上海市虹口区2023届数学高一上期末检测试题含解析

合集下载

上海市虹口区高一上期末数学试卷((含答案))

上海市虹口区高一上期末数学试卷((含答案))

上海市虹口区高一(上)期末数学试卷一、填空题(本大题满分30分,共10题)1.(3分)已知集合A={﹣2,﹣1,0,2},B={x|x2=2x},则A∩B= .2.(3分)不等式|x﹣3|≤1的解集是.3.(3分)不等式>4的解集是.4.(3分)已知函数f(x)=3x+a的反函数y=f﹣1(x),若函数y=f﹣1(x)的图象经过(4,1),则实数a的值为.5.(3分)命题“若实数a,b满足a≠4或b≠3,则a+b≠7”的否命题是.6.(3分)已知条件p:2k﹣1≤x≤﹣3k,条件q:﹣1<x≤3,且p是q的必要条件,则实数k的取值范围是.7.(3分)已知函数y=f(x)是R上的奇函数,且在区间(0,+∞)单调递增,若f(﹣2)=0,则不等式xf(x)<0的解集是.8.(3分)函数f(x)=|x2﹣4|﹣a恰有两个零点,则实数a的取值范围为.9.(3分)已知函数f(x)=,若f(f(a))=2,则实数a的值为.(2+|x|)﹣,则使得f(x﹣1)>f(2x)成立的x取值范围10.(3分)设f(x)=log2是.11.已知函数f(x)=()x的图象与函数y=g(x)的图象关于直线y=x对称,令h(x)=g (1﹣x2),则关于函数y=h(x)的下列4个结论:①函数y=h(x)的图象关于原点对称;②函数y=h(x)为偶函数;③函数y=h(x)的最小值为0;④函数y=h(x)在(0,1)上为增函数其中,正确结论的序号为.(将你认为正确结论的序号都填上)二、选择题(本大题满分20分,每小题4分,共6小题)B)= 12.(4分)设全集U=Z,集合A={x|1≤x<7,x∈Z},B={x=2k﹣1,k∈Z},则A∩(∁U()A.{1,2,3,4,5,6} B.{1,3,5} C.{2,4,6} D.∅13.(4分)设x∈R,则“x<﹣2”是“x2+x≥0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件14.(4分)下列函数中,在其定义域内既是奇函数又是减函数的是()A.y=|x| B.y=()x C.y=D.y=﹣x315.(4分)设x,y∈R,a>1,b>1,若a x=b y=3,a+b=6,则+的最大值为()A.B.C.1 D.216.(4分)设集合M=[0,),N=[,1],函数f(x)=.若x0∈M且f(f(x))∈M,则x的取值范围为()A.(0,] B.[0,] C.(,] D.(,)17.设f(x)=5|x|﹣,则使得f(2x+1)>f(x)成立的x取值范围是()A.(﹣1,﹣)B.(﹣3,﹣1)C.(﹣1,+∞)D.(﹣∞,﹣1)∪(﹣,+∞)三、解答题(本大题慢点50分,共7小题)18.(10分)已知集合A={x|x2+px+1=0},B={x|x2+qx+r=0},且A∩B={1},(∁UA)∩B={﹣2},求实数p、q、r的值.19.(10分)(1)解不等式:3≤x2﹣2x<8;(2)已知a,b,c,d均为实数,求证:(a2+b2)(c2+d2)≥(ac+bd)2.20.(10分)已知函数f(x)=log2||x|﹣1|.(1)作出函数f(x)的大致图象;(2)指出函数f(x)的奇偶性、单调区间及零点.21.已知f(x)=|x|(2﹣x)(1)作出函数f(x)的大致图象,并指出其单调区间;(2)若函数f(x)=c恰有三个不同的解,试确定实数c的取值范围.22.(10分)如图,在半径为40cm的半圆形(O为圆心)铝皮上截取一块矩形材料ABCD,其中A,B在直径上,点C,D在圆周上、(1)设AD=x,将矩形ABCD的面积y表示成x的函数,并写出其定义域;(2)怎样截取,才能使矩形材料ABCD的面积最大?并求出最大面积.23.(10分)已知函数f(x)=()x的图象与函数y=g(x)的图象关于直线y=x对称.(1)若f(g(x))=6﹣x2,求实数x的值;(2)若函数y=g(f(x2))的定义域为[m,n](m≥0),值域为[2m,2n],求实数m,n的值;(3)当x∈[﹣1,1]时,求函数y=[f(x)]2﹣2af(x)+3的最小值h(a).x(x>0且a≠1)的图象经过点(8,2)和(1,﹣1).24.