有的SPI接口芯片带有中断信号线INT、有的SPI接口芯片没有主机输出/从机输入数据线MOSI)。

SPI的通信原理很简单,它以主从方式工作,这种模式通常有一个主设备和一个或多个从设备,需要至少4根线,事实上3根也可以(用于单向传输时,也就是半双工方式)。

也是所有基于SPI的设备共有的,它们是SDI(数据输入),SDO(数据输出),SCK(时钟),CS(片选)。

(1)SDO –主设备数据输出,从设备数据输入(2)SDI –主设备数据输入,从设备数据输出(3)SCLK –时钟信号,由主设备产生(4)CS –从设备使能信号,由主设备控制其中CS是控制芯片是否被选中的,也就是说只有片选信号为预先规定的使能信号时(高电位或低电位),对此芯片的操作才有效。

通信的 SPI 概念

通信的 SPI 概念

2.1、SPI:高速同步串行口SPI:高速同步串行口。

是一种标准的四线同步双向串行总线。

SPI,是英语Serial Peripheral interface的缩写,顾名思义就是串行外围设备接口。

是Motorola首先在其MC68HCXX系列处理器上定义的。

SPI接口主要应用在 EEPROM,FLASH,实时时钟,AD转换器,还有数字信号处理器和数字信号解码器之间。

SPI,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时为PCB的布局上节省空间,提供方便,正是出于这种简单易用的特性,现在越来越多的芯片集成了这种通信协议,比如AT91RM9200.SPI总线系统是一种同步串行外设接口,它可以使MCU与各种外围设备以串行方式进行通信以交换信息。

外围设置FLASHRAM、网络控制器、LCD显示驱动器、A/D转换器和MCU等。

SPI总线系统可直接与各个厂家生产的多种标准外围器件直接接口,该接口一般使用4条线:串行时钟线(SCK)、主机输入/从机输出数据线MISO、主机输出/从机输入数据线MOSI和低电平有效的从机选择线SS(有的SPI接口芯片带有中断信号线INT、有的SPI接口芯片没有主机输出/从机输入数据线MOSI)。

SPI的通信原理很简单,它以主从方式工作,这种模式通常有一个主设备和一个或多个从设备,需要至少4根线,事实上3根也可以(用于单向传输时,也就是半双工方式)。

也是所有基于SPI的设备共有的,它们是SDI(数据输入),SDO(数据输出),SCK(时钟),CS(片选)。

(1)SDO –主设备数据输出,从设备数据输入(2)SDI –主设备数据输入,从设备数据输出(3)SCLK –时钟信号,由主设备产生(4)CS –从设备使能信号,由主设备控制其中CS是控制芯片是否被选中的,也就是说只有片选信号为预先规定的使能信号时(高电位或低电位),对此芯片的操作才有效。

SPI工作原理

SPI工作原理

SPI∙由于SPI(setial peripheralinterface)总线占用的接口线少,通信效率高,并且支持大部分处理器芯片,因而是一种理想的选择。

SPI是利用4根信号线进行通信的串行接口协议,包括主/从两种模式。

4个接口信号为:串行数据输入(MISO,主设备输入、从设备输出)、串行数据输出(MOSI,主设备输出、从设备输入)、移位时钟(SCK)、低电平有效的从设备使能信号(cs)。

SPI最大的特点是由主设备时钟信号的出现与否来确定主/从设备间的通信。

一旦检测到主设备的时钟信号,数据开始传输。

∙目录∙SPI工作方式简介∙SPI的数据传输∙SPI用户逻辑∙SPI基本原理与结构SPI工作方式简介∙SPI是由美国摩托罗拉公司最先推出的一种同步串行传输规范,也是一种单片机外设芯片串行扩展接口。

SPI模式可以允许同时同步发送和接收8位数据,并支持4种工作方式:1. 串行数据输出,对应RC5/SDO引脚;2. 串行数据输入,对应RC4/SDI/SDA引脚;3. 串行时钟,对应RC3/SCK/SCL引脚;4. 从动方式选择,对应RA5/SS/AN4引脚。

