2019-2020学年上海市虹口区高一期末数学试题及答案

合集下载

2019-2020学年上海市中学高一上学期期末数学试题及答案解析

2019-2020学年上海市中学高一上学期期末数学试题及答案解析

2019-2020学年上海市中学高一上学期期末数学试题及答案解析一、单选题1.已知复数113z i =+,23z i =+(i 为虚数单位),在复平面内,12z z -对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B【解析】利用复数的减法求出复数12z z -,即可得出复数12z z -对应的点所在的象限.【详解】复数113z i =+,23z i =+,()()1213322z z i i i ∴-=+-+=-+, 因此,复数12z z -在复平面内对应的点在第二象限. 故选B. 【点睛】本题考查复数的几何意义,同时也考查了复数的减法运算,利用复数的四则运算法则将复数表示为一般形式是解题的关键,考查计算能力,属于基础题.2.设点M 、N 均在双曲线22:143x y C -=上运动,1F 、2F 是双曲线C 的左、右焦点,则122MF MF MN +-的最小值为( ) A .B .4C .D .以上都不对【解析】根据向量的运算,化简得1212222MF MF MN MO MN NO+-=-=,结合双曲线的性质,即可求解. 【详解】由题意,设O 为12,F F 的中点, 根据向量的运算,可得122222MF MFMN MO MN NO+-=-=,又由N 为双曲线22:143x y C -=上的动点,可得NO a ≥,所以122224MF MFMN NO a +-=≥=,即122MF MFMN+-的最小值为4.故选:B. 【点睛】本题主要考查了向量的运算,以及双曲线的标准方程及简单的几何性质的应用,其中解答中利用向量的运算,合理化简,结合双曲线的几何性质求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题. 3.已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C交于A ,B 两点.若222AF F B =││││,1AB BF =││││,则C 的方程为A .2212x y += B .22132x y += C .22143x y += D .22154x y +=【答案】B【解析】由已知可设2F B n =,则212,3AF n BF AB n ===,得12AF n =,在1AF B △中求得11cos 3F AB ∠=,再在12AF F △中,由余弦定理得n =,从而可求解.法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22aBF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得32n =. 2222423,3,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4,422cos 9n n AF F n n n BF F n⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩,又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得3n =.2222423,3,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑二、填空题4.椭圆22154x y +=的焦距等于________【答案】2【解析】根据椭圆方程,求出,a b ,即可求解. 【详解】设椭圆的焦距为2c ,椭圆方程为22154x y +=, 225,4,1a b c ∴==∴=.故答案为:2. 【点睛】本题考查椭圆标准方程及参数的几何意义,属于基础题.5.双曲线221169x y -=的两条渐近线的方程为________.【答案】34yx 【解析】令220169x y -=解得结果【详解】令220169x y -=解得两条渐近线的方程为34yx 【点睛】本题考查双曲线渐近线的方程,考查基本分析求解能力,属基础题.6.若线性方程组的增广矩阵是123c ⎛⎫⎪,其解为1x =⎧⎨,则12c c +=________【答案】6【解析】本题可先根据增广矩阵还原出相应的线性方程组,然后将解11x y =⎧⎨=⎩代入线性方程组即可得到1c 、2c 的值,最终可得出结果. 【详解】解:由题意,可知:此增广矩阵对应的线性方程组为:1223x y c y c +=⎧⎨=⎩, 将解11x y =⎧⎨=⎩代入上面方程组,可得:1251c c =⎧⎨=⎩. 126c c ∴+=.故答案为:6. 【点睛】本题主要考查线性方程组与增广矩阵的对应关系,以及根据线性方程组的解求参数.本题属基础题. 7.已知复数22iz i+=,则z 的虚部为________.【答案】-1【解析】先根据复数的除法中的分母实数化计算出z 的结果,然后根据z 的结果直接确定虚部. 【详解】 因为()22242122242i i i i z i i i i +⋅+-====-⋅-,所以z 虚部为1-.【点睛】(1)复数的除法运算,采用分母实数化的方法,根据“平方差公式”的形式完成分母实数化;(2)复数z a bi =+,则z 的实部为a ,虚部为b ,注意实、虚部都是数值.8.圆22240x y x y +-+=的圆心到直线3450x y +-=的距离等于________。

2019-2020学年上海市虹口区高一上学期期末数学试题(解析版)

2019-2020学年上海市虹口区高一上学期期末数学试题(解析版)