已知函数f(x)=b+loga(1)求f(x)的解析式;(2)[f(x)]2=3f(x),求实数x的值;(3)令y=g(x)=2f(x+1)﹣f(x),求y=g(x)的最小值及其最小值时x的值.四、附加题25.设函数φ(x)=a2x﹣a x(a>0,a≠1).(1)求函数φ(x)在[﹣2,2]上的最大值;(2)当a=时,φ(x)≤t2﹣2mt+2对所有的x∈[﹣2,2]及m∈[﹣1,1]恒成立,求实数m 的取值范围.2019-2020学年上海市虹口区高一(上)期末数学试卷参考答案与试题解析一、填空题(本大题满分30分,共10题)1.(3分)已知集合A={﹣2,﹣1,0,2},B={x|x2=2x},则A∩B= {0,2} .【解答】解:∵集合A={﹣2,﹣1,0,2},B={x|x2=2x}={0,2},∴A∩B={0,2}.故答案为:{0,2}.2.(3分)不等式|x﹣3|≤1的解集是[2,4] .【解答】解:∵|x﹣3|≤1,∴﹣1≤x﹣3≤1,解得:2≤x≤4,故答案为:[2,4].3.(3分)不等式>4的解集是(2,12).【解答】解:∵>4,∴>0,即<0,解得:2<x<12,故答案为:(2,12).4.(3分)已知函数f(x)=3x+a的反函数y=f﹣1(x),若函数y=f﹣1(x)的图象经过(4,1),则实数a的值为 1 .【解答】解:f(x)=3x+a的反函数y=f﹣1(x),∵函数y=f﹣1(x)的图象经过(4,1),原函数与反函数的图象关于y=x对称∴f(x)=3x+a的图象经过(1,4),即3+a=4,解得:a=1.故答案为:1.5.(3分)命题“若实数a,b满足a≠4或b≠3,则a+b≠7”的否命题是若实数a,b满足a=4且b=3,则a+b=7”.【解答】解:命题“若实数a,b满足a≠4或b≠3,则a+b≠7”的否命题是“若实数a,b满足a=4且b=3,则a+b=7”,故答案为:若实数a,b满足a=4且b=3,则a+b=7”6.(3分)已知条件p:2k﹣1≤x≤﹣3k,条件q:﹣1<x≤3,且p是q的必要条件,则实数k的取值范围是k≤﹣1 .【解答】解:∵p:2k﹣1≤x≤﹣3k,条件q:﹣1<x≤3,且p是q的必要条件,∴(﹣1,3]⊆[2k﹣1,﹣3k],∴,解得:k≤﹣1,故答案为:k≤﹣1.7.(3分)已知函数y=f(x)是R上的奇函数,且在区间(0,+∞)单调递增,若f(﹣2)=0,则不等式xf(x)<0的解集是(﹣2,0)∪(0,2).【解答】解:函数y=f(x)是R上的奇函数,在区间(0,+∞)单调递增∴函数y=f(x)在R上单调递增,且f(0)=0∵f(﹣2)=﹣f(2)=0,即f(2)=0.∴当x<﹣2时,f(x)<0,当﹣2<x<0时,f(x)>0,当0<x<2时,f(x)<0,当x>2时,f(x)>0,那么:xf(x)<0,即或,∴得:﹣2<x<0或0<x<2.故答案为(﹣2,0)∪(0,2).8.(3分)函数f(x)=|x2﹣4|﹣a恰有两个零点,则实数a的取值范围为a=0或a>4 .【解答】解:函数g(x)=|x2﹣4|的图象如图所示,∵函数f(x)=|x2﹣4|﹣a恰有两个零点,∴a=0或a>4.故答案为:a=0或a>4.9.(3分)已知函数f(x)=,若f(f(a))=2,则实数a的值为﹣,,16 .【解答】解:由f(x)=,f(f(a))=2,当log2a≤0时,即0<a≤1时,(log2a)2+1=2,即(log2a)2=1,解得a=,当log2a>0时,即a>1时,log2(log2a)=2,解得a=16,因为a2+1>0,log2(a2+1)=2,即a2+1=4解得a=(舍去),或﹣,综上所述a的值为﹣,,16,故答案为:﹣,,16,10.(3分)设f(x)=log2(2+|x|)﹣,则使得f(x﹣1)>f(2x)成立的x取值范围是(﹣1,).【解答】解:函数f(x)=log2(2+|x|)﹣,是偶函数,当x≥0时,y=log2(2+x),y=﹣都是增函数,所以f(x)=log2(2+x)﹣,x≥0是增函数,f(x﹣1)>f(2x),可得|x﹣1|>|2x|,可得3x2+2x﹣1<0,解得x∈(﹣1,).故答案为:(﹣1,).11.已知函数f(x)=()x的图象与函数y=g(x)的图象关于直线y=x对称,令h(x)=g (1﹣x2),则关于函数y=h(x)的下列4个结论:①函数y=h(x)的图象关于原点对称;②函数y=h(x)为偶函数;③函数y=h(x)的最小值为0;④函数y=h(x)在(0,1)上为增函数其中,正确结论的序号为②③④.