SPI模式下与之相关的寄存器有10个,其中4个是与I2C模式共用的。

图1所示是由一个主机对接一个从机进行全双工通信的系统构成的方式。

在该系统中,由于主机和从机的角色是固定不变的,并且只有一个从机,因此,可以将主机的丽端接高电平,将从机的SS 端固定接地。

图1 全双工主机/从机连接方法若干个具备SPI接口的单片机和若干片兼容SPI接口的外围芯片,可以在软件的控制下,构成多种简单或者复杂的应用系统,例如以下3种。

(1)一个主机和多个从器件的通信系统。

如图2所示,各个从器件是单片机的外围扩展芯片,它们的片选端SS分别独占单片机的一条通用I/O引脚,由单片机分时选通它们建立通信。

这样省去了单片机在通信线路上发送地址码的麻烦,但是占用了单片机的引脚资源。

当外设器件只有一个时,可以不必选通而直接将SS端接地即可。

spi工作原理

spi工作原理

spi工作原理
SPI(Serial Peripheral Interface)是一种同步串行通信接口,用于在芯片之间传输数据。

它由主设备(Master)和从设备(Slave)组成,主设备控制通信的时钟信号,并发送和接收
数据。

SPI工作原理如下:
1. 时钟信号同步:SPI使用时钟信号将主设备和从设备保持同步。

主设备产生时钟信号,从设备根据时钟信号进行数据传输。

2. 主从选择:主设备通过选择特定的从设备使其处于工作模式。

可以通过片选引脚(Slave Select,SS)来选择从设备。

3. 数据传输:主设备发送一个数据位到从设备,从设备接收并响应主设备发送的数据位。

数据在时钟的上升沿或下降沿进行传输。

4. 数据帧:SPI通信以数据帧为基本传输单位。

数据帧由一个
数据位和可能的附加控制位组成。

数据位可以是单向的(只能由主设备发送)或双向的(主从设备都可以发送和接收)。

5. 传输模式:SPI支持多种传输模式,如CPOL(Clock Polarity)和CPHA(Clock Phase)。

CPOL决定时钟信号在空
闲状态时的电平,CPHA决定数据采样的时机。

6. 传输速率:SPI的传输速率由时钟信号的频率决定。

一般来说,SPI的传输速率比较高,可以达到几十兆赫兹甚至上百兆
赫兹。

需要注意的是,SPI是一种点对点的通信接口,每次传输只能有一个主设备和一个从设备进行通信。

如果需要与多个设备进行通信,需要使用多个SPI接口或者使用其他的通信协议。

spi通信原理

spi通信原理

spi通信原理SPI(串行外围接口,Serial Peripheral Interface)是一种常见的半双工、同步串行通信总线接口(bus interface)。

它由一个正极性信号线(CS,Chip Select),一个时钟信号线(SCK,Serial Clock),一个向下发出数据线(MOSI,Master Out-Slave In)和一个向上接收数据线(MISO,Master In-Slave Out)构成,可用于微分模式或模拟模式通信,且具有较高的数据传输率和节点连线数,是一种主从(Master-Slave)式的串行数据传输标准。

一、SPI通信原理1、工作模式SPI接口通信模式有三种,分别是主模式(Master Mode)、从模式(Slave Mode)和双向模式(Bi-directional Mode),根据两个彼此连接的电路是主端还是从端,其工作模式就可以分别确定。