2019-2020学年上海市虹口区高一上学期期末数学试题一、单选题1.已知13a <<,24b <<,现给出以下结论:(1)37a b <+<;(2)31a b -<-<;(3)212a b <⋅<;(4)1342a b <<,以上结论正确的个数是( ) A .1个B .2个C .3个D .4个 【答案】D【解析】根据不等式的可加性,同向不等式且为正值的可乘性即可得到答案.【详解】因为13a <<,24b <<,所以37a b <+<,故(1)正确.因为42b -<-<-,所以31a b -<-<,故(2)正确.因为13a <<,24b <<,根据同向不等式且为正值的可乘性知: 212a b <⋅<,故(3)正确. 因为11142b <<,13a <<,根据同向不等式且为正值的可乘性知: 1342a b <<,故(4)正确. 故选:D【点睛】本题主要考查不等式的基本性质,属于简单题.2.已知a R ∈,则“1a <”是“11a>”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分也非必要条件【答案】B【解析】首先解不等式11a >,再根据充分条件和必要条件即可得到答案. 【详解】 因为1111100(1)001a a a a a a a->⇔->⇔>⇔-<⇔<<. 所以“1a <”是“11a >”的必要非充分条件. 故选:B【点睛】本题主要考查充分条件和必要条件,同时考查了分式不等式的解法,属于简单题. 3.已知函数32x y =-的值域是( )A .RB .()2,-+∞C .[)2,-+∞D .[)1,-+∞【答案】D【解析】首先令x t =,根据指数函数的图像得到:31t ≥,即1y ≥-.【详解】 令x t =,0t ≥,则32t y =-, 因为31t ≥,所以1y ≥-.故选:D【点睛】本题主要考查指数函数的值域问题,同时考查了换元法求函数的值域,属于简单题. 4.定义在R 上的函数()f x 的图象是连续不断的,此函数有两个不同的零点,这两个零点分别在区间()0,2和()4,6内,那么下列不等式中一定正确的是( ) A .()()020f f ⋅< B .()()020f f ⋅> C .()()240f f ⋅>D .()()260f f ⋅>【答案】C【解析】首先根据题意得到函数()f x 在区间(2,4)上没有零点,即可得到(2)(4)0f f >.【详解】因为定义在R 上的函数()f x 的图象是连续不断的,此函数有两个不同的零点, 这两个零点分别在区间()0,2和()4,6内,所以函数()f x 在区间(2,4)上没有零点,若(2)f 与(4)f 的函数值异号,根据零点存在性定理可得以函数()f x 在区间(2,4)上必有零点,所以(2)f 与(4)f 的函数值同号,即(2)(4)0f f >.故选:C【点睛】本题主要考查函数的零点存在定义和零点的区间,属于简单题.5.已知函数()f x 是定义在R 上的奇函数,现给出以下结论:(1)此函数一定有零点;(2)此函数可能没有零点;(3)此函数有奇数个零点;(4)此函数有偶数个零点.以上结论正确的个数是( )A .1个B .2个C .3个D .4个 【答案】B【解析】根据奇函数的定义及性质,对题目中的命题判断正误即可.【详解】因为()f x 是定义在R 上的奇函数,所以(0)=0f .故0是函数()f x 的零点,所以(1)正确,(2)错误.根据奇函数的对称性知:函数()f x 有零点,则零点关于原点对称,再加上原点,共有奇数个零点,所以(3)正确,(4)错误.故选:B【点睛】本题主要考查函数的奇偶性,同时考查了方程与零点,属于中档题.二、填空题6.用列举法表示集合{}2230,x x x x Z --<∈=________.【答案】{}0,1,2【解析】首先解不等式2230x x --<,再用列举法表示集合即可.【详解】 2{|230,}{|13,}{0,1,2}x x x x Z x x x Z --<∈=-<<∈=.故答案为:{0,1,2}【点睛】本题主要考查集合的表示,同时考查了二次不等式的解法,属于简单题.7.命题“若2x >且3y >,则5x y +>”的否命题是__________命题.(填入“真”或“假”)【答案】假【解析】写出否命题,即可判断命题的真假.【详解】命题“若2x >且3y >,则5x y +>”的否命题:“若2x ≤或3y ≤,则5x y +≤”是假命题,例如1,9x y ==,满足2x ≤或3y ≤,但不能推出5x y +≤.故答案为:假【点睛】此题考查根据已知命题写出否命题,并判断真假,涉及含有逻辑联结词的命题的否定. 8.函数4y x=,[]1,12x ∈的值域为________. 【答案】1,43⎡⎤⎢⎥⎣⎦【解析】根据函数的单调性即可求出值域.【详解】 因为函数4y x=在区间[]1,12为减函数, 所以值域为1,43⎡⎤⎢⎥⎣⎦. 故答案为:1,43⎡⎤⎢⎥⎣⎦ 【点睛】本题主要考查反比例函数的单调性,属于简单题.9.己知函数()2x f x =.则()()2f f =________.【答案】16【解析】首先计算(2)f ,再代入计算((2))f 即可.【详解】2(2)24f ==,4((2))(4)216f f ===.故答案为:16【点睛】本题主要考查函数值的求法,属于简单题.10.不等式|x ﹣1|<2的解集为 .【答案】(﹣1,3).【解析】试题分析:由不等式|x ﹣1|<2,可得﹣2<x ﹣1<2,解得﹣1<x <3. 解:由不等式|x ﹣1|<2可得﹣2<x ﹣1<2,∴﹣1<x <3,故不等式|x ﹣1|<2的解集为(﹣1,3),故答案为(﹣1,3).【考点】绝对值不等式的解法.11.已知112112322α⎧⎫∈---⎨⎬⎩⎭,,,,,,,若幂函数()a f x x =为奇函数,且在()0+∞,上递减,则a =____.【答案】-1【解析】由幂函数f (x )=x α为奇函数,且在(0,+∞)上递减,得到a 是奇数,且a <0,由此能求出a 的值.【详解】∵α∈{﹣2,﹣1,﹣1122,,1,2,3},幂函数f (x )=x α为奇函数,且在(0,+∞)上递减,∴a 是奇数,且a <0,∴a=﹣1.故答案为﹣1.【点睛】本题考查实数值的求法,考查幂函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.12.已知()y f x =是定义在R 上的奇函数,当0x >时,()21x f x =-,则(2)f -=____.【答案】3-【解析】 由题意得,函数()y f x =为奇函数,所以()2(2)2(21)3f f -=-=--=-. 13.已知2m >,且()110lg 100lg x m m=+则x 的值为________. 【答案】lg 2【解析】首先计算1lg(100)lg lg1002m m+==,再解方程102x =即可.【详解】 因为1lg(100)lglg1002m m +==, 所以,102x =,即lg 2x =.故答案为:lg 2【点睛】本题主要考查对数的运算,同时考查了指数方程,熟练掌握对数的运算法则是解题的关键,属于简单题.14.已知0a >,0b >,且44a b +=,则a b 的最大值等于________. 【答案】1【解析】首先根据题意得到114a b =-,代入a b 得到21=(2)14a a b --+,再利用二次函数的性质即可得到最大值.【详解】 因为44a b +=,所以114a b =-. 因为0a >,0b >,所以104a ->,即04a <<. 所以21=(1)(2)144a a a ab -=--+. 当2a =时,max ()=1a b . 故答案为:1【点睛】本题主要考查二次函数的最值,将a b转化为二次函数的形式为解题的关键,属于中档题. 15.已知函数()(0,1)x f x a b a a =+>≠的定义域和值域都是[]1,0-,则a b += . 【答案】32- 【解析】若1a >,则()f x 在[]1,0-上为增函数,所以11{10a b b -+=-+=,此方程组无解;若01a <<,则()f x 在[]1,0-上为减函数,所以10{11a b b -+=+=-,解得1{22a b ==-,所以32a b +=-. 【考点】指数函数的性质.16.记函数()f x x b =+,[]2,2x Î-的最大值为()g b ,则()g b =________.【答案】()2 02 0b b g b b b +≥⎧=⎨-<⎩【解析】首先将()f x 转化为分段函数,再对b 进行讨论,即可求出最大值()g b【详解】,(),x b x b f x x b x b x b +≥-⎧=+=⎨--<-⎩. 当0b =时,()f x x =,max ()2f x =,即()2g b =.当0b -<,即0b >时,max ()(2)2f x f b ==+,即()2g b b =+.当0b ->,即0b <时,max ()(2)2f x f b =-=-,即()2g b b =-.综上:2? 0()2? 0b b g b b b +≥⎧=⎨-<⎩. 故答案为:2? 0()2? 0b b g b b b +≥⎧=⎨-<⎩ 【点睛】本题主要考查含参绝对值函数的最值问题,同时考查了分类讨论的思想,属于中档题. 17.已知()f x 是定义在R 上的偶函数,且在[)0,+∞上单调递增,则关于x 的不等式()()2110f x f x -+-<的解是________.【答案】()1,1-【解析】首先将不等式变形,根据()f x 是定义在R 上的偶函数,且在[)0,+∞上单调递增,设2()()g x f x x =+,得到()g x 在R 上为偶函数,且在[)0,+∞上单调递增,再解不等式即可.【详解】因为2()(1)10f x f x -+-<,所以2()(1)1f x x f +<+.因为()f x 是定义在R 上的偶函数,且在[)0,+∞上单调递增.设2()()g x f x x =+,()g x 在R 上为偶函数,且在[)0,+∞上单调递增. 所以2()(1)1f x x f +<+,即()()1g x g <. 所以1x <,解得11x -<<.故答案为:(1,1)-.【点睛】本题主要考查抽象函数的单调性和奇偶性,属于中档题.18.函数()22f x x x =-,[]2,2x ∈-的最大值为________. 【答案】8【解析】首先画出()f x 的图象,根据图象即可求出函数的最大值.【详解】函数()f x 的图象如图所示:由图可知,max ()(2)44=8f x f =-=+.故答案为:8【点睛】本题主要考查利用函数的图象求最值,熟练画出函数图象为解题的关键,属于中档题. 19.已知()42f x x x =+,则关于x 的不等式()()12f x f +<的解是________. 【答案】()3,1-【解析】首先根据函数()f x 的解析式,得到()f x 为偶函数,且在(0,)+∞为增函数,再利用偶函数的对称性解不等式即可.【详解】因为42()f x x x =+,所以()f x 为偶函数,且在(0,)+∞为增函数.所以(1)(2)f x f +<根据偶函数的对称性知:212x -<+<,解得:31x -<<.故答案为:(3,1)-【点睛】本题主要考查函数的奇偶性和单调性,熟练掌握奇偶函数的性质为解题的关键,属于中档题.三、解答题20.解下列方程(1)2223x x -+⋅=;(2)2lg lg 20x x --=【答案】(1)0x =或1x =(2)100x =或110x = 【解析】(1)首先令2x t =,根据二次方程和指数方程即可解出方程的根.(2)根据二次方程和对数方程即可解出方程的根.【详解】(1)令2x t =,0t >,得23t t+=. 整理得:2320t t -+=.解得:1t =或2t =.即:21x =或22x =,0x =或1x =.(2)因为2lg lg 20x x --=,所以(lg 2)(lg 1)0x x -+=.解得:lg 2x =或lg 1=-,100x =或110x =. 【点睛】 本题主要考查了指数方程和对数方程的求解,同时考查了二次方程的求解,属于简单题.21.设a R ∈,函数()221x x a f x +=+. (1)当1a =-时,判断()f x 的奇偶性,并给出证明;(2)当0a =时,证明此函数在(),-∞+∞上单调递增.【答案】(1)奇函数;证明见解析(2)证明见解析【解析】(1)首先求出函数()f x 的定义域为R ,再判断()f x 与()f x -的关系即可. (2)根据题意设任意12,x x R ∈,且12x x <,作差比较12()()f x f x -即可.【详解】 (1)当1a =-时,21()21x x f x -=+,定义域关于原点对称. 112112222()()11212121221xx x x x x x x x xf x f x ----====+--=-+++. 所以()f x 为奇函数.(2)当0a =时,2()21xx f x =+,设任意12,x x R ∈,且12x x <. 1212211212121212222(21)2(21)22()()2121(21)(21)(21)(21)x x x x x x x x x x x x x x f x f x +-+--=-==++++++. 因为12220x x -<,1210x +>,2210x +>,所以12())0(f x f x -<.即:12()()f x f x <. 所以2()21xx f x =+在R 上为增函数. 【点睛】本题第一问考查函数奇偶性的判断,第二问考查了函数单调性的判断,属于中档题. 22.某商场在促销期间规定:商场内所有商品按标价的80%出售,同时当顾客在该商场内消费满一定金额后,按如下方案获得相应金额的奖券:根据上述促销方法,顾客在该商场购物可以获得双重优惠.例如:购买标价为400元的商品,则消费金额为320元,然后还能获得对应的奖券金额为28元.于是,该顾客获得的优惠额为:4000.228108⨯+=元.设购买商品得到的优惠率=购买商品获得的优惠额商品的标价.试问:(1)购买一件标价为1000元的商品,顾客得到的优惠率是多少?(2)当商品的标价为[]100,600元时,试写出顾客得到的优惠率y关于标价x元之间的函数关系式;(3)当顾客购买标价不超过600元的商品时,该顾客是否可以得到超过30%的优惠率?试说明理由.【答案】(1)25.8%(2)[)[]0.2 100,360280.2360,600xyxx⎧∈⎪=⎨+∈⎪⎩(3)不能,详见解析【解析】(1)根据题意得到购买1000元商品,则消费800元,获得对应的奖券58元,再计算优惠率即可.(2)根据题意,分段讨论当标价为[100,360)元和标价为[360,600]元时的优惠率即可. (3)根据(2)得到当顾客在买标价为360元商品时,优惠率最大,再计算最大优惠率比较即可.【详解】(1)购买1000元商品的优惠率10000.25810025.81000%%=⨯+=⨯.(2)当标价为[100,360)元时,则消费[80,288)元,不能获得优惠券.所以顾客得到的优惠率为:0.20.2xyx==.当标价为[360,600]元时,则消费[288,480]元,获得28元优惠券.所以顾客得到的优惠率为:0.228280.2xyx x+==+.综上[)[]0.2?100,360280.2?360,600xyxx⎧∈⎪=⎨+∈⎪⎩.(3)当顾客买标价不超过360元商品时,优惠率为20%.当顾客买标价在[360,600]元商品时,优惠率为280.2yx=+,为减函数.所以当顾客在买标价为360元商品时,优惠率最大.max280.227.8%30%360y=+≈<.所以顾客不能得到超过30%的优惠率. 【点睛】本题主要考查函数的实际应用,弄清题意为解题的关键,属于中档题.23.已知函数()222f x x ax =-+,[]1,1x ∈-. (1)当1a =时,求()11f-; (2)当12a =-时,判断此函数有没有反函数,并说明理由; (3)当a 为何值时,此函数存在反函数?并求出此函数的反函数()1f x -.【答案】(1)1,(2)没有,详见解析,(3)1a ≥或1a ≤-;当1a ≥时,()1f x a -=[]32,32x a a ∈-+,当1a ≤-时,()1f x a -=[]32,32x a a ∈+-.【解析】(1)当1a =时,由互为反函数的性质可得:1(1)f-等价于()1f x =在[1,1]x ∈-求解,再解方程即可.(2)当12a =-时,2()2f x x x =++,根据函数在区间[1,1]-的单调性即可判定. (3)首先根据函数()f x 存在反函数,得到1a ≥或1a ≤-,在分类讨论求反函数即可.【详解】(1)当1a =时,2()22f x x x =-+.求1(1)f -即等价于()1f x =在[1,1]x ∈-求解.2221x x -+=,解得:1x =.所以1(1)1f -=.(2)当12a =-时,2217()2()24f x x x x =++=++. [1,1]x ∈-时,显然函数不单调,所以在区间[1,1]-没有反函数.(3)若函数()f x 存在反函数,则函数()f x 在区间[1,1]-单调.222()22()2f x x ax x a a =-+=-+-,对称轴为x a =.所以当1a ≥或1a ≤-时,函数()f x 存在反函数.当1a ≥时,1)(f a x -=,[]32,32x a a ∈-+.当1a ≤-时,()1f x a -=[]32,32x a a ∈+-.【点睛】本题主要考查反函数的求法,同时考查了学生的计算能力,属于中档题.24.已知函数()f x 的定义域是使得解析式有意义的x 集合,如果对于定义域内的任意实数x ,函数值均为正,则称此函数为“正函数”.(1)证明函数()()2lg 11f x x =++是“正函数”; (2)如果函数()11a f x x x =+-+不是“正函数”,求正数a 的取值范围. (3)如果函数()()()222242122x a x a f x x a x a +--+=+--+是“正函数”,求正数a 的取值范围. 【答案】(1)证明见解析,(2)(,1]-∞(3)(){}6,13-U【解析】(1)有题知:()1f x ≥,即证.(2)首先讨论当0a ≤时,显然()11a f x x x =+-+不是“正函数”. 当0a >时,从反面入手,假设()f x 是“正函数”,求出a 的范围,再取其补集即可.(3)根据题意得到:22(2)4(42)0(1)8(22)0a a a a ⎧---<⎨---<⎩或12242122a a a a --+==--+,解方程和不等式组即可.【详解】(1)2()lg(1)1lg111f x x =++≥+=.函数值恒为正数,故函数2()lg(1)1f x x =++是“正函数”.(2)当0a ≤时,(0)10f a =-<, 显然()11a f x x x =+-+不是“正函数”. 当0a >时 假设()11a f x x x =+-+为“正函数”.则()f x 恒大于零.()1221a f x x x =++-≥+.所以20>,即1a > 所以()11a f x x x =+-+不是“正函数”时, 01a <≤.综上:1a ≤.(3)有题知:若函数()22(2)242(1)22x a x a f x x a x a +--+=+--+是“正函数”, 则22(2)4(42)0(1)8(22)0a a a a ⎧---<⎨---<⎩或12242122a a a a --+==--+. 解得:61a -<<或3a =.【点睛】本题主要考查函数的新定义,同时考查了对所学知识的综合应用,属于难题.。

虹口区高一上期末详解(2020.1)

虹口区高一上期末详解(2020.1)