(将你认为正确结论的序号都填上)【解答】解:∵函数f(x)=()x的图象与函数y=g(x)的图象关于直线y=x对称,∴g(x)=,∴h(x)=g(1﹣x2)=,故h(﹣x)=h(x),即函数为偶函数,函数图象关于y轴对称,故①错误;②正确;当x=0时,函数取最小值0,故③正确;当x∈(0,1)时,内外函数均为减函数,故函数y=h(x)在(0,1)上为增函数,故④正确;故答案为:②③④二、选择题(本大题满分20分,每小题4分,共6小题)12.(4分)设全集U=Z,集合A={x|1≤x<7,x∈Z},B={x=2k﹣1,k∈Z},则A∩(∁UB)=( )A .{1,2,3,4,5,6}B .{1,3,5}C .{2,4,6}D .∅【解答】解:全集U=Z ,集合A={x|1≤x <7,x ∈Z}={1,2,3,4,5,6} B={x=2k ﹣1,k ∈Z}, ∴∁u B={x=2k ,k ∈Z}, ∴A ∩(∁u B )={2,4,6}, 故选:C .13.(4分)设x ∈R ,则“x <﹣2”是“x 2+x ≥0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【解答】解:由“x 2+x ≥0”,解得:x >0或x <﹣1, 故x <﹣2”是“x >0或x <﹣1“的充分不必要条件, 故选:A .14.(4分)下列函数中,在其定义域内既是奇函数又是减函数的是( ) A .y=|x| B .y=()xC .y=D .y=﹣x 3【解答】解:对于A :y=f (x )=|x|,则f (﹣x )=|﹣x|=|x|是偶函数. 对于B :,根据指数函数的性质可知,是减函数.不是奇函数.对于C :定义为(﹣∞,0)∪(0,+∞),在其定义域内不连续,承载断点,∴在(﹣∞,0)和在(0,+∞)是减函数.对于D :y=f (x )=﹣x 3,则f (﹣x )=x 3=﹣f (x )是奇函数,根据幂函数的性质可知,是减函数. 故选D .15.(4分)设x ,y ∈R ,a >1,b >1,若a x =b y =3,a+b=6,则+的最大值为( )A .B .C .1D .2【解答】解:设x ,y ∈R ,a >1,b >1,a x =b y =3,a+b=6, ∴x=log a 3,y=log b 3,∴+=log3a+log3b=log3ab≤log3()=2,当且仅当a=b=3时取等号,故选:D16.(4分)设集合M=[0,),N=[,1],函数f(x)=.若x0∈M且f(f(x))∈M,则x的取值范围为()A.(0,] B.[0,] C.(,] D.(,)【解答】解:∵0≤x<,∴f(x))∈[,1]⊆N,∴f(f(x0))=2(1﹣f(x))=2[1﹣(x+)]=2(﹣x),∵f(f(x))∈M,∴0≤2(﹣x)<,∴<x≤∵0≤x<,∴<x<故选:D17.设f(x)=5|x|﹣,则使得f(2x+1)>f(x)成立的x取值范围是()A.(﹣1,﹣)B.(﹣3,﹣1)C.(﹣1,+∞)D.(﹣∞,﹣1)∪(﹣,+∞)【解答】解:函数f(x)=5|x|﹣,则f(﹣x)=5|﹣x|﹣=5|x|﹣=f(x)为偶函数,∵y1=5|x|是增函数,y2=﹣也是增函数,故函数f(x)是增函数.那么:f(2x+1)>f(x)等价于:|2x+1|>|x|,解得:x<﹣1或使得f(2x+1)>f(x)成立的x取值范围是(﹣∞,﹣1)∪(,+∞).故选D.三、解答题(本大题慢点50分,共7小题)18.(10分)已知集合A={x|x2+px+1=0},B={x|x2+qx+r=0},且A∩B={1},(∁A)∩B={﹣2},U求实数p、q、r的值.【解答】解:集合A={x|x2+px+1=0},B={x|x2+qx+r=0},且A∩B={1},∴1+p+1=0,解得p=﹣2;又1+q+r=0,①A)∩B={﹣2},(∁U∴4﹣2q+r=0,②由①②组成方程组解得q=1,r=﹣2;∴实数p=﹣2,q=1,r=﹣2.19.(10分)(1)解不等式:3≤x2﹣2x<8;(2)已知a,b,c,d均为实数,求证:(a2+b2)(c2+d2)≥(ac+bd)2.【解答】解:(1)不等式:3≤x2﹣2x<8,即:,解得:,即x∈(﹣2,﹣1]∪[3,4).