(1)主模式主模式有总线的控制权,它是总线的主导者,其发送时钟信号控制总线,由它读取从模式器件入端口的字节数据或者写入数据到从模式器件出端口,它一般兼顾发送和接收两种操作,并且在发送和接收都有数据缓存能力;(2)从模式从模式段缺少时钟和控制信号,从模式由主模式发送的时钟信号控制总线,从模式只能够等待主模式的唤醒,接收到主模式发来的时钟脉冲,才能工作;数据传输中,从模式由主模式发来的数据控制信号中控制自身的行为,从模式接收到数据,可能直接或间接地存储在从模式自身的缓冲位;(3)双向模式双向模式下,两电路当守护者和执行者双重角色,类似主模式,双向模式的总线可以实现双向同时收发数据功能,这也是SPI最重要的一个特点之一;2、信号线(1)CS: Chip Select,片选信号,由主机向从机发送,表示仪器的开始和结束信号;(2)SCK: Serial Clock,系统时钟信号,由主机向从机发送,控制数据的传输;(3)MOSI: Master Out Slave In,主机输出从机输入,由主机向从机发送;(4)MISO: Master In Slave Out,主机输入从机输出,由从机向主机发送;3、总线收发:1)主机向外设发送起始信号CS并向外设发出一个脉冲,外设将收到控制信号,从而开始读写操作;2)主机向外设发送时钟信号SCK,外设收到时钟信号后,可以进行一般主机传入和传出操作;3)主机发出信号来控制从机发出数据,从机受到数据标识,可以开始向主机发送数据,主机则接收从机发出的数据;4)当数据传送完毕后,起始信号CS将放低,SCK亦会放低,外设再将已写完信息的SS连接信号拉高;5)最后,外设会结束数据的读取和写入,同时将SS。

通信的 SPI 概念

通信的 SPI 概念

二、通信的 SPI 概念2.1、SPI:高速同步串行口SPI:高速同步串行口。

是一种标准的四线同步双向串行总线。

SPI,是英语Serial Peripheral interface的缩写,顾名思义就是串行外围设备接口。

是Motorola首先在其MC68HCXX系列处理器上定义的。

SPI接口主要应用在 EEPROM,FLASH,实时时钟,AD转换器,还有数字信号处理器和数字信号解码器之间。

SPI,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时为PCB的布局上节省空间,提供方便,正是出于这种简单易用的特性,现在越来越多的芯片集成了这种通信协议,比如AT91RM9200.SPI总线系统是一种同步串行外设接口,它可以使MCU与各种外围设备以串行方式进行通信以交换信息。

外围设置FLASHRAM、网络控制器、LCD显示驱动器、A/D转换器和MCU等。

SPI总线系统可直接与各个厂家生产的多种标准外围器件直接接口,该接口一般使用4条线:串行时钟线(SCK)、主机输入/从机输出数据线MISO、主机输出/从机输入数据线MOSI和低电平有效的从机选择线SS(有的SPI接口芯片带有中断信号线INT、有的SPI接口芯片没有主机输出/从机输入数据线MOSI)。

SPI的通信原理很简单,它以主从方式工作,这种模式通常有一个主设备和一个或多个从设备,需要至少4根线,事实上3根也可以(用于单向传输时,也就是半双工方式)。

也是所有基于SPI的设备共有的,它们是SDI(数据输入),SDO(数据输出),SCK(时钟),CS(片选)。

(1)SDO –主设备数据输出,从设备数据输入(2)SDI –主设备数据输入,从设备数据输出(3)SCLK –时钟信号,由主设备产生(4)CS –从设备使能信号,由主设备控制其中CS是控制芯片是否被选中的,也就是说只有片选信号为预先规定的使能信号时(高电位或低电位),对此芯片的操作才有效。

SPI接口的优缺点及通信原理

SPI接口的优缺点及通信原理

SPI接口的优缺点及通信原理SPI是串行外设接口(Serial Peripheral Interface)的缩写。

是一种同步串行接口技术,是高速的,全双工,同步的通信总线。

下面就有iBeacon、蓝牙模块厂家-云里物里科技来帮大家讲解下SPI接口的优缺点。

1、SPI接口的优点支持全双工操作;操作简单;数据传输速率较高。

同时,它也具有如下缺点:需要占用主机较多的口线(每个从机都需要一根片选线);只支持单个主机;没有指定的流控制,没有应答机制确认是否接收到数据。

2、SPI通信原理SPI的通信原理是以主从方式工作,这种模式通常有一个主设备和一个或多个从设备。

SPI接口经常被称为4线串行总线,分别是SDI(数据输入)、SDO(数据输出)、SCLK(时钟)、CS(片选)。

(a)SDO/MOSI–主设备数据输出,从设备数据输入;(b)SDI/MISO–主设备数据输入,从设备数据输出;(c)SCLK–时钟信号,由主设备产生;(d)CS/SS–从设备使能信号,由主设备控制。