虹口区高一上期末数学试卷2020.01一、填空题1.用列举法表示集合2{|230,}x x x x --<∈=Z .2.命题“若2x >且3y >,则5x y +>”的逆否命题是 命题(填“真”或“假”)3.函数4,[1,12]y x x=∈的值域为 . 4.已知函数()2x f x =,则((2))f f = .5.不等式|1|2x -<的解为 .6.已知112,1,,,1,2,322α⎧⎫∈---⎨⎬⎩⎭,若幂函数()f x x α=为奇函数,且在(0,)+∞上递减,则α= .7.已知函数()f x 为R 上的奇函数,当0x ≥时,()21x f x =-,则(2)f -= .8.已知0m >,且110lg(100)lgx m m =+,则x 的值为 . 9.已知0a >,0b >且44a b +=,则a b的最大值等于 . 10.已知函数()x f x a b =+(0a >,1a ≠)的定义域和值域都是[1,0]-,则a b += .11.(A 组题)记函数()||f x x b =+,[2,2]x ∈-的最大值为()g b ,则()g b = . (B 组题)函数2()|2|f x x x =-,[2,2]x ∈-的最大值为 .12.(A 组题)已知()f x 是定义在R 上的偶函数,且在[0,)+∞上单调递增,则关于x 的不等式2()(1)10f x f x -+-<的解是 .(B 组题)已知42()f x x x =+,则关于x 的不等式(1)(2)f x f +<的解是 .二、选择题13.已知13a <<,24b <<,现给出以下结论:(1)37a b <+<;(2)31a b -<-<;(3)212a b <⋅<;(4)1342a b <<.以上结论正确的个数是( ) A .1个 B .2个 C .3个 D .4个14.已知a ∈R ,则“1a <”是“11a>”的( ) A .充分非必要条件 B .必要非充分条件C .充要条件D .既非充分也非必要条件15.已知函数||32x y =-的值域是( )A .RB .(2,)-+∞C .[2,)-+∞D .[1,)-+∞16.(A 组题)定义在R 上的函数()f x 的图像是连续不断的,此函数有两个不同的零点,这两个零点分别在区间(0,2)和(4,6)内,那么下列不等式中一定正确的是( )A .(0)(2)0f f ⋅<B .(0)(6)0f f ⋅>C .(2)(4)0f f ⋅>D .(2)(6)0f f ⋅>(B 组题)已知函数()f x 是定义在R 上的奇函数,现给出以下结论:(1)此函数一定有零点;(2)此函数可能没有零点;(3)此函数有奇数个零点;(4)此函数有偶数个零点.以上结论正确的个数是( )A .1个B .2个C .3个D .4个三、解答题17.解下列方程:(1)2223x x -+⋅=;(2)2lg lg 20x x --=.18.设a ∈R ,函数2()21x x a f x +=+. (1)当1a =-时,判断()f x 的奇偶性,并给出证明;(2)当0a =时,证明此函数在(,)-∞+∞上单调递增.19.某商场在促销期间规定:商场内所有商品按标价的80%出售,同时当顾客在该商场内消费满一定金额后,按如下方案获得相应金额的奖券:则消费金额为320元,然后还能获得对应的奖券金额为28元,于是,该顾客获得的优惠额为:4000.228108⨯+=元.设购买商品得到的优惠率=购买商品获得的优惠额商品的标价.试问:(1)购买一件标价为1000元的商品,顾客得到的优惠率是多少?(2)当商品的标价为[100,600]元时,试写出顾客得到的优惠率y关于标价x元之间的函数关系式;(3)当顾客购买标价不超过600元的商品时,该顾客是否可以得到超过30%的优惠率?试说明理由.20.已知函数2()22f x x ax=-+,[1,1]x∈-.(1)当1a=时,求1(1)f-;(2)当12a=-时,判断此函数有没有反函数,并说明理由;(3)当a为何值时,此函数存在反函数?并求出此函数的反函数1()f x-.21.已知函数()f x 的定义域是使得解析式有意义的x 的集合,如果对于定义域内的任意实 数x ,函数值均为正,则称此函数为“正函数”.(1)证明函数2()lg(1)1f x x =++是“正函数”;(2)(A 组题)如果函数()||1||1a f x x x =+-+不是..“正函数”,求正数..a 的取值范围; (B 组题)如果函数1()||||f x x a x =+-不是..“正函数”,求实数a 的取值范围; (3)(A 组题)如果函数22(2)24()2(1)22x a x a f x x a x a +--+=+--+是“正函数”,求正数..a 的取值范围; (B 组题)如果函数2()2f x ax ax =++是“正函数”,求实数a 的取值范围.参考答案一、填空题1.{0,1,2}2.真3.1[,4] 34.16 5.(1,3)-6.1-7.3-8.lg2 9.1 10.32-11.(A组题)2,0()2,0b bg bb b+⎧=⎨-<⎩≥;(B组题)812.(A组题)(1,1)-;(B组题)(3,1)-【第12题A组题解析】2()(1)10f x f x-+-<即2()(1)1f x x f+<+(*),记2()()F x f x x=+,则(*)式即()(1)F x F<,由题意()F x仍为R上的偶函数,且在[0,)+∞上单调递增,∴||111x x<⇒-<<.二、选择题13.D 14.B 15.D 16.(A组题)C;(B组题)B【第16题A组题解析】A、B、D的反例分别对应如下:三、解答题17.(1)0x=或1x=;(2)100x=或110x=.18.(1)奇函数,证明略;(2)用定义证明,略.19.(1)25.8%;(2)0.2,[100,360)280.2,[360,600]xyxx∈⎧⎪=⎨+∈⎪⎩;(3)不能,最大优惠为27.8%.20.(1)1;(2)没有,函数不单调;(3)1a-≤或1a≥,①当1a-≤时,12()2f x a x a-=++-,[32,32]x a a∈+-;当1a≥时,12()2f x a x a-=-+-,[32,32]x a a∈-+.21.(1)()1f x≥,函数值恒为正;(2)(A组题)即min()0f x≤,令||1,(1)t x t=+≥,则()2ay f x tt==+-,①当1a>,即1a>时,min()220f x a=-≤,无解,②当01,即01a <≤时,min ()10f x a =-≤,解得01a <≤, 综上,01a <≤;(B 组题)2a ≥;(3)(A 组题)记2212(2)24,2(1)22y x a x a y x a x a =+--+=+--+,对应的判别式分别为12,∆∆,则12()y f x y =, ①10y >且20y ≥恒成立,计算1200∆<⎧⎨∆⎩≤,得61a -<≤,∵0a >,∴01a <≤; ②20∆>,必须有10∆>,且方程2(2)240x a x a +--+=与方程22(1)22x a x a +--+两实根必须完全相同,此时必有系数对应成比例,即12242122a a a a --+==--+,解得3a =,满足判别式的条件,综上,01a <≤或3a =.(B 组题)08a <≤.。

上海市2019-2020学年高一下期末检测数学试题含解析

上海市2019-2020学年高一下期末检测数学试题含解析

上海市2019-2020学年高一下期末检测数学试题一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知a 、b 是两条不同的直线,α、β是两个不同的平面,若a α⊥,b β⊥,//αβ,则下列三个结论:①//a b 、②a b ⊥、③a β⊥.其中正确的个数为( )A .0B .1C .2D .3 【答案】C【解析】【分析】根据题意,a α⊥,b β⊥,//αβ,则有b α⊥,因此//a b ,a β⊥,不难判断.【详解】因为a α⊥,b β⊥,//αβ,则有b α⊥,所以//a b ,a β⊥,所以①正确,②不正确,③正确,则其中正确命题的个数为2.故选C【点睛】本题考查空间中直线与平面之间的位置关系,考查空间推理能力,属于简单题.2.问题:①有1000个乒乓球分别装在3个箱子内,其中红色箱子内有500个,蓝色箱子内有200个,黄色箱子内有300个,现从中抽取一个容量为100的样本;②从20名学生中选出3名参加座谈会. 方法:Ⅰ.随机抽样法 Ⅱ.系统抽样法 Ⅲ.分层抽样法.其中问题与方法能配对的是( )A .①Ⅰ,②ⅡB .①Ⅲ,②ⅠC .①Ⅱ,②ⅢD .①Ⅲ,②Ⅱ 【答案】B【解析】解:(1)中由于小区中各个家庭收入水平之间存在明显差别故(1)要采用分层抽样的方法(2)中由于总体数目不多,而样本容量不大故(2)要采用简单随机抽样故问题和方法配对正确的是:(1)Ⅲ(2)Ⅰ.故选B .3.已知a b <,则下列不等式成立的是( )A .11a b >B .a b <C .22a b <D .33a b <【答案】D【解析】【分析】利用排除法,取3a =-,2b =,可排除错误选项,再结合函数3y x =的单调性,可证明D 正确.【详解】取3a =-,2b =,可排除A ,B ,C ,由函数3y x =是R 上的增函数,又a b <,所以33a b <,即选项D 正确.故选:D.【点睛】本题考查不等式的性质,考查学生的推理论证能力,属于基础题.4.已知数列{}{},n n a b 满足11a =,且1,n n a a +是函数2()2n n f x x b x =-+的两个零点,则10b 等于( ) A .24B .32C .48D .64【答案】D【解析】 试题分析:依题意可知,1n n n a a b ++=,12n n n a a +⋅=,1122n n n a a +++⋅=,所以12212n n n n n na a a a a a ++++⋅==⋅.即22n n a a +=,故312a a =,53124a a a ==,75128a a a ==,971216a a a ==.11a =,所以916a =,又可知9910102512,32a a a ⋅==∴=.1010111121024,32a a a ⋅==∴=,故10101164b a a =+=.考点:函数的零点、数列的递推公式5.设甲、乙两地的距离为a(a>0),小王骑自行车以匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又以匀速从乙地返回到甲地用了30分钟,则小王从出发到返回原地所经过的路程y 和其所用的时间x 的函数图象为( )A .B .C .D .【答案】D【解析】 试题分析:根据题意,甲、乙两地的距离为a(a>0),小王骑自行车以匀速从甲地到乙地用了20min ,在乙地休息10min 后,他又以匀速从乙地返回到甲地用了30min ,那么可知先是匀速运动,图像为直线,然后再休息,路程不变,那么可知时间持续10min ,那么最后还是同样的匀速运动,直线的斜率不变可知选D. 考点:函数图像点评:主要是考查了路程与时间的函数图像的运用,属于基础题.6.若a b ,是函数()()200f x x px q p q =-+>>,的两个不同的零点,且2a b -,,这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q +的值等于( )A .1B .5C .9D .4【答案】C【解析】试题分析:由韦达定理得a b p +=,a b q ⋅=,则0,0a b >>,当,,2a b -适当排序后成等比数列时,2-必为等比中项,故4a b q ⋅==,4=b a .当适当排序后成等差数列时,2-必不是等差中项,当a 是等差中项时,422a a =-,解得1a =,4b =;当4a 是等差中项时,82a a=-,解得4a =,1b =,综上所述,5a b p +==,所以p q +9=. 考点:等差中项和等比中项.7.一块各面均涂有油漆的正方体被锯成27个大小相同的小正方体,若将这些小正方体均匀地搅混在一起,从中任意取出一个,则取出的小正方体两面涂有油漆的概率是( )A .B .C .D .【答案】C【解析】【分析】先求出基本事件总数n =27,在得到的27个小正方体中,若其两面涂有油漆,则这个小正方体必在原正方体的某一条棱上,且原正方体的一条棱上只有一个两面涂有油漆的小正方体,则两面涂有油漆的小正方体共有12个,由此能求出在27个小正方体中,任取一个其两面涂有油漆的概率.【详解】∵一块各面均涂有油漆的正方体被锯成27个大小相同的小正方体,∴基本事件总数n =27,在得到的27个小正方体中,若其两面涂有油漆,则这个小正方体必在原正方体的某一条棱上,且原正方体的一条棱上只有一个两面涂有油漆的小正方体,则两面涂有油漆的小正方体共有12个,则在27个小正方体中,任取一个其两面涂有油漆的概率P = 故选:C【点睛】本题考查概率的求法,考查古典概型、正方体性质等基础知识,考查推理论证能力、空间想象能力,考查函数与方程思想,是基础题.8.已知等差数列{}n a 的前n 项和为n S ,686a a +=,963S S -=,则使n S 取得最大值时n 的值为( )A .5B .6C .7D .8【答案】D【解析】【分析】 由题意求得数列的通项公式为172n a n =-,令0n a ≥,解得182n ≤+,即可得到答案. 【详解】由题意,根据等差数列的性质,可得68726a a a +==,即73a =又由96789833S S a a a a -=++==,即81a =,所以等差数列的公差为872d a a =-=-,又由7116123a a d a =+=-=,解得115a =, 所以数列的通项公式为1(1)15(1)(2)172n a a n d n n =+-=+-⨯-=-,令1720n a n =-≥,解得182n ≤+, 所以使得n S 取得最大值时n 的值为8,故选D.【点睛】本题主要考查了等差数列的性质,等差数列的通项公式,以及前n 项和最值问题,其中解答中熟记等差数列的性质和通项公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.9.圆()()22215x y -++=关于原点对称的圆的方程为( )A .()()22215x y -+-=B .()()22125x y ++-=C .()()22125x y -++=D .()()22215x y ++-= 【答案】D【解析】【分析】根据已知圆的方程可得其圆心()2,1-,进而可求得其关于原点对称点,利用圆的标准方程即可求解.【详解】由圆()()22215x y -++=,则圆心为()2,1-,半径r =圆心为()2,1-关于原点对称点为()2,1-,所以圆()()22215x y -++=关于原点对称的圆的方程为()()22215x y ++-=.故选:D【点睛】本题考查了根据圆心与半径求圆的标准方程,属于基础题.10.直线210x ay +-=与平行,则a 的值为( ) A .12 B .12或0 C .0 D .-2或0 【答案】A【解析】【分析】若直线210x ay +-=与(1)10a x ay --+=平行,则1()2(1)0a a a ⨯---=,解出a 值后,验证两条直线是否重合,可得答案.【详解】若直线210x ay +-=与(1)10a x ay --+=平行,则1()2(1)0a a a ⨯---=,解得0a =或12a =, 又0a =时,直线10x -=与10x -+=表示同一条直线, 故12a =, 故选A.本题考查的知识点是直线的一般式方程,直线的平行关系,正确理解直线平行的几何意义是解答的关键. 11.设R a ∈,若关于x 的不等式210x ax -+≥在区间[]1,2上有解,则( )A .2a ≤B .2a ≥C .52a ≥D .52a ≤ 【答案】D【解析】【分析】根据题意得不等式对应的二次函数()21f x x ax =-+开口向上,分别讨论0,0,0∆=∆>∆<三种情况即可.【详解】由题意得:当02a ∆=⇒=±当()()22052251020222a a a a f f a a ⎧->⎧⎪⇒⇒<-<≤⎨⎨≥≥≤≤⎩⎪⎩或或或或 当022a ∆<⇒-<<综上所述:52a ≤,选D. 【点睛】 本题主要考查了含参一元二次不等式中参数的取值范围.解这类题通常分三种情况:0,0,0∆=∆>∆<.有时还需要结合韦达定理进行解决.12.已知两条直线m ,n ,两个平面α,β,下列命题正确是( )A .m ∥n ,m ∥α⇒n ∥αB .α∥β,m ⊂α,n ⊂β⇒m ∥nC .α⊥β,m ⊂α,n ⊂β⇒m ⊥nD .α∥β,m ∥n ,m ⊥α⇒n ⊥β 【答案】D【解析】【分析】在A 中,n ∥α或n ⊂α;在B 中,m 与n 平行或异面;在C 中,m 与n 相交、平行或异面;在D 中,由线面垂直的判定定理得:α∥β,m ∥n ,m ⊥α⇒n ⊥β. 【详解】由两条直线m ,n ,两个平面α,β,知:在A 中,m ∥n ,m ∥α⇒n ∥α或n ⊂α,故A 错误; 在B 中,α∥β,m ⊂α,n ⊂β⇒m 与n 平行或异面,故B 错误; 在C 中,α⊥β,m ⊂α,n ⊂β⇒m 与n 相交、平行或异面,故C 错误; 在D 中,由线面垂直的判定定理得:α∥β,m ∥n ,m ⊥α⇒n ⊥β,故D 正确. 故选:D .【点评】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.二、填空题:本题共4小题13.设等差数列{}n a 的前n 项和为n S ,若53a =,392S =,则5S =______. 【答案】10【解析】【分析】将5a 和3S 用首项和公差表示,解方程组,求出首项和公式,利用公式求解5S .【详解】设该数列的公差为d ,由题可知: ()1143932a d a d +=⎧⎪⎨+=⎪⎩,解得1112a d =⎧⎪⎨=⎪⎩,故5151010S a d =+=.故答案为:10.【点睛】本题考查由基本量计算等差数列的通项公式以及前n 项和,属基础题.14.已知数列{}n a 的前n 项和为21n S n =-,则其通项公式n a =__________.【答案】0,121,2n n n =⎧⎨-≥⎩【解析】分析:先根据和项与通项关系得当2n ≥时,121n n n a S S n -=-=-,再检验,1n =时,1a 不满足上述式子,所以结果用分段函数表示.详解: ∵已知数列{}n a 的前n 项和21n S n =-,∴当1n =时,110a S ==,当2n ≥时,222211[(1)1](1)21n n n a S S n n n n n -=-=----=--=-,经检验,1n =时,1a 不满足上述式子,故数列{}n a 的通项公式0,121,2n n a n n =⎧=⎨-≥⎩. 点睛:给出n S 与n a 的递推关系求n a ,常用思路是:一是利用1,2n n n a S S n -=-≥转化为n a 的递推关系,再求其通项公式;二是转化为n S 的递推关系,先求出n S 与n 之间的关系,再求n a . 应用关系式11,1,2n n n S n a S S n -=⎧=⎨-≥⎩时,一定要注意分1,2n n =≥两种情况,在求出结果后,看看这两种情况能否整合在一起.15.已知直线20ax y +-=平分圆22(1)()4x y a -+-=的周长,则实数a =________.【答案】1【解析】【分析】由题得圆心在直线上,解方程即得解.【详解】由题得圆心(1,a )在直线20ax y +-=上,所以20,1a a a +-=∴=.【点睛】本题主要考查直线和圆的位置关系,意在考查学生对该知识的理解掌握水平,属于基础题.16.已知3sin()45πθ-=,则sin 2θ的值为______ 【答案】725 【解析】【分析】根据两角差的正弦公式,化简3sin()cos 4225πθθθ-=-=,解出sin cos θθ-的值,再平方,即可求解.【详解】由题意,可知3sin()45πθθθ-=-=,sin cos θθ∴-=1812sin cos 25θθ-= 72sin cos 25θθ∴=则7sin 225θ=故答案为:725【点睛】本题考查三角函数常用公式()2sin cos 12sin cos θθθθ-=-关系转换,属于基础题.三、解答题:解答应写出文字说明、证明过程或演算步骤。