(2)证明:∵(a2+b2)(c2+d2)﹣(ac+bd)2=a2c2+a2d2+b2c2+b2d2﹣a2c2﹣2abcd﹣b2d2=a2d2+b2c2﹣2abcd=(ad﹣bc)2≥0∴(a2+b2)(c2+d2)≥(ac+bd)2.20.(10分)已知函数f(x)=log||x|﹣1|.2(1)作出函数f(x)的大致图象;(2)指出函数f(x)的奇偶性、单调区间及零点.||x|﹣1|的定义域为:{x|x≠±1,x∈R}.【解答】解:函数f(x)=log2||x|﹣1|=,x=0时f(x)=0,函数f(x)=log2函数的图象如图:(2)函数是偶函数,单调增区间(﹣1,0),(1,+∞);单调减区间为:(﹣∞,﹣1),(0,1);零点为:0,﹣2,2.21.已知f(x)=|x|(2﹣x)(1)作出函数f(x)的大致图象,并指出其单调区间;(2)若函数f(x)=c恰有三个不同的解,试确定实数c的取值范围.【解答】解:(1)f(x)=|x|(2﹣x)=,函数的图象如图:函数的单调增区间(0,1),单调减区间(﹣∞,0),(1,+∞).(2)函数f(x)=c恰有三个不同的解,函数在x=1时取得极大值:1,实数c的取值范围(0,1).22.(10分)如图,在半径为40cm的半圆形(O为圆心)铝皮上截取一块矩形材料ABCD,其中A,B在直径上,点C,D在圆周上、(1)设AD=x,将矩形ABCD的面积y表示成x的函数,并写出其定义域;(2)怎样截取,才能使矩形材料ABCD的面积最大?并求出最大面积.【解答】解:(1)AB=2OA=2=2,∴y=f(x)=2x,x∈(0,40).(2)y2=4x2(1600﹣x2)≤4×=16002,即y≤1600,当且仅当x=20时取等号.∴截取AD=20时,才能使矩形材料ABCD的面积最大,最大面积为1600.23.(10分)已知函数f(x)=()x的图象与函数y=g(x)的图象关于直线y=x对称.(1)若f(g(x))=6﹣x2,求实数x的值;(2)若函数y=g(f(x2))的定义域为[m,n](m≥0),值域为[2m,2n],求实数m,n的值;(3)当x∈[﹣1,1]时,求函数y=[f(x)]2﹣2af(x)+3的最小值h(a).【解答】解:(1)∵函数f(x)=()x的图象与函数y=g(x)的图象关于直线y=x对称,∴g(x)=,∵f(g(x))=6﹣x2,∴=6﹣x2=x,即x2+x﹣6=0,解得x=2或x=﹣3(舍去),故x=2,(2)y=g(f(x2))==x2,∵定义域为[m,n](m≥0),值域为[2m,2n],,解得m=0,n=2,(3)令t=()x,∵x∈[﹣1,1],∴t∈[,2],则y=[f(x)]2﹣2af(x)+3等价为y=m(t)=t2﹣2at+3,对称轴为t=a,当a<时,函数的最小值为h(a)=m()=﹣a;当≤a≤2时,函数的最小值为h(a)=m(a)=3﹣a2;当a>2时,函数的最小值为h(a)=m(2)=7﹣4a;故h(a)=24.已知函数f(x)=b+logax(x>0且a≠1)的图象经过点(8,2)和(1,﹣1).(1)求f(x)的解析式;(2)[f(x)]2=3f(x),求实数x的值;(3)令y=g(x)=2f(x+1)﹣f(x),求y=g(x)的最小值及其最小值时x的值.【解答】解:(1)由已知得,b+loga 8=2,b+loga1=﹣1,(a>0且a≠1),解得a=2,b=﹣1;故f(x)=log2x﹣1(x>0);(2)[f(x)]2=3f(x),即f(x)=0或3,∴log2x﹣1=0或3,∴x=2或16;(3)g(x)=2f(x+1)﹣f(x)=2[log2(x+1)﹣1]﹣(log2x﹣1)=log2(x++2)﹣1≥1,当且仅当x=,即x=1时,等号成立).于是,当x=1时,g(x)取得最小值1.四、附加题25.设函数φ(x)=a2x﹣a x(a>0,a≠1).(1)求函数φ(x)在[﹣2,2]上的最大值;(2)当a=时,φ(x)≤t2﹣2mt+2对所有的x∈[﹣2,2]及m∈[﹣1,1]恒成立,求实数m 的取值范围.【解答】解:(1)∵φ(x)=a2x﹣a x=(a x﹣)2﹣(a>0,a≠1),x∈[﹣2,2],∴当a>1时,φ(x)=φ(2)=a4﹣a2;max(x)=φ(﹣2)=a﹣4﹣a﹣2;当0<a<1时,φmax∴φ(x)=.max(2)当a=时,φ(x)=2x﹣()x,(x)=φ(2)=()4﹣()2=4﹣2=2,由(1)知,φmax∴φ(x)≤t2﹣2mt+2对所有的x∈[﹣2,2]及m∈[﹣1,1]恒成立⇔∀m∈[﹣1,1],t2﹣2mt+2≥φmax(x)=2恒成立,即∀m∈[﹣1,1],t2﹣2mt≥0恒成立,令g(m)=﹣2tm+t2,则,即,解得:t≥2或t≤﹣2,或t=0.∴实数m的取值范围为:(﹣∞,2]∪{0}∪[2,+∞).。