在SPI总线上,某一时刻可以出现多个从设备,但只能存在一个主设备,主设备通过片选线来确定要通信的从设备。

这就要求从设备的MISO口具有三态特性,使得该口线在设备未被选通时表现为高阻抗。

3、数据传输在一个SPI时钟周期内,会完成如下操作:1)主设备通过MOSI线发送1位数据,从设备通过该线读取这1位数据;2)从设备通过MISO线发送1位数据,主设备通过该线读取这1位数据。

这是通过移位寄存器来实现的。

如图所示,主设备和从设备各有一个移位寄存器,且二者连接成环。

随着时钟脉冲,数据按照从高位到低位的方式依次移出主设备寄存器和从机寄存器,并且依次移入从设备寄存器和主设备寄存器。

当寄存器中的内容全部移出时,相当于完成了两个寄存器内容的交换。

4、内部工作机制SSPSR是SPI设备内部的移位寄存器(Shift Register).它的主要作用是根据SPI时钟信号状态,往SSPBUF里移入或者移出数据,每次移动的数据大小由Bus-Width以及Channel-Width所决定。

spi工作原理

spi工作原理

spi工作原理SPI(Serial Peripheral Interface)是一种同步串行通信协议,用于连接微控制器、传感器、存储器等外部设备。

其工作原理如下:1. 通信架构:SPI使用主从架构,其中主设备(通常是微控制器或处理器)控制通信的初始化、时钟速率以及数据传输的起始和终止,而从设备(例如传感器或存储器)则被动地响应主设备的指令。

2. 时钟信号:SPI通信需要一个时钟信号作为同步基准,由主设备产生并传输给从设备。

通常情况下,SPI设备具有两个时钟极性(CPOL)和时钟相位(CPHA)设置,主设备和从设备必须使用相同的设置才能正常通信。

3. 数据传输:主设备通过SPI总线发送数据,而从设备则将其接收。

数据以字节为单位传输,可以进行全双工或半双工传输。

数据传输的方式一般为MSB(最高有效位)或LSB(最低有效位)优先。

4. 片选信号:SPI可以支持多个从设备的连接。

通过片选信号(通常称为CS或SS),主设备可以选择与哪个从设备进行通信。

只有选中的从设备会响应主设备发送的指令和数据。

5. 数据帧:SPI通信中的数据传输由一系列的数据帧组成。

每个数据帧包含一个位传输和一个字节传输,并由传输时钟控制。

6. 通信步骤:- 主设备发送片选信号以选中从设备。

- 主设备发送时钟信号作为同步时钟。

- 主设备将数据位推送到MOSI(主输出从输入)线上。

- 从设备在下降沿接收数据位,并将响应数据推送到MISO (主输入从输出)线上。

- 主设备在上升沿采集响应数据。

- 重复以上步骤直到传输完成。

总结:SPI是一种高速串行通信协议,具有灵活性和简单性。

它通过主从架构、时钟信号、数据传输、片选信号以及数据帧来实现设备之间的通信。

主设备控制通信的初始化和时序,从设备被动响应主设备的指令和数据。

通过理解SPI的工作原理,可以更好地设计和应用它。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SPI:高速同步串行口。

3~4线接口,收发独立、可同步进行
SPI的通信原理: 主从方式工作,这种模式通常有一个主设备和一个或多个从设备,需要至少4根线,事实上3根也可以(单向传输时)。

也是所有基于SPI的设备共有的,它们是SDI(数据输入),SDO(数据输出),SCK(时钟),CS(片选)。

(1)SDO –主设备数据输出,从设备数据输入
(2)SDI –主设备数据输入,从设备数据输出
(3)SCLK –时钟信号,由主设备产生
(4)CS –从设备使能信号,由主设备控制
其中CS是控制芯片是否被选中的,也就是说只有片选信号为预先规定的使能信号时(高电位或低电位),对此芯片的操作才有效。