2020_2021学年上海虹口区高一上学期期末数学试卷(答案版)

2020_2021学年上海虹口区高一上学期期末数学试卷(答案版)

2020~2021学年上海虹口区高一上学期期末数学试卷(详解)一、填空题(本大题共10小题,每小题3分,共30分)1.【答案】【解析】【踩分点】已知集合,,则 .∵集合,.∴.2.【答案】【解析】【踩分点】不等式的解集为 .不等式可化为,或,解得,或,∴原不等式的解集为:.3.【答案】【解析】【踩分点】函数,的值域为 .由双勾函数性质可知:函数在上单调递减,在上单调递增,又∵,,,∴函数,的值域是.4.【答案】【解析】【踩分点】计算: ..5.【答案】【解析】【踩分点】用“二分法”求方程在区间内的实根,首先取区间中点进行判断,那么下一个取的点是 .设函数,易知函数为增函数,∵,,,∴下一个有根区间是,那么下一个取的点是.故答案为:.6.【答案】【解析】已知条件,,且是的必要条件,则实数的取值范围为 .∵条件:,:,且是的必要条件,∴,解得,则实数的取值范围是.【踩分点】故答案为︰.7.【答案】【解析】【踩分点】不等式的解集为 .①当时,不等式可化为,∴,∴;②当时,不等式可化为,恒成立,;③当时,不等式可化为,,∴,综上所述:不等式的解集为.故答案为∶.8.【答案】【解析】【踩分点】已知函数的反函数为,若函数的图象过点,则实数的值为 .的反函数为,∵函数的图象经过点,∴函数的图象经过点,∴,解得.故答案为:.9.已知函数在区间上是增函数,则实数的取值范围为 .【答案】【解析】【踩分点】令,原函数化为,函数为增函数,要使函数在区间上是增函数,则在上单调递增,则.∴实数的取值范围为.故答案为:.10.【答案】【解析】【踩分点】,其中,,且,,其中,,且,则的元素个数为 .(用含正整数的式子表示)∵,,∴,∵,,且,∴,∴元素的个数为:.11.【答案】【解析】若集合,,且,则满足条件的实数的取值集合为 .,解得或,则,【踩分点】①时,,此时满足条件;②时,要满足,则或,解得或,综上所述,实数的取值集合为.12.【答案】【解析】【踩分点】已知函数,若,则实数的取值范围为 .函数的图象如图所示,当时,,,当时,,,所以在上单调递增,且,,所以,所以是奇函数,若,则相当于,相当于,即,得或,所以的取值范围是.13.已知函数是定义在实数集上的偶函数,若在区间上是增函数,且,则不等式的解集为 .【答案】【解析】【踩分点】因为是定义在实数集上的偶函数,在区间上是增函数,且,所以在上单调递减,且,所以在上,在上.因为不等式,所以或,即或或或,解得或,即不等式的解集为.故答案为:.或或二、选择题(本大题共5小题,每小题4分,共20分)14.A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】【解析】已知,都是实数,那么“”是“”的( ).C ∵函数在上单调递增,则当时,有,故充分性成立,当,即时,有,故必要性成立,∴“”是“”的充要条件.故选.15.A.关于轴对称B.关于轴对称函数的图象的对称性为( ).C.关于原点对称D.关于直线对称【答案】【解析】B 因为,定义域为,且,所以函数是偶函数,即函数图象关于轴对称.故选.16.A.B. C. D.【答案】【解析】已知全集及集合,,则的元素个数为( ).B 集合,集合,则,所以,含个元素.故选.且其中且且或17.A.B. C. D.【答案】【解析】已知函数,,的零点依次为,,,则,,的大小关系为( ).D 已知函数,,的零点依次为、、,当时,,即;当时,,即;当时,,即.在同一平面直角坐标系中分别作出函数,,,的图象,如图:由图知.故选.18.A. B.C.D.【答案】【解析】设是定义在上的奇函数,且当时,,若对任意的,不等式恒成立,则实数的取值范围是( ).A(排除法)当则得,即在时恒成立,而最大值,是当时出现,故的最大值为,则恒成立,排除项,同理再验证时,恒成立,排除项,时,不成立,故排除项.故选:.19.A.B.C.D.【答案】【解析】若函数与在区间上都是严格减函数,则实数的取值范围为( ).D 对于函数,时,为减函数,时,为增函数,故应有.对于函数,显然不为,对比函数可知,时,在上为减函数,时,在上为增函数,因此.故选.三、解答题(本大题共5小题,共50分)20.【答案】【解析】【踩分点】已知,是任意实数,求证:,并指出等号成立的条件.证明见解析,时,等号成立.证明:因故,即.当且仅当时,等号成立.21.【答案】【解析】某居民小区欲在一块空地上建一面积为的矩形停车场,停车场的四周留有人行通道.设计要求停车场外侧南北的人行通道宽,东西的人行通道宽,如图所示(图中单位:).问如何设计停车场的边长,才能使人行通道占地面积最小?最小面积是多少?北南停车场设计矩形停车场南北侧边长为,其东西侧边长为,人行通道占地面积最小,最小面积是.设矩形停车场南北侧边长为,则其东西侧边长为,【踩分点】人行通道占地面积为,由均值不等式,得 ,当且仅当,即时,,此时.所以,设计矩形停车场南北侧边长为,则其东西侧边长为,人行通道占地面积最小.22.(1)(2)(1)(2)【答案】(1)(2)【解析】【踩分点】已知函数.作出这个函数的大致图象.讨论关于的方程的根的个数.图象见解析.当时,方程的根的个数为;当或时,方程的根的个数为;当或时,方程的根的个数为.,故先将函数的图象向左平移个单位,再向上平移个单位,得到函数的图象,最后将函数的图象轴下方部分翻折到轴上方,即可得到函数的大致图象.–8–6–4–22468–22468当时,方程的根的个数为;当或时,方程的根的个数为;当或时,方程的根的个数为.23.24.(1)(2)(3)(1)(2)【答案】已知函数.判断函数的奇偶性.对任意的实数,,且,求证:.若关于的方程有两个不相等的正根,求实数的取值范围.奇函数.证明见解析.(1)(2)(1)(2)【答案】(1)(2)【解析】【踩分点】已知函数是定义在上的奇函数.求实数的值及函数的值域.若不等式在上恒成立,求实数的取值范围.,函数的值域是.实数的取值范围是:.由,解得:,反之时,,,符合题意,故,由,时,,时,,故函数的值域是.在递增,故,故,故,令,,则随的增大而增大,最大值是,故实数的取值范围是:.(3)(1)(2)(3)【解析】.因为,当时,,所以,即.当时,,,即.综上知,是奇函数.因为是单调递增函数,也是单调递增函数,由复合函数的单调性,知在上是单调递增函数.由()知是上的奇函数.由奇函数的单调性知当时是单调递增函数,从而是定义在上的单调递增的奇函数.由,得,所以,即.由()知函数是上的奇函数,故原方程可化为.令,则当时,,于是,原方程有两个不相等的正根等价于:关于的方程有两个不相等的正根,即【踩分点】或,因此实数的取值范围为.或25.(1)(2)(1)(2)【答案】(1)(2)【解析】设是正常数,函数满足.求的值,并判断函数的奇偶性.是否存在一个正整数,使得对于任意恒成立?若存在,求出的最小值;若不存在,请说明理由.;奇函数.存在;.由,得,即,注意到,解得.于是,对于任意实数,均有,即恒成立,故的定义域为.在中任取一个实数,都有,并且,故,因此是奇函数.设、是区间上任意给定实数,且,易知,故,因在上是严格增函数,故,【踩分点】从而在上是严格增函数,此时函数的最大值为.由对于任意恒成立,得,又是正整数,因此的最小值为.四、附加题26.(1)(2)(1)(2)【答案】(1)(2)【解析】对于定义在上的函数,设区间是的一个子集.若存在,使得函数在区间上是严格减函数,在区间上是严格增函数,则称函数在区间上具有性质.若函数在区间上具有性质,写出实数,所满足的条件.设是常数,若函数在区间上具有性质,求实数的取值范围...当函数在区间上具有性质时,由其图象在上是抛物线,故此抛物线的开口向上(即),且对称轴是;于是,实数,所满足的条件为:.记.设,是区间上任意给定的两个实数,总有.若,当时,总有且,故,因此在区间上是严格增函数,不符合题目要求.若,当时,总有且,故,因此在区间上是严格减函数,不符合题目要求.若,当且,时,总有且,故,因此在区间上是考查严格减函数;当且,时,总有且,故,因此在区间上是严格增函数.【踩分点】。

2019-2020学年上海中学高一下学期期末数学试卷 (解析版)

2019-2020学年上海中学高一下学期期末数学试卷 (解析版)