2024届上海市虹口区复兴高级中学高一数学第一学期期末学业质量监测模拟试题含解析

2024届上海市虹口区复兴高级中学高一数学第一学期期末学业质量监测模拟试题含解析

2024届上海市虹口区复兴高级中学高一数学第一学期期末学业质量监测模拟试题 请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题:本大题共10小题,每小题5分,共50分。

在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知π3sin 25α⎛⎫+= ⎪⎝⎭,π0,2α⎛⎫∈ ⎪⎝⎭,则sin(π)α+= A.35B.35C.45D.45-, 2.若函数()24x f x a =--存在两个零点,且一个为正数,另一个为负数,则a 的取值范围为A.()0,4B.()0,+∞C.()3,4D.()3,+∞ 3.已知0.5321log log 30.32a b c -===,,,则a ,b ,c 的大小关系为() A.a c b <<B.a b c <<C.c a b <<D.b c a <<4.某学生离家去学校,由于怕迟到,一开始就跑步,等跑累了再步行走完余下的路程,若以纵轴表示离家的距离,横轴表示离家后的时间,则下列四个图形中,符合该学生走法的是()A. B.C. D.5.若函数()[]sin (0,,0)4f x x x πωπω⎛⎫=-∈> ⎪⎝⎭的图象与x 轴有交点,且值域3[,)2M ⊆-+∞,则ω的取值范围是()A.14[,]23B.4[,2]3C.11[,]43D.119[,]412 6.函数(,且)的图象恒过定点,且点在角的终边上,则( )A. B. C. D.7.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,异面直线AC 与A 1D 1所成的角是A.30°B.45°C.60°D.90°8.已知幂函数()y f x =的图象过(4,2)点,则12f ⎛⎫= ⎪⎝⎭A. B.12C.14D.229.若 2.52=a ,12log 2.5b =, 2.512⎛⎫= ⎪⎝⎭c ,则a ,b ,c 之间的大小关系是( ) A.c>b>aB.c>a>bC.a>c>bD.b>a>c10.若23a =,则4log 3=()A.12aB.aC.2aD.4a 二、填空题:本大题共6小题,每小题5分,共30分。

2022-2023学年上海市虹口区上海外国语大学附属外国语学校高一上数学期末复习检测试题含解析

2022-2023学年上海市虹口区上海外国语大学附属外国语学校高一上数学期末复习检测试题含解析
【详解】解:四边形是菱形则四边形是平行四边形,反之,若四边形是平行四边形则四边形不一定是菱形,所以“四边形是菱形”是“四边形是平行四边形” 充分不必要条件.
故选:A.
3、A
【解析】 ,所以 ,故选A.
考点:集合 运算.
4、B
【解析】直接利用函数图像变化原则:“左加右减,上加下减”得到平移后的函数解析式
故答案为:
14、 ##
【解析】由题可得 ,然后利用圆锥的体积公式即得.
【详解】设圆锥的底面半径为r,高为h,由圆锥的母线长为1,其高与母线的夹角为45°,
∴ ,
∴该圆锥的体积为 .
故答案为: .
15、1
【解析】根据指数函数的图象过定点 ,即可求出
【详解】函数 其中 且 的图象过定点 ,
, ,
则 ,
故答案为1
【点睛】本题考查了指数函数 图象恒过定点 的应用,属于基础题.
16、
【解析】由题意得,函数是增函数,构造出方程组,利用方程组的解都大于0,求出t的取值范围.
【详解】因为函数 为“倍缩函数”,即满足存在 ,使 在 上的值域是 ,
由复合函数单调性可知函数 在 上是增函数
所以 ,则 ,即
所以方程 有两个不等 实根,且两根都大于0.