这就允许在同一总线上连接多个SPI设备成为可能。

接下来就负责通讯的3根线了。

通讯是通过数据交换完成的,这里先要知道SPI是串行通讯协议,也就是说数据是一位一位的传输的。

这就是SCK时钟线存在的原因,由SCK提供时钟脉冲,SDI,SDO则基于此脉冲完成数据传输。

数据输出通过SDO线,数据在时钟上升沿或下降沿时改变,在紧接着的下降沿或上升沿被读取。

完成一位数据传输,输入也使用同样原理。

这样,在至少8次时钟信号的改变(上沿和下沿为一次),就可以完成8位数据的传输。

要注意的是,SCK信号线只由主设备控制,从设备不能控制信号线。

同样,在一个基于SPI的设备中,至少有一个主控设备。

这样传输的特点:这样的传输方式有一个优点,与普通的串行通讯不同,普通的串行通讯一次连续传送至少8位数据,而SPI允许数据一位一位的传送,甚至允许暂停,因为SCK时钟线由主控设备控制,当没有时钟跳变时,从设备不采集或传送数据。

也就是说,主设备通过对SCK时钟线的控制可以完成对通讯的控制。

SPI还是一个数据交换协议:因为SPI的数据输入和输出线独立,所以允许同时完成数据的输入和输出。

不同的SPI设备的实现方式不尽相同,主要是数据改变和采集的时间不同,在时钟信号上沿或下沿采集有不同定义,具体请参考相关器件的文档。

在点对点的通信中,SPI接口不需要进行寻址操作,且为全双工通信,显得简单高效。

在多个从设备的系统中,每个从设备需要独立的使能信号,硬件上比I2C系统要稍微复杂一些。

最后,SPI接口的一个缺点:没有指定的流控制,没有应答机制确认是否接收到数据。

SPI协议举例
SPI是一个环形总线结构,由ss(cs)、sck、sdi、sdo构成,其时序其实很简单,主要是在sck的控制下,两个双向移位寄存器进行数据交换。

假设下面的8位寄存器装的是待发送的数据10101010,上升沿发送、下降沿接收、高位先发送。

那么第一个上升沿来的时候数据将会是sdo=1;寄存器中的10101010左移一位,后面补入送来的一位未知数x,成了0101010x。

下降沿到来的时候,sdi上的电平将锁存到寄存器中去,那么这时寄存器=0101010sdi,这样在8个时钟脉冲以后,两个寄存器的内容互相交换一次。

这样就完成里一个spi时序。

举例:
假设主机和从机初始化就绪:并且主机的sbuff=0xaa,从机的sbuff=0x55,下面将分步对spi的8个时钟周期的数据情况演示一遍:假设上升沿发送数据
脉冲主机sbuff 从机sbuff sdi sdo
0 10101010 01010101 0 0
1上0101010x 1010101x 0 1
1下01010100 10101011 0 1
2上1010100x 0101011x 1 0
2下10101001 01010110 1 0
3上0101001x 1010110x 0 1
3下01010010 10101101 0 1
4上1010010x 0101101x 1 0
4下10100101 01011010 1 0
5上0100101x 1011010x 0 1
5下01001010 10110101 0 1
6上1001010x 0110101x 1 0
6下10010101 01101010 1 0
7上0010101x 1101010x 0 1
7下00101010 11010101 0 1
8上0101010x 1010101x 1 0
8下01010101 10101010 1 0
这样就完成了两个寄存器8位的交换,上面的上表示上升沿、下表示下降沿,sdi、sdo相对于主机而言的。

其中ss引脚作为主机的时候,从机可以把它拉底被动选为从机,作为从机的是时候,可以作为片选脚用。

根据以上分析,一个完整的传送周期是16位,即两个字节,因为,首先主机要发送命令过去,然后从机根据主机的命令准备数据,主机在下一个8位时钟周期才把数据读回来。

相关文档
最新文档