2019-2020学年上海中学高一第二学期期末数学试卷一、填空题(共12小题).1.在数列{a n}中,若a1=1,,则a n=.2.在首项为2020,公比为的等比数列中,最接近于1的项是第项.3.在等差数列{a n}中,前15项的和S15=90,则a8=.4.等比数列{a n}满足a7a8a9=27.则log3a1+log3a2+log3a3+…+log3a15=.5.在等差数列{a n}中,a1>0,S4=S9,则S n取最大值时,n=.6.数列{a n}由a n=(n∈N*)确定,则{a n}中第10个3是该数列的第项.7.已知方程在区间内有两个相异的解α,β,则k的取值范围是.8.已知数列{a n}中a1=1且(n∈N),a n=.9.计算=.10.数列{a n}中,当n为奇数时,a n=5n+1,当n为偶数时,a n=,则这个数列的前2n 项的和S2n=11.一个数字生成器,生成规则如下:第1次生成一个数x,以后每次生成的结果是将上一次生成的每一个数x生成两个数,一个是﹣x,另一个是x+3.设第n次生成的数的个数为a n,则数列{a n}的前n项和S n=;若x=1,前n次生成的所有数中不同的数的个数为T n,则T n=.12.若数列{a n},{b n}满足a1=1,b1=1,若对任意的n∈N*,都有a n+1=a n+b n+,b n+1=a n+b n﹣,设c n=,则无穷数列{c n}的所有项的和为.二、选择题13.用数学归纳法证明:“(n+1)(n+2)…(n+n)=2n•1•3…(2n+1)”.从“n=k到n=k+1”左端需增乘的代数式为()A.(2k+1)(2k+2)B.2(2k+1)C.D.14.“b2=ac”是“a,b,c依次成等比数列”的()条件A.充分非必要B.必要非充分C.既不充分也不必要D.充分必要15.已知等差数列{a n}的公差d不为零,等比数列{b n}的公比q是小于1的正有理数.若,且是正整数,则q的值可以是()A.B.C.D.16.S n为实数构成的等比数列{a n}的前n项和,则{S n}中()A.任一项均不为0B.必有一项为0C.至多有一项为0D.或无一项为0,或无穷多项为0三、解答题17.有三个数a,b,c依次成等比数列,其和为21,且a,b,c﹣9依次成等差效列,求a,b,c.18.解下列三角方程:(1)4cos2x﹣4cos x+1=0;(2)sin2x+3sin x cos x+1=0;(3)sin2x﹣12(sin x﹣cos x)+12=0.19.已知等差数列{a n}满足a2=0,a6+a8=﹣10.(1)求数列{a n}的通项公式;(2)求数列{}的前n项和S n.20.已知数列{a n}的前n项和为S n,且2S n是6和a n的等差中项.(1)求数列{a n}的通项公式和前n项和S n;(2)若对任意的n∈N*,都有S n∈[s,t],求t﹣s的最小值.21.对于实数a,将满足“0≤y<1且x﹣y为整数”的实数y称为实数x的小数部分,用记号||x||表示,对于实数a,无穷数列{a n}满足如下条件:a1=|a,a n+1=其中n=1,2,3,…(1)若a=,求数列{a n};(2)当a时,对任意的n∈N*,都有a n=a,求符合要求的实数a构成的集合A.(3)若a是有理数,设a=(p是整数,q是正整数,p、q互质),问对于大于q的任意正整数n,是否都有a n=0成立,并证明你的结论.参考答案一、填空题1.在数列{a n}中,若a1=1,,则a n=3n﹣2.【分析】利用等差数列定义和通项公式即可得出.解:a1=1,,则a n+1=a n+3,∴数列{a n}为首项为1,公差为3的等差数列,∴a n=1+3(n﹣1)=3n﹣2,故答案为:3n﹣2.2.在首项为2020,公比为的等比数列中,最接近于1的项是第12项.【分析】由已知可先求出数列的通项公式,进而可求.解:a n=a1q n﹣1=2020×()n﹣1,则数列单调递减,a11﹣1=2020×()10﹣1=,a12﹣1=2020×()11﹣1=﹣故当n=12时,数列的项与1最接近.故答案为:12.3.在等差数列{a n}中,前15项的和S15=90,则a8=6.【分析】由等差数列的前n和可得,由等差数列的性质可得a1+a15=2a8,代入可求a8解:由等差数列的前n和可得∴a8=6故答案为:64.等比数列{a n}满足a7a8a9=27.则log3a1+log3a2+log3a3+…+log3a15=15.【分析】利用等比数列的通项公式推导出a8=3,由此利用等比数列性质和对数函数运算法则能求出log3(a1a2…a15)的值.解:∵a7a8a9=27,∴a83=27,∴a8=3,∴a1a15=a2a14=a3a13=a4a12=a5a11=a6a10=a7a9=a82=9,∴log3a1+log3a2+log3a3+…+log3a15=log3(a1•a2…a15)=log3315=15,故答案为:15.5.在等差数列{a n}中,a1>0,S4=S9,则S n取最大值时,n=6或7.【分析】先由题设条件求出a1=﹣6d,,然后用配方法进行求解.解:,解得a1=﹣6d.∴==,∵a1>0,d<0,∴当n=6或7时,S n取最大值﹣.故答案:6或7.6.数列{a n}由a n=(n∈N*)确定,则{a n}中第10个3是该数列的第1536项.【分析】借助于递推公式知道奇数项的值为其项数,而偶数项的值由对应的值来决定.又通过前面的项发现项的值为3时,下角码是首项为3,公比为2的等比数列.即可求出第8个3在该数列中所占的位置.解:由题得:这个数列各项的值分别为1,1,3,1,5,3,7,1,9,5,11,3…∴a12+a15=3+15=18.又因为a3=3,a6=3,a12=3,a24=3…即项的值为3时,下角码是首项为3,公比为2的等比数列.所以第10个3是该数列的第3×210﹣1=1536项.故答案为:1536.7.已知方程在区间内有两个相异的解α,β,则k的取值范围是[0,1).【分析】由已知结合辅助角公式对已知函数进行化简,然后结合正弦函数的图象可求.解:因为在区间内有两个相异解,故y=cos2x+sin2x=2sin(2x+),由x∈[0,]可得2x+∈[],其大致图象如图所示,结合图象可知,1≤k+1<2,解可得0≤k<1,故答案为:[0,1).8.已知数列{a n}中a1=1且(n∈N),a n=.【分析】本题考查数列的概念,由递推数列求数列的通项公式,适当的变形是完整解答本题的关键.解:根据题意,a n+1a n=a n﹣a n+1,两边同除以a n a n+1,得,于是有:,,…,,上述n﹣1个等式累加,可得,又a1=1,得,所以;故答案为.9.计算=.【分析】先利用裂项求和可得,=,代入可求极限=解:∵2[]===∴=∴==故答案为:10.数列{a n}中,当n为奇数时,a n=5n+1,当n为偶数时,a n=,则这个数列的前2n 项的和S2n=5n2+n+2n+1﹣2【分析】对数列{a n}使用分组求和的办法即可求得其前2n项的和.解:由题意知:数列{a n}的奇数项构成首项为6,公差为10的等差数列;数列{a n}的偶数项构成首项为2,公比为2的等比数列,故S2n=(a1+a3+a5+…+a2n﹣1)+(a2+a4+a6+…+a2n)=6n++=5n2+n+2n+1﹣2.故答案为:5n2+n+2n+1﹣2.11.一个数字生成器,生成规则如下:第1次生成一个数x,以后每次生成的结果是将上一次生成的每一个数x生成两个数,一个是﹣x,另一个是x+3.设第n次生成的数的个数为a n,则数列{a n}的前n项和S n=2n﹣1;若x=1,前n次生成的所有数中不同的数的个数为T n,则T n=.【分析】(1)根据题意,一个数字生成器,生成规则可得:第1次生成1个数,第二次生成2个数,第三次生成4个数,第四次生成8个数…,以此类推知该数列是等比数列,利用等比数列求和公式即可求出数列{a n}的前n项和S n(2)因为一个数字生成器,生成规则如下:第1次生成一个数x,以后每次生成的结果是将上一次生成的每一个数x生成两个数,一个是﹣x,另一个是x+3,类推可求出数列的和.解:(1)根据题意,一个数字生成器,生成规则可得:第1次生成1个数,第二次生成2个数,第三次生成4个数,第四次生成8个数…,以此类推,第n次生成的数的个数为a n=2n﹣1,显然,此数列为首项为1,公比为2的等比数列.再根据等比数列求和公式,则数列{a n}的前n项和S n=2n﹣1.(2)因为一个数字生成器,生成规则如下:第1次生成一个数x,以后每次生成的结果是将上一次生成的每一个数x生成两个数,一个是﹣x,另一个是x+3.第一次生成的数为“1”,第二次生成的数为“﹣1、4”,第三次生成的数为“1、2、﹣4、7”,第四次生成的数为“﹣1、4、﹣2、5、4、﹣1、﹣7、10”…可观察出:第一次生成后前1次所有数中不同的个数为“1”,第2次生成后前2次所有数中不同的个数为“3”,第三次生成后前3次所有数中不同的个数为“6”,第四次生成后前4次所有数中不同的个数为“10”,…以此类推以后为公差为4的等差数列.则易得数中不同的数的个数为T n,则T n=所以,应填上12.若数列{a n},{b n}满足a1=1,b1=1,若对任意的n∈N*,都有a n+1=a n+b n+,b n+1=a n+b n﹣,设c n=,则无穷数列{c n}的所有项的和为1.【分析】由题意可得a n+1+b n+1=2(a n+b n),则数列{a n+b n}是首项为2,公比为2的等比数列,为本题解题的关键.解:由题意,a n+1+b n+1=2(a n+b n),∴{a n+b n}是首项为2,公比为2的等比数列,∴,而,可得,从而,其各项和为.故答案为:1.二、选择题13.用数学归纳法证明:“(n+1)(n+2)…(n+n)=2n•1•3…(2n+1)”.从“n=k到n=k+1”左端需增乘的代数式为()A.(2k+1)(2k+2)B.2(2k+1)C.D.【分析】写出从n=k到n=k+1时左边需增乘的代数式,化简即可.解:当n=k时,左端=(k+1)(k+2)(k+3)…(2k),当n=k+1时,左端=(k+2)(k+3)…(2k)(2k+1)(2k+2),从n=k到n=k+1时左边需增乘的代数式是:=2(2k+1).故选:B.14.“b2=ac”是“a,b,c依次成等比数列”的()条件A.充分非必要B.必要非充分C.既不充分也不必要D.充分必要【分析】根据等比数列的性质和必要条件和充分条件即可判断.解:“b2=ac”,当a=b=c=0时,“a,b,c不成等比数列”,但“a,b,c依次成等比数列”则一定有“b2=ac”,故“b2=ac”是“a,b,c依次成等比数列”的必要非充分条件,故选:B.15.已知等差数列{a n}的公差d不为零,等比数列{b n}的公比q是小于1的正有理数.若,且是正整数,则q的值可以是()A.B.C.D.【分析】运用等差数列和等比数列的通项公式,确定的表达式,利用是正整数,q是小于1的正有理数,即可求得结论.解:根据题意:a2=a1+d=2d,a3=a1+2d=3d,b2=b1q=d2q,b3=b1q2=d2q2,∴==,∵是正整数,q是小于1的正有理数.令=t,t是正整数,则有q2+q+1=,∴q=,对t赋值,验证知,当t=8时,有q=符合题意.故选:D.16.S n为实数构成的等比数列{a n}的前n项和,则{S n}中()A.任一项均不为0B.必有一项为0C.至多有一项为0D.或无一项为0,或无穷多项为0【分析】举特例验证即可.解:若a n=1,则S n=n,显然{S n}中无一项为0,排除A,B;若a n=(﹣1)n,显然当n为偶数时,S n=0,即{S n}中有无穷多项为0,排除C,故选:D.三、解答题17.有三个数a,b,c依次成等比数列,其和为21,且a,b,c﹣9依次成等差效列,求a,b,c.【分析】由题意可设a=b﹣d,c﹣9=b+d,再由已知列关于b与d的方程组求解b与d 的值,则答案可求.解:由题意,可设a=b﹣d,c﹣9=b+d,于是,解得或,当b=4,d=3时,可得a=1,b=4,c=16当b=4,d=﹣12时,可得a=16,b=4,c=1.18.解下列三角方程:(1)4cos2x﹣4cos x+1=0;(2)sin2x+3sin x cos x+1=0;(3)sin2x﹣12(sin x﹣cos x)+12=0.【分析】(1)由条件可得,然后求出x即可;(2)利用同角三角函数基本关系式化简,然后两边同除cos2x,可得2tan2x+3tan x+1=0,再求出x;(3)通过换元,转化为二次函数,进而得出.解:(1)即;(2)即sin2x+3sin x cos x+sin2x+cos2x=0,两边同除cos2x,可得2tan2x+3tan x+1=0,∴或tan x=﹣1,∴或;(3)令,,则sin2x=1﹣t2,从而1﹣t2﹣12t+12=0,即t2+12t﹣13=0,解得t=1或t=﹣13(舍),再由,∴或,∴或x=2kπ+π(k∈Z).19.已知等差数列{a n}满足a2=0,a6+a8=﹣10.(1)求数列{a n}的通项公式;(2)求数列{}的前n项和S n.【分析】(1)等差数列{a n}的公差设为d,运用等差数列的通项公式,解方程可得首项和公差,即可得到所求通项公式;(2)求得=(2﹣n)•()n﹣1,运用数列的求和方法:错位相减法,结合等比数列的求和公式,化简整理,即可得到所求和.解:(1)等差数列{a n}的公差设为d,a2=0,a6+a8=﹣10,可得a1+d=0,a1+5d+a1+7d=﹣10,解得a1=1,d=﹣1,则a n=a1+(n﹣1)d=1﹣n+1=2﹣n,n∈N*;(2)=(2﹣n)•()n﹣1,数列{}的前n项和设为S n,S n=1•()0+0•()+(﹣1)•()2+…+(3﹣n)•()n﹣2+(2﹣n)•()n﹣1,S n=1•()+0•()2+(﹣1)•()3+…+(3﹣n)•()n﹣1+(2﹣n)•()n,上面两式相减可得,S n=1+(﹣1)[()+()2+…+()n﹣2+()n﹣1]﹣(2﹣n)•()n=1+(﹣1)•﹣(2﹣n)•()n,可得S n=n•()n﹣1.20.已知数列{a n}的前n项和为S n,且2S n是6和a n的等差中项.(1)求数列{a n}的通项公式和前n项和S n;(2)若对任意的n∈N*,都有S n∈[s,t],求t﹣s的最小值.【分析】(1)利用数列递推式可以得到数列,∴{a n}是首项为2,公比为的等比数列;(2)分为两种情况,n为奇数以及n为偶数,再利用函数性质可以判定S n增减性,从而得到s与t的值.解:(1)由题意,4S n=6+a n①,令n=1,可得a1=2,4S n+1=6+a n+1②,②﹣①,得4a n+1=a n+1﹣a n,即,∴{a n}是首项为2,公比为的等比数列,∴,;(2)①n为奇数时,,S n关于n单调递减且恒成立,此时,;②n为偶数时,,S n关于n单调递增且恒成立,此时,;∴(s n)min=≥s,(s n)max=2≤t,于是.21.对于实数a,将满足“0≤y<1且x﹣y为整数”的实数y称为实数x的小数部分,用记号||x||表示,对于实数a,无穷数列{a n}满足如下条件:a1=|a,a n+1=其中n=1,2,3,…(1)若a=,求数列{a n};(2)当a时,对任意的n∈N*,都有a n=a,求符合要求的实数a构成的集合A.(3)若a是有理数,设a=(p是整数,q是正整数,p、q互质),问对于大于q的任意正整数n,是否都有a n=0成立,并证明你的结论.【分析】(1)由题设知=,a2====,由此能求出.(2)由a1=||a||=a,知,1<<4,由此进行分类讨论,能求出符合要求的实数a构成的集合A.(3)成立.证明:由a是有理数,可知对一切正整数n,a n为0或正有理数,可设,由此利用分类讨论思想能够推导出数列{a m}中a m以及它之后的项均为0,所以对不大q 的自然数n,都有a n=0.解:(1)∵满足“0≤y<1且x﹣y为整数”的实数y称为实数x的小数部分,用记号||x||表示,a1=,a n+1=其中n=1,2,3,…∴=,a2====,…a k=,则a k+1===,所以.…(2)∵a1=||a||=a,∴,∴1<<4,①当,即1<<2时,==﹣1=a,所以a2+a﹣1=0,解得a=,(a=∉(,1),舍去).…②当,即2≤<3时,a2==,所以a2+2a﹣1=0,解得a==,(a=﹣∉(,],舍去).…③当,即3<4时,,所以a2+3a﹣1=0,解得a=(a=,舍去).…综上,{a=,a=,a=}.…(3)成立.…证明:由a是有理数,可知对一切正整数n,a n为0或正有理数,可设(p n是非负整数,q n是正整数,且既约).…①由,得0≤p1≤q;…②若p n≠0,设q n=ap n+β(0≤βP n,α,β是非负整数)则=a+,而由,得=,==,故P n+1=β,q n+1=P n,得0≤P n+1<P n.…若P n=0,则p n+1=0,…若a1,a2,a3,…,a q均不为0,则这q正整数互不相同且都小于q,但小于q的正整数共有q﹣1个,矛盾.…(17分)故a1,a2,a3,…,a q中至少有一个为0,即存在m(1≤m≤q),使得a m=0.从而数列{a m}中a m以及它之后的项均为0,所以对不大q的自然数n,都有a n=0.…(18分)(其它解法可参考给分)。