得16k+2≤x≤16k+10,
即函数的单调递增区间为[16k+2,16k+10],k∈Z
当k=﹣1时,为[﹣14,﹣6],
当k=0时,为[2,10],
∵x∈(﹣2π,2π),
∴函数在(﹣2π,2π)上的递增区间为(﹣2π,﹣6)和[2,2π)
【点睛】本题主要考查三角函数解析式的求法,根据三角函数的图象是解决本题的关键,要求熟练掌握三角函数的图象和性质

上海市虹口区上海市继光高级中学2023届高一数学第一学期期末统考模拟试题含解析

上海市虹口区上海市继光高级中学2023届高一数学第一学期期末统考模拟试题含解析

2022-2023学年高一上数学期末模拟试卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.已知()()2ln ,045,1x x f x x x x ⎧-<⎪=⎨-+≥⎪⎩,若方程()()f x m m =∈R 有四个不同的实数根1x ,2x ,3x ,4x ,则1234x x x x ⋅⋅⋅的取值范围是()A.(3,4)B.(2,4)C.[0,4)D.[3,4)2.平行四边形ABCD 中,4AB =,2AD =,4AB AD ⋅=-,点M 满足3DM MC =,则(MA MB ⋅= )A.1B.1-C.4D.4-3.下列运算中,正确的是()A.3log 239=B.233(0)a a a a ⋅=>C.()2333381-+= D.22122lg 31009-⎛⎫+=- ⎪⎝⎭4.已知函数()2sin 216f x x π⎛⎫=-+ ⎪⎝⎭,下列结论中错误的是( ) A.()f x 的图像关于,112π⎛⎫ ⎪⎝⎭中心对称 B.()f x 在511,1212ππ⎛⎫ ⎪⎝⎭上单调递减 C.()f x 的图像关于3x π=对称D.()f x 的最大值为3 5.已知函数2()f x x nx =+,记集合{|()0,}A x f x x R ==∈,(){|()0,}B x f f x x R ==∈,若A B =≠∅,则n的取值范围是()A.[0,4]B.(0,4)C.[0,4)D.(0,4]6.已知向量()1,2a =-,(),4b m =,且//a b ,那么m =()A.2B.-2C.6D.-67.已知某几何体的三视图如图所示,则该几何体的最长棱为( )A.4B.27D.2 8.方程()234x f x x =+-的零点所在的区间为()A.()1,0-B.10,2⎛⎫ ⎪⎝⎭C.1,12⎛⎫ ⎪⎝⎭D.41,3⎛⎫ ⎪⎝⎭9.若0a >且1a ≠,则函数()11x f x a-=+的图象一定过点( ) A.()0,2B.()0,1-C.()1,2D.()1,1- 10.函数()lg(2)32f x x x=++-的定义域是( ) A.(-2,32] B.(-2,32) C.(-2,+∞) D.(32,+∞) 二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.已知()1cos 2πα+=-,则()cos 3πα+的值为______.12.已知()f x 是定义在R 上的周期为2的奇函数,当01x <<时,()3x f x =,则52f ⎛⎫-= ⎪⎝⎭___________. 13.已知函数()x f x e =,若关于x 的不等式2[()]2()0f x f x a --≥在[0,1]上有解,则实数a 的取值范围为______14.请写出一个最小正周期为π,且在()0,1上单调递增的函数()f x =__________15.计算7log 237log 27lg 25lg 47log 1++++=______.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知角α的顶点与坐标原点重合,始边与x 轴的非负半轴重合,终边过点34,55P ⎛⎫ ⎪⎝⎭(1)求()cos απ+的值;(2)若tan 2β=-,求()tan αβ-的值17.已知函数()33x xf x -=+. (1)判断函数()f x 的奇偶性,并说明理由;(2)若实数m 满足()ln3ln3e e f m -=+,求m 的值.18.若函数21()ax f x bx c+=+是奇函数(,,)a b c ∈N ),且(1)2f =,(2)3f <. (1)求实数a ,b ,c 的值;(2)判断函数()f x 在(,1]-∞-上的单调性,并利用函数单调性的定义证明.19.已知集合{}2,560|U R A x x x ==-+≤,112B xx ⎧⎫=≤⎨⎬-⎩⎭ (1)求,A B ;(2)判断U x A ∈是x B ∈的什么条件20.已知函数()222sin 2cos 6f x x x x R π⎛⎫=+-∈ ⎪⎝⎭, (1)求f (x )的最小正周期及单调递减区间;(2)若f (x )在区间3m π⎡⎤⎢⎥⎣⎦,上的最小值为1,求m 的最小值 21.已知tan ,tan αβ 是方程26510x x -+=的两根,且π30,22παπβ<<<<.求:()tan αβ+及αβ+的值.参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.) 1、D【解析】利用数形结合可得12m <≤,结合条件可得121=x x ,312x ≤<,423x <≤,且344x x +=,再利用二次函数的性质即得.【详解】由方程()()f x m m =∈R 有四个不同的实数根,得函数()y f x =的图象与直线y m =有四个不同的交点,分别作出函数()y f x =的图象与直线y m =由函数()f x 的图象可知,当两图象有四个不同的交点时,12m <≤设y m =与|ln()|(0)y x x =-<交点的横坐标为1x ,2x ,设12x x <,则11x <-,210x -<<,由()()12ln ln x x -=-得()()12ln ln x x -=--,所以()()121x x --=,即121=x x设y m =与245(1)y x x x =-+≥的交点的横坐标为3x ,4x , 设34x x <,则312x ≤<,423x <≤,且344x x +=,所以()()234333424[3,4)x x x x x =-=--+∈,则1234[3,4)x x x x ∈故选:D.2、B【解析】选取AB ,AD 为基向量,将MA ,MB 用基向量表示后,再利用平面向量数量积的运算法则求解数量积MA MB ⋅. 【详解】 3344MA MD DA DM AD DC AD AB AD =+=--=--=--, 3144MB AB AM AB MA AB AB AD AB AD =-=+=--=-, 22313144162MA MB AB AD AB AD AB AD AB AD ⎛⎫⎛⎫∴⋅=--⋅-=-++⋅ ⎪ ⎪⎝⎭⎝⎭3164216=-⨯+- 1=-,故选B【点睛】本题考查了平面向量的运算法则以及向量数量积的性质及其运算,属中档题.向量的运算法则是:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差);(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和).3、C【解析】根据对数和指数的运算法则逐项计算即可.【详解】3log 232=,故A 错误;2233722(0)a a a a a a ⋅=>⋅=,故B 错误; ()22333333832341⨯-+=-+=-+=,故C 正确; 22191lg 2310044-⎛⎫+=-= ⎪⎝⎭,故D 错误. 故选:C.4、B【解析】根据三角函数的性质,依次整体代入检验即可得答案.【详解】解:对于A 选项,当12x π=时,206x π-=,所以,112π⎛⎫ ⎪⎝⎭是()f x 的对称中心,故A 选项正确;对于B 选项,当511,1212x ππ⎛⎫∈ ⎪⎝⎭时, 25,2633x πππ⎛⎫ ⎪⎝-⎭∈,此时函数sin y x =在区间325,3ππ⎛⎫ ⎪⎝⎭上不单调,故B 选项错误; 对于C 选项,当3x π=时,226x ππ-=,所以()f x 的图像关于3x π=对称,故C 选项正确; 对于D 选项,()2sin 216f x x π⎛⎫=-+ ⎪⎝⎭的最大值为max ()213f x =+=,故D 选项正确. 故选:B5、C 【解析】对n 分成0n =和0n ≠两种情况进行分类讨论,结合A B =≠∅求得n 的取值范围.【详解】当0n =时,()()2,00f x x f x x ==⇒=, 此时{}{}0,0,A B A B ===≠∅,符合题意. 当0n ≠时,()()f x x x n =+,由()0f x =解得0x =或x n =-,由()()0f f x =得()0f x =或()f x n =-,其中,()20f x n x nx n =-⇒++=,0和n -都不是这个方程的根,要使A B =≠∅,则需()244004n n n n n ∆=-=-<⇒<<. 综上所述,n 的取值范围是[)0,4.故选:C6、B【解析】根据向量共线的坐标表示,列出关于m 的方程,解得答案.【详解】由向量()1,2a =-,(),4b m =,且//a b ,可得:14(2)0,2m m ⨯--⨯==- ,故选:B7、B【解析】根据三视图得到几何体的直观图,然后结合图中的数据计算出各棱的长度,进而可得最长棱【详解】由三视图可得,该几何体是如图所示的四棱锥11P DCC D -,底面11DCC D 是边长为2的正方形,侧面11PC D ∆是边长为2的正三角形,且侧面11PC D ⊥底面11DCC D根据图形可得四棱锥中的最长棱为1PC 和1PD ,结合所给数据可得1122PC PD ==, 所以该四棱锥的最长棱为22故选B【点睛】在由三视图还原空间几何体时,要结合三个视图综合考虑,根据三视图表示的规则,空间几何体的可见轮廓线在三视图中为实线、不可见轮廓线在三视图中为虚线.在还原空间几何体实际形状时,一般是以主视图和俯视图为主,结合左视图进行综合考虑.熟悉常见几何体的三视图,能由三视图得到几何体的直观图是解题关键.考查空间想象能力和计算能力8、C【解析】分析函数()f x 的单调性,利用零点存在定理可得出结论.【详解】因为函数2x y =、34y x =-均为R 上的增函数,故函数()f x 在R 上也为增函数,因为()10f -<,()00f <,152022f ⎛⎫=< ⎪⎝⎭,()110f =>, 由零点存在定理可知,函数()f x 的零点所在的区间为1,12⎛⎫ ⎪⎝⎭. 故选:C.9、C【解析】令10x -=求出定点的横坐标,即得解.【详解】解:令10,1-=∴=x x .当1x =时,()1111=2f a -=+,所以函数()f x 的图象过点()1,2.故选:C.10、B【解析】由分母中根式内部的代数式大于0,对数式的真数大于0联立不等式组求解【详解】解:由32020x x ->⎧⎨+>⎩,解得322x -<< ∴函数()(2)f x lg x =++的定义域是3(2,)2- 故选:B【点睛】本题考查函数的定义域及其求法,属于基础题二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、12- 【解析】用诱导公式计算 【详解】1cos()cos 2παα+=-=-,1cos 2α=, 1cos(3)cos 2παα+=-=-故答案为:12-12、123-【解析】根据函数的周期和奇偶性即可求得答案.