上海市虹口区2019-2020学年高一第一学期数学期末统考试卷(含答案)

上海市虹口区2019-2020学年高一第一学期数学期末统考试卷(含答案)

上海市虹口区2019-2020学年高一第一学期期末统考数学试卷2020.01一. 填空题1. 用列举法表示集合2{|230,}x x x x −−<∈=Z2. 命题“若2x >且3y >,则5x y +>”的否命题是 命题(“真”或“假”)3. 函数4y x=,[1,12]x ∈的值域为 4. 已知函数()2x f x =,则((2))f f =5. 不等式|1|2x −<的解为6. 已知11{2,1,,,1,2,3}22a ∈−−−,若幂函数()a f x x =为奇函数,且在(0,)+∞上递减, 则a =7. 已知函数()f x 为R 上的奇函数,当0x ≥时,()21x f x =−,则(2)f −= 8. 已知2m >,且110lg(100)lgx m m=+,则x 的值为 9. 已知0a >,0b >,且44a b +=,则a b 的最大值等于 10. 已知函数()x f x a b =+(0a >,1a ≠)的定义域和值域都是[1,0]−,则a b +=11.(A 组)记函数()||f x x b =+,[2,2]x ∈−的最大值为()g b ,则()g b = (B 组)函数2()|2|f x x x =−,[2,2]x ∈−的最大值为12.(A 组)已知()f x 是定义在R 上的偶函数,且在[0,)+∞上单调递增,则关于x 的不等式2()(1)10f x f x −+−<的解是(B 组)已知42()f x x x =+,则关于x 的不等式(1)(2)f x f +<的解是二. 选择题13. 已知13a <<,24b <<,现给出以下结论:(1)37a b <+<;(2)31a b −<−<;(3)212a b <⋅<;(4)1342a b <<;以上结论正确的个数是( ) A. 1个 B. 2个 C. 3个 D. 4个 14. 已知a ∈R ,则“1a <”是“11a >”的( ) A. 充分非必要条件 B. 必要非充分条件C. 充要条件D. 既非充分也非必要条件15. 已知函数||32x y =−的值域是( )A. RB. (2,)−+∞C. [2,)−+∞D. [1,)−+∞16.(A 组)定义在R 上的函数()f x 的图像是连续不断的,此函数有两个不同的零点,这两个零点分别在区间(0,2)和(4,6)内,那么下列不等式中一定正确的是( )A. (0)(2)0f f ⋅<B. (0)(6)0f f ⋅>C. (2)(4)0f f ⋅>D. (2)(6)0f f ⋅>(B 组)已知函数()f x 是定义在R 上的奇函数,现给出以下结论:(1)此函数一定有零点;(2)此函数可能没有零点;(3)此函数有奇数个零点;(4)此函数有偶数个零点;以上结论正确的个数是( )A. 1个B. 2个C. 3个D. 4个三. 解答题17. 解下列方程:(1)2223x x −+⋅=;(2)2lg lg 20x x −−=.18. 设a ∈R ,函数2()21x x a f x +=+. (1)当1a =−时,判定()f x 的奇偶性,并给出证明;(2)当0a =时,证明此函数在(,)−∞+∞上单调递增.19. 某商场在促销期间规定:商场内所有商品按标价的80%出售,同时当顾客在该商场内消费满一定金额后,按如下方案获得相应金额的奖券:根据上述促销方法,顾客在该商场购物可以获得双重优惠,例如:购买标价为400元的商品, 则消费金额为320元,然后还能获得对应的奖券金额为28元,于是,该顾客获得的优惠额 为:4000.228108⨯+=元,设购买商品得到的优惠率=购买商品获得的优惠额商品的标价,试问: (1)购买一件标价为1000元的商品,顾客得到的优惠率是多少?(2)当商品的标价为[100,600]元时,试写出顾客得到的优惠率y 关于标价x 元之间的函 数关系式;(3)当顾客购买标价不超过600元的商品时,该顾客是否可以得到超过30%的优惠率? 试说明理由.20. 已知函数2()22f x x ax =−+,[1,1]x ∈−.(1)当1a =时,求1(1)f −;(2)当12a =−时,判定此函数有没有反函数,并说明理由; (3)当a 为何值时,此函数存在反函数?并求出此函数的反函数1()f x −.21. 已知函数()f x 的定义域是使得解析式有意义的x 集合,如果对于定义域内的任意实 数x ,函数值均为正,则称此函数为“正函数”.(1)证明函数2()lg(1)1f x x =++是“正函数”;(2)(A 组题)如果函数()||1||1a f x x x =+−+不是“正函数”,求正数a 的取值范围; (B 组题)如果函数1()||||f x x a x =+−不是“正函数”,求实数a 的取值范围; (3)(A 组题)如果函数22(2)24()2(1)22x a x a f x x a x a +−−+=+−−+是“正函数”,求正数a 取值范围; (B 组题)如果函数2()2f x ax ax =++是“正函数”,求实数a 的取值范围;参考答案一. 填空题1. {0,1,2}2. 假3. 1[,4]34. 165. (1,3)−6. 1−7. 3−8. lg 29. 1 10. 32−11.(A 组题)20()20b b g b b b +≥⎧=⎨−<⎩;(B 组题)8 12.(A 组题)(1,1)−;(B 组题)(3,1)−二. 选择题13. D 14. B 15. D 16. (A 组题)C ;(B 组题)B三. 解答题17.(1)0x =或1x =;(2)100x =或110x =. 18.(1)奇函数;(2)证明略(用定义证明).19.(1)25.8%;(2)0.2[100,360)280.2[360,600]x y x x ∈⎧⎪=⎨+∈⎪⎩;(3)不能,最大优惠为27.8%.20.(1)1;(2)没有,函数不单调;(3)1a ≥或1a ≤−,当1a ≥时,1()f x a −=−[32,32]x a a ∈−+;当1a ≤−时,1()f x a −=[32,32]x a a ∈+−.21.(1)()1f x ≥,函数值恒为正;(2)(A 组题)(0,1);(B 组题)2a >;(3)(A 组题)(6,1){3}−;(B 组题)[0,8).。

上海市虹口区2019-2020学年高一下期末学业质量监测数学试题含解析

上海市虹口区2019-2020学年高一下期末学业质量监测数学试题含解析

上海市虹口区2019-2020学年高一下期末学业质量监测数学试题一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.把函数cos 22y x x =的图象经过变化而得到2sin 2y x =的图象,这个变化是( ) A .向左平移12π个单位 B .向右平移12π个单位C .向左平移6π个单位 D .向右平移6π个单位 【答案】B 【解析】 【详解】试题分析:cos 222sin 22sin 2612y x x x x ππ⎛⎫⎛⎫=+=+=+ ⎪ ⎪⎝⎭⎝⎭,与2sin 2y x =比较可知:只需将cos 22y x x =+向右平移12π个单位即可考点:三角函数化简与平移 2.若某扇形的弧长为2π,圆心角为4π,则该扇形的半径是( ) A .14 B .12C .1D .2【答案】D 【解析】 【分析】由扇形的弧长公式列方程得解. 【详解】设扇形的半径是r ,由扇形的弧长公式l r α=⋅得:42r π=π⨯,解得:2r故选D 【点睛】本题主要考查了扇形的弧长公式,考查了方程思想,属于基础题.3.若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为( )A .4B .3C .2D .1【答案】B 【解析】【分析】先根据约束条件画出可行域,再利用几何意义求最值. 【详解】作出约束条件1,0,20,yx yx y≤⎧⎪+≥⎨⎪--≤⎩,所对应的可行域(如图阴影部分)变形目标函数可得1122y x z=-,平移直线12y x=可知,当直线经过点()1,1C-时,直线的截距最小,代值计算可得z取最大值()max1213z=-⨯-=故选B.【点晴】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.4.阅读如图的程序框图,运行该程序,则输出s的值为()A.3 B.1C .-1D .0【答案】D 【解析】 【分析】从起始条件1i =、1s =开始执行程序框图,直到5i =终止循环. 【详解】1s =,1,1(31)13i s ==⋅-+=, 2,3(32)14i s ==⋅-+=, 3,4(33)11i s ==⋅-+=, 4,1(34)10i s ==⋅-+=,54,i =>输出0s =.【点睛】本题是直到型循环,只要满足判断框中的条件,就终止循环,考查读懂简单的程序框图.5.函数2sin cos 2y x x x =的单调增区间是( ) A .5[,]()1212k k k Z ππππ-+∈ B .[,]()63k k k Z ππππ-+∈C .[,]()36k k k Z ππππ-+∈D .5[,]()1212k k k Z ππππ-+∈ 【答案】D 【解析】 【分析】化简函数可得y =2sin (2x 3π-),把“2x 3π-”作为一个整体,再根据正弦函数的单调增区间,求出x 的范围,即是所求函数的增区间. 【详解】22222sin 23y sinxcosx x sin x x x ()π===-,由2π-+2kπ≤2x 32ππ-≤+2kπ得,kπ12π-≤x≤kπ512π+ (k ∈z ),∴函数的单调增区间是[kπ12π-,kπ512π+](k ∈z ),故选D . 【点睛】本题考查了正弦函数的单调性应用,一般的做法是利用整体思想,根据正弦函数(余弦函数)的性质进行求解.6.已知5a =,3b =,且12a b ⋅=-,则向量a 在向量b 上的投影等于( ) A .-4 B .4C .125-D .125【答案】A 【解析】 【分析】根据公式,向量a 在向量b 上的投影等于a bb⋅,计算求得结果.【详解】向量a 在向量b 上的投影等于1243a b b⋅-==-. 故选A. 【点睛】本题考查了向量的投影公式,只需记住公式代入即可,属于基础题型. 7.已知一扇形的周长为15cm ,圆心角为3rad ,则该扇形的面积为( ) A .29cm B .210.5cm C .213.5cm D .217.5cm【答案】C 【解析】 【分析】根据题意设出扇形的弧长与半径,通过扇形的周长与弧长公式即可求出扇形的弧长与半径,进而根据扇形的面积公式即可求解. 【详解】设扇形的弧长为l ,半径为r ,扇形的圆心角的弧度数是α. 则由题意可得:215,3r l l r r α+===. 可得:2315r r +=,解得:3r =,9l =. 可得:211=9313.522S lr cm =⨯⨯=扇形 故选:C 【点睛】本题主要考查扇形的周长与扇形的面积公式的应用,以及考查学生的计算能力,属于基础题.8.已知数列{a n }满足331log 1log ()n n a a n N +++=∈且2469a a a ++=,则15793log ()a a a ++的值是( )A .-5B .-15C . 5D .15【答案】A 【解析】试题分析:331313log 1log log log 1n n n n a a a a +++=∴-=即13log 1n n a a +=13n naa +∴= ∴数列{}n a 是公比为3的等比数列335579246()393a a a q a a a ∴++=++=⨯=15793log ()5a a a ∴++=-.考点:1.等比数列的定义及基本量的计算;2.对数的运算性质. 9.函数,,若存在,,使得成立,则的最大值为( ) A .12 B .22C .23D .32【答案】B 【解析】 【分析】 由题得,构造,分析得到,即得解.【详解】 由得,令,,,得.的最大值为22. 故选:B . 【点睛】本题考查函数的最值的求法,注意运用转化思想,以及二次函数在闭区间上的最值求法,考查运算能力,属于中档题.10.已知向量()2,1a =-,()1,b x =,a b ⊥,则x =( ) A .1- B .1C .2-D .2【答案】D 【解析】 【分析】利用平面向量垂直的坐标等价条件列等式求出实数x 的值. 【详解】()2,1a =-,()1,b x =,a b ⊥,20a b x ∴⋅=-+=,解得2x =,故选D.【点睛】本题考查向量垂直的坐标表示,解题时将向量垂直转化为两向量的数量积为零来处理,考查计算能力,属于基础题.11.如图,函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>≤ ⎪⎝⎭与坐标轴的三个交点P ,Q ,R 满足(1,0)P ,4PQR π∠=,M 为QR 的中点,5PM =,则A 的值为( )A .2B .52C 1633D 833【答案】D 【解析】 【分析】用周期T 表示出Q 点坐标,从而又可得R 点坐标,再求出M 点坐标后利用5PM =T ,得,,A ωϕ. 【详解】记函数的周期T ,则(1,0)2T Q +,因为4PQR π∠=,∴(0,1)2TR --,M 是QR 中点,则11(,)2424T TR +--, ∴2211(1)()52424T TPM =+-+--=6T =,∴263ππω==, 由sin()03πϕ+=得,3k k Z πϕπ+=∈,∵2πϕ≤,∴3πϕ=-,()sin()33f x A x ππ=-,(0)sin()1332f A A π=-=-=--,∴3A =, 故选:D. 【点睛】本题考查求三角函数的解析式,掌握正弦函数的图象与性质是解题关键.12.设在ABC ∆中,角,A B C ,所对的边分别为,a b c ,, 若cos cos sin b C c B a A +=, 则ABC ∆的形状为 ( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不确定【答案】B 【解析】 【分析】利用正弦定理可得()2sin sin B C A +=,结合三角形内角和定理与诱导公式可得sin 1,2A A π==,从而可得结果. 【详解】因为cos cos sin b C c B a A +=,所以由正弦定理可得2sin cos sin cos sin B C C B A +=,()22sin sin sin sin B C A A A +=⇒=,所以sin 1,2A A π==,所以是直角三角形.【点睛】本题主要考查正弦定理的应用,属于基础题. 弦定理是解三角形的有力工具,其常见用法有以下几种:(1)知道两边和一边的对角,求另一边的对角(一定要注意讨论钝角与锐角);(2)知道两角与一个角的对边,求另一个角的对边;(3)证明化简过程中边角互化;(4)求三角形外接圆半径. 二、填空题:本题共4小题13.等差数列{}n a 满足3198,4a a a =+=,则其公差为__________. 【答案】3- 【解析】 【分析】首先根据等差数列的性质得到52a =,再根据532a a d -=即可得到公差的值. 【详解】19524a a a +==,解得52a =. 5326a a d -==-,所以3d =-.故答案为:3- 【点睛】本题主要考查等差数列的性质,熟记公式为解题的关键,属于简单题.14.若x 、y 满足约束条件24326x y x y ≥⎧⎪≤⎨⎪-≤⎩,则3z x y =+的最大值为________.【答案】18 【解析】 【分析】先作出不等式组24326x y x y ≥⎧⎪≤⎨⎪-≤⎩所表示的平面区域,再观察图像即可得解.【详解】解:作出不等式组24326x y x y ≥⎧⎪≤⎨⎪-≤⎩所表示的平面区域,如图所示,由图可得:目标函数3z x y =+所在直线过点14(,4)3M 时,z 取最大值, 即max 1434183z =⨯+=, 故答案为:18 .【点睛】本题考查了简单的线性规划问题,重点考查了作图能力,属基础题.15.已知数列{}n a 是等差数列,记数列{}n a 的前n 项和为n S ,若1133S =,则6a =________.【答案】1 【解析】 【分析】由等差数列的求和公式和性质可得11611S a =,代入已知式子可得6a . 【详解】由等差数列的求和公式和性质可得:11S =()111112a a +=66112112a a ⨯=,且1133S =,∴63a =. 故答案为:1. 【点睛】本题考查了等差数列的求和公式及性质的应用,属于基础题.16.已知数列n n n n n n na abc b a b ≥⎧=⎨<⎩,,,其中()5*122n n n t a n b n N -⎛⎫=+=∈ ⎪⎝⎭,,若数列{}n c 中,7n c c <恒成立()*7n N n ∈≠,,则实数t 的取值范围是_______. 【答案】31(,13)2-- 【解析】 【分析】由函数(数列)单调性确定n c 的项,哪些项取n a ,哪些项取n b ,再由7c 是最小项,得不等关系. 【详解】由题意数列{}n a 是递增数列,数列{}n b 是递减数列,存在0n ,使得0n n ≤时,n n c b =,当0n n >时,n n c a =, ∵数列{}n c 中,7c 是唯一的最小项, ∴778a b a ≤<或776b a b ≤<,178242t t +≤<+或117422t ≤+<, 312722t -<≤-或27132t -≤<-, 综上31132t -<<-. ∴ t 的取值范围是31(,13)2--.故答案为:31(,13)2--.【点睛】本题考查数列的单调性与最值.解题时楞借助函数的单调性求解.但数列是特殊的函数,它的自变量只能取正整数,因此讨论时与连续函数有一些区别.三、解答题:解答应写出文字说明、证明过程或演算步骤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年上海市虹口区高一期末数学试题及答案一、单选题1.已知13a <<,24b <<,现给出以下结论:(1)37a b <+<;(2)31a b -<-<;(3)212a b <⋅<;(4)1342a b <<,以上结论正确的个数是( )A .1个B .2个C .3个D .4个 【答案】D【解析】根据不等式的可加性,同向不等式且为正值的可乘性即可得到答案.【详解】因为13a <<,24b <<,所以37a b <+<,故(1)正确. 因为42b -<-<-,所以31a b -<-<,故(2)正确. 因为13a <<,24b <<,根据同向不等式且为正值的可乘性知:212a b <⋅<,故(3)正确. 因为11142b <<,13a <<,根据同向不等式且为正值的可乘性知:1342a b <<,故(4)正确. 故选:D【点睛】本题主要考查不等式的基本性质,属于简单题.2.已知a R ∈,则“1a <”是“11a >”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件【答案】B【解析】首先解不等式11a >,再根据充分条件和必要条件即可得到答案.【详解】 因为1111100(1)001a a a a a a a ->⇔->⇔>⇔-<⇔<<. 所以“1a <”是“11a>”的必要非充分条件. 故选:B【点睛】 本题主要考查充分条件和必要条件,同时考查了分式不等式的解法,属于简单题.3.已知函数32x y =-的值域是( )A .RB .()2,-+∞C .[)2,-+∞D .[)1,-+∞【答案】D【解析】首先令x t =,根据指数函数的图像得到:31t ≥,即1y ≥-.【详解】 令x t =,0t ≥,则32t y =-,因为31t ≥,所以1y ≥-.故选:D【点睛】本题主要考查指数函数的值域问题,同时考查了换元法求函数的值域,属于简单题.4.定义在R 上的函数()f x 的图象是连续不断的,此函数有两个不同的零点,这两个零点分别在区间()0,2和()4,6内,那么下列不等式中一定正确的是( )A .()()020f f ⋅<B .()()020f f ⋅>C .()()240f f ⋅>D .()()260f f ⋅>【答案】C【解析】首先根据题意得到函数()f x 在区间(2,4)上没有零点,即可得到(2)(4)0f f >.【详解】因为定义在R 上的函数()f x 的图象是连续不断的,此函数有两个不同的零点,这两个零点分别在区间()0,2和()4,6内,所以函数()f x 在区间(2,4)上没有零点,若(2)f 与(4)f 的函数值异号,根据零点存在性定理可得以函数()f x 在区间(2,4)上必有零点,所以(2)f 与(4)f 的函数值同号,即(2)(4)0f f >.故选:C【点睛】本题主要考查函数的零点存在定义和零点的区间,属于简单题.5.已知函数()f x 是定义在R 上的奇函数,现给出以下结论:(1)此函数一定有零点;(2)此函数可能没有零点;(3)此函数有奇数个零点;(4)此函数有偶数个零点.以上结论正确的个数是( )A .1个B .2个C .3个D .4个 【答案】B【解析】根据奇函数的定义及性质,对题目中的命题判断正误即可.【详解】因为()f x 是定义在R 上的奇函数,所以(0)=0f .故0是函数()f x 的零点,所以(1)正确,(2)错误. 根据奇函数的对称性知:函数()f x 有零点,则零点关于原点对称,再加上原点,共有奇数个零点,所以(3)正确,(4)错误.故选:B【点睛】本题主要考查函数的奇偶性,同时考查了方程与零点,属于中档题.二、填空题6.用列举法表示集合{}2230,x xx x Z --<∈=________. 【答案】{}0,1,2【解析】首先解不等式2230x x --<,再用列举法表示集合即可.【详解】2{|230,}{|13,}{0,1,2}x x x x Z x x x Z --<∈=-<<∈=.故答案为:{0,1,2}【点睛】本题主要考查集合的表示,同时考查了二次不等式的解法,属于简单题.7.命题“若2x >且3y >,则5x y +>”的否命题是__________命题.(填入“真”或“假”)【答案】假【解析】写出否命题,即可判断命题的真假.【详解】命题“若2x >且3y >,则5x y +>”的否命题:“若2x ≤或3y ≤,则5x y +≤”是假命题,例如1,9x y ==,满足2x ≤或3y ≤,但不能推出5x y +≤. 故答案为:假【点睛】此题考查根据已知命题写出否命题,并判断真假,涉及含有逻辑联结词的命题的否定.8.函数4y x =,[]1,12x ∈的值域为________. 【答案】1,43⎡⎤⎢⎥⎣⎦ 【解析】根据函数的单调性即可求出值域.【详解】 因为函数4y x=在区间[]1,12为减函数, 所以值域为1,43⎡⎤⎢⎥⎣⎦. 故答案为:1,43⎡⎤⎢⎥⎣⎦【点睛】本题主要考查反比例函数的单调性,属于简单题. 9.己知函数()2x f x =.则()()2f f =________.【答案】16【解析】首先计算(2)f ,再代入计算((2))f 即可.【详解】2(2)24f ==,4((2))(4)216f f ===.故答案为:16【点睛】本题主要考查函数值的求法,属于简单题.10.不等式|x ﹣1|<2的解集为 .【答案】(﹣1,3).【解析】试题分析:由不等式|x ﹣1|<2,可得﹣2<x ﹣1<2,解得﹣1<x <3.解:由不等式|x ﹣1|<2可得﹣2<x ﹣1<2,∴﹣1<x <3,故不等式|x ﹣1|<2的解集为(﹣1,3),故答案为(﹣1,3).【考点】绝对值不等式的解法.11.已知112112322α⎧⎫∈---⎨⎬⎩⎭,,,,,,,若幂函数()a f x x =为奇函数,且在()0+∞,上递减,则a =____. 【答案】-1【解析】由幂函数f (x )=x α为奇函数,且在(0,+∞)上递减,得到a 是奇数,且a <0,由此能求出a 的值.【详解】∵α∈{﹣2,﹣1,﹣1122,,1,2,3}, 幂函数f (x )=x α为奇函数,且在(0,+∞)上递减, ∴a 是奇数,且a <0,∴a=﹣1.故答案为﹣1.【点睛】本题考查实数值的求法,考查幂函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题. 12.已知()y f x =是定义在R 上的奇函数,当0x >时,()21x f x =-,则(2)f -=____.【答案】3-【解析】 由题意得,函数()y f x =为奇函数,所以()2(2)2(21)3f f -=-=--=-.13.已知2m >,且()110lg 100lgx m m =+则x 的值为________.【答案】lg 2【解析】首先计算1lg(100)lg lg1002m m +==,再解方程102x =即可.【详解】 因为1lg(100)lg lg1002m m +==,所以,102x =,即lg 2x =.故答案为:lg 2【点睛】本题主要考查对数的运算,同时考查了指数方程,熟练掌握对数的运算法则是解题的关键,属于简单题.14.已知0a >,0b >,且44a b +=,则ab 的最大值等于________. 【答案】1【解析】首先根据题意得到114a b =-,代入a b 得到21=(2)14a ab --+,再利用二次函数的性质即可得到最大值. 【详解】 因为44a b +=,所以114a b =-. 因为0a >,0b >,所以104a ->,即04a <<. 所以21=(1)(2)144a a a ab -=--+. 当2a =时,max ()=1a b .故答案为:1【点睛】 本题主要考查二次函数的最值,将a b转化为二次函数的形式为解题的关键,属于中档题.15.已知函数()(0,1)x f x a b a a =+>≠的定义域和值域都是[]1,0-,则a b += . 【答案】32-【解析】若1a >,则()f x 在[]1,0-上为增函数,所以11{10a b b -+=-+=,此方程组无解;若01a <<,则()f x 在[]1,0-上为减函数,所以10{11a b b -+=+=-,解得1{22a b ==-,所以32a b +=-. 【考点】指数函数的性质.16.记函数()f x x b =+,2,2x 的最大值为()g b ,则()g b =________.【答案】()2 02 0b b g b b b +≥⎧=⎨-<⎩ 【解析】首先将()f x 转化为分段函数,再对b 进行讨论,即可求出最大值()g b【详解】,(),x b x b f x x b x b x b+≥-⎧=+=⎨--<-⎩. 当0b =时,()f x x =,max ()2f x =,即()2g b =.当0b -<,即0b >时,max ()(2)2f x f b ==+,即()2g b b =+. 当0b ->,即0b <时,max ()(2)2f x f b =-=-,即()2g b b =-.综上:2? 0()2? 0b b g b b b +≥⎧=⎨-<⎩. 故答案为:2? 0()2?0b b g b b b +≥⎧=⎨-<⎩ 【点睛】本题主要考查含参绝对值函数的最值问题,同时考查了分类讨论的思想,属于中档题.17.已知()f x 是定义在R 上的偶函数,且在[)0,+∞上单调递增,则关于x 的不等式()()2110f x f x -+-<的解是________.【答案】()1,1-【解析】首先将不等式变形,根据()f x 是定义在R 上的偶函数,且在[)0,+∞上单调递增,设2()()g x f x x =+,得到()g x 在R 上为偶函数,且在[)0,+∞上单调递增,再解不等式即可.【详解】因为2()(1)10f x f x -+-<,所以2()(1)1f x x f +<+.因为()f x 是定义在R 上的偶函数,且在[)0,+∞上单调递增. 设2()()g x f x x =+,()g x 在R 上为偶函数,且在[)0,+∞上单调递增.所以2()(1)1f x x f +<+,即()()1g x g <. 所以1x <,解得11x -<<.故答案为:(1,1)-.【点睛】本题主要考查抽象函数的单调性和奇偶性,属于中档题. 18.函数()22f x x x =-,[]2,2x ∈-的最大值为________.【答案】8【解析】首先画出()f x 的图象,根据图象即可求出函数的最大值. 【详解】函数()f x 的图象如图所示:由图可知,max ()(2)44=8f x f =-=+. 故答案为:8 【点睛】本题主要考查利用函数的图象求最值,熟练画出函数图象为解题的关键,属于中档题.19.已知()42f x x x =+,则关于x 的不等式()()12f x f +<的解是________. 【答案】()3,1-【解析】首先根据函数()f x 的解析式,得到()f x 为偶函数,且在(0,)+∞为增函数,再利用偶函数的对称性解不等式即可. 【详解】因为42()f x x x =+,所以()f x 为偶函数,且在(0,)+∞为增函数. 所以(1)(2)f x f +<根据偶函数的对称性知:212x -<+<,解得:31x -<<. 故答案为:(3,1)- 【点睛】本题主要考查函数的奇偶性和单调性,熟练掌握奇偶函数的性质为解题的关键,属于中档题.三、解答题 20.解下列方程 (1)2223x x -+⋅=; (2)2lg lg 20x x --=【答案】(1)0x =或1x =(2)100x =或110x =【解析】(1)首先令2x t =,根据二次方程和指数方程即可解出方程的根.(2)根据二次方程和对数方程即可解出方程的根. 【详解】(1)令2xt =,0t >,得23t t+=. 整理得:2320t t -+=.解得:1t =或2t =. 即:21x =或22x =,0x =或1x =.(2)因为2lg lg 20x x --=,所以(lg 2)(lg 1)0x x -+=. 解得:lg 2x =或lg 1=-,100x =或110x =. 【点睛】本题主要考查了指数方程和对数方程的求解,同时考查了二次方程的求解,属于简单题.21.设a R ∈,函数()221x x af x +=+.(1)当1a =-时,判断()f x 的奇偶性,并给出证明; (2)当0a =时,证明此函数在(),-∞+∞上单调递增. 【答案】(1)奇函数;证明见解析(2)证明见解析 【解析】(1)首先求出函数()f x 的定义域为R ,再判断()f x 与()f x -的关系即可.(2)根据题意设任意12,x x R ∈,且12x x <,作差比较12()()f x f x -即可. 【详解】(1)当1a =-时,21()21x x f x ,定义域关于原点对称. 112112222()()11212121221xx x x x x x x x xf x f x ----====+--=-+++. 所以()f x 为奇函数. (2)当0a =时,2()21xx f x =+,设任意12,x x R ∈,且12x x <. 1212211212121212222(21)2(21)22()()2121(21)(21)(21)(21)x x x x x x x x x x x x x x f x f x +-+--=-==++++++. 因为12220xx -<,1210x +>,2210x +>,所以12())0(f x f x -<.即:12()()f x f x <.所以2()21xx f x =+在R 上为增函数. 【点睛】本题第一问考查函数奇偶性的判断,第二问考查了函数单调性的判断,属于中档题.22.某商场在促销期间规定:商场内所有商品按标价的80%出售,同时当顾客在该商场内消费满一定金额后,按如下方案获得相应金额的奖券:根据上述促销方法,顾客在该商场购物可以获得双重优惠.例如:购买标价为400元的商品,则消费金额为320元,然后还能获得对应的奖券金额为28元.于是,该顾客获得的优惠额为:4000.228108⨯+=元.设购买商品得到的优惠率=购买商品获得的优惠额商品的标价.试问:(1)购买一件标价为1000元的商品,顾客得到的优惠率是多少?(2)当商品的标价为[]100,600元时,试写出顾客得到的优惠率y关于标价x元之间的函数关系式;(3)当顾客购买标价不超过600元的商品时,该顾客是否可以得到超过30%的优惠率?试说明理由.【答案】(1)25.8%(2)[)[]0.2 100,360280.2360,600xyxx⎧∈⎪=⎨+∈⎪⎩(3)不能,详见解析【解析】(1)根据题意得到购买1000元商品,则消费800元,获得对应的奖券58元,再计算优惠率即可.(2)根据题意,分段讨论当标价为[100,360)元和标价为[360,600]元时的优惠率即可.(3)根据(2)得到当顾客在买标价为360元商品时,优惠率最大,再计算最大优惠率比较即可. 【详解】(1)购买1000元商品的优惠率10000.25810025.81000%%=⨯+=⨯.(2)当标价为[100,360)元时,则消费[80,288)元,不能获得优惠券.所以顾客得到的优惠率为:0.20.2xy x==. 当标价为[360,600]元时,则消费[288,480]元,获得28元优惠券.所以顾客得到的优惠率为:0.228280.2x y x x+==+. 综上[)[]0.2? 100,360280.2?360,600x y x x ⎧∈⎪=⎨+∈⎪⎩. (3)当顾客买标价不超过360元商品时,优惠率为20%. 当顾客买标价在[360,600]元商品时,优惠率为280.2y x=+,为减函数.所以当顾客在买标价为360元商品时,优惠率最大.max 280.227.8%30%360y =+≈<. 所以顾客不能得到超过30%的优惠率. 【点睛】本题主要考查函数的实际应用,弄清题意为解题的关键,属于中档题.23.已知函数()222f x x ax =-+,[]1,1x ∈-. (1)当1a =时,求()11f -; (2)当12a =-时,判断此函数有没有反函数,并说明理由; (3)当a 为何值时,此函数存在反函数?并求出此函数的反函数()1f x -.【答案】(1)1,(2)没有,详见解析,(3)1a ≥或1a ≤-;当1a ≥时,()1f x a -=,[]32,32x a a ∈-+,当1a ≤-时,()1f x a -=[]32,32x a a ∈+-.【解析】(1)当1a =时,由互为反函数的性质可得:1(1)f -等价于()1f x =在[1,1]x ∈-求解,再解方程即可.(2)当12a =-时,2()2f x x x =++,根据函数在区间[1,1]-的单调性即可判定.(3)首先根据函数()f x 存在反函数,得到1a ≥或1a ≤-,在分类讨论求反函数即可. 【详解】(1)当1a =时,2()22f x x x =-+. 求1(1)f -即等价于()1f x =在[1,1]x ∈-求解.2221x x -+=,解得:1x =.所以1(1)1f -=. (2)当12a =-时,2217()2()24f x x x x =++=++.[1,1]x ∈-时,显然函数不单调,所以在区间[1,1]-没有反函数.(3)若函数()f x 存在反函数,则函数()f x 在区间[1,1]-单调.222()22()2f x x ax x a a =-+=-+-,对称轴为x a =.所以当1a ≥或1a ≤-时,函数()f x 存在反函数.当1a ≥时,1)(f a x -=[]32,32x a a ∈-+.当1a ≤-时,()1f x a -=[]32,32x a a ∈+-.【点睛】本题主要考查反函数的求法,同时考查了学生的计算能力,属于中档题.24.已知函数()f x 的定义域是使得解析式有意义的x 集合,如果对于定义域内的任意实数x ,函数值均为正,则称此函数为“正函数”. (1)证明函数()()2lg 11f x x =++是“正函数”;(2)如果函数()11af x x x =+-+不是“正函数”,求正数a 的取值范围. (3)如果函数()()()222242122x a x a f x x a x a +--+=+--+是“正函数”,求正数a 的取值范围.【答案】(1)证明见解析,(2)(,1]-∞(3)(){}6,13- 【解析】(1)有题知:()1f x ≥,即证. (2)首先讨论当0a ≤时,显然()11af x x x =+-+不是“正函数”.当0a >时,从反面入手,假设()f x 是“正函数”,求出a 的范围,再取其补集即可.(3)根据题意得到:22(2)4(42)0(1)8(22)0a a a a ⎧---<⎨---<⎩或12242122a a a a --+==--+,解方程和不等式组即可. 【详解】(1)2()lg(1)1lg111f x x =++≥+=.函数值恒为正数,故函数2()lg(1)1f x x =++是“正函数”. (2)当0a ≤时,(0)10f a =-<, 显然()11af x x x =+-+不是“正函数”. 当0a >时 假设()11af x x x =+-+为“正函数”.则()f x 恒大于零.()1221af x x x =++-≥+. 所以20>,即1a >所以()11af x x x =+-+不是“正函数”时, 01a <≤.综上:1a ≤.(3)有题知:若函数()22(2)242(1)22x a x a f x x a x a +--+=+--+是“正函数”, 则22(2)4(42)0(1)8(22)0a a a a ⎧---<⎨---<⎩或12242122a a a a --+==--+. 解得:61a -<<或3a =. 【点睛】本题主要考查函数的新定义,同时考查了对所学知识的综合应用,属于难题.。

相关文档
最新文档