【详解】因为函数的周期为2的奇函数,所以511222f f f ⎛⎫⎛⎫⎛⎫-=-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故答案为:13、2(,2]e e -∞-【解析】不等式()()220f x f x a ⎡⎤--≥⎣⎦在[0,1]上有解等价于2[()]2()a f x f x ≤-,令2()2x x g x e e =-(01)x ≤≤,则max ()a g x ≤.【详解】由2[()]2()0f x f x a --≥ 在[0,1]上有解,可得2[()]2()a f x f x ≤-,即22x x a e e ≤-令2()2x x g x e e =-(01)x ≤≤,则max ()a g x ≤,因为01x ≤≤,所以1x e e ≤≤,则当x e e =,即1x =时,2max ()2g x e e =-,即22a e e ≤-,故实数a 的取值范围是2(,2]e e -∞-故答案为(2,2e e ⎤-∞-⎦【点睛】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.14、cos2x -或tan x (不唯一).【解析】根据函数最小正周期为π,可构造正弦型、余弦型或者正切型函数,再结合在()0,1上单调递增,构造即可.【详解】解:根据函数最小正周期为π,可构造正弦型、余弦型或者正切型函数,再结合在()0,1上单调递增,构造即可,如()cos2f x x =-或tan x 满足题意故答案为:cos2x -或tan x (不唯一).15、7【解析】根据对数与指数的运算性质计算即可得解.【详解】解:7log 237log 27lg 25lg 47log 1++++()3lg 2542=+⨯+52=+7=.故答案为:7.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)35;(2)-2.【解析】(1)先利用三角函数的坐标定义求出3cos 5α=,再利用诱导公式求解;(2)求出4tan 3α=,再利用差角的正切公式求解.【小问1详解】解:由于角α的终边过点34,55P ⎛⎫⎪⎝⎭,由三角函数的定义可得3cos 5α=,则()3cos cos 5απα+=-=-【小问2详解】解:由已知得4tan 3α=, 则()()42tan tan 3tan 281tan tan 13αβαβαβ----===-+- 17、(1)偶函数,理由见详解;(2)1或1-.【解析】(1)根据函数定义域,以及()(),f x f x -的关系,即可判断函数奇偶性; (2)根据()f x 的单调性以及对数运算,即可求得参数m 的值.【小问1详解】偶函数,理由如下:因为()33x xf x -=+,其定义域为R ,关于原点对称; 又()() 33x x f x f x --=+=,故()f x 是偶函数.【小问2详解】()33x x f x -=+在()0,+∞单调递增,在(),0-∞单调递减,证明如下:设120x x <<,故()()11221212121133333333x x x x x x x x f x f x ---=+--=-+- ()121213313x x x x +⎛⎫=-- ⎪⎝⎭, 因为120x x <<,故1233x x <,则12330x x -<,又120x x +>,故1231x x +>,则121103x x +->, 故()1212133103x x x x +⎛⎫--< ⎪⎝⎭,则()()12f x f x < 故()f x 在()0,+∞单调递增,又()f x 为偶函数,故()f x 在(),0-∞单调递减; 因为()ln3ln3ee f m -=+()()13113f f =+==-, 又()33x xf x -=+在()0,+∞单调递增,在(),0-∞单调递减, 故1m =或1-.18、 (1)1a =,1b =,0c ;(2)()f x 在(,1]-∞-上为增函数,证明见解析.【解析】(1)根据题意,由奇函数的性质可得(1)2f -=-,进而可得12124132a b c a b ca b c +⎧=⎪+⎪+⎪=-⎨-+⎪+⎪<⎪+⎩,解可得a 、b 、c 的值,即可得答案;(2)利用定义法证明函数的单调性,按照:设元、作差、变形、判断符号、下结论的步骤完成即可【详解】解:(1)根据题意,函数21()ax f x bx c+=+是奇函数(,a b c ∈N ,),且(1)2f =, 则(1)2f -=-,又由(2)3f <, 则有12124132a b c a b ca b c +⎧=⎪+⎪+⎪=-⎨-+⎪+⎪<⎪+⎩,且a b c ∈N 、、,解得1a =,1b =,0c . (2)由(1)可得:211()x f x x x x+==+,函数()f x 在(,1]-∞-上为增函数 证明:设任意的121x x <≤-,()()()()121212121212111x x x x f x f x x x x x x x --⎛⎫⎛⎫-=+-+= ⎪ ⎪⎝⎭⎝⎭, 又由121x x <≤-,则120x x -<且1210x x ->,120x x >,则有()()120f x f x -<,故函数()f x 在(,1]-∞-上为增函数【点睛】本题考查函数的奇偶性与单调性的综合应用,关键是求出a 、b 、c 的值,属于基础题19、(1){}|23A x x =≤≤;{2B x x =<或}3x ≥.(2)充分不必要条件【解析】(1)分别解一元二次不等式和分式不等式即可得答案;(2)由题知{2U A x x =<或}3x >,进而根据充分不必要条件判断即可.【小问1详解】解:解不等式2560x x -+≤得23x ≤≤,故{}|23A x x =≤≤; 解不等式()()320113110022220x x x x x x x ⎧--≤-≤⇔-≤⇔≤⇔⎨----≠⎩, 解得2x <或3x ≥,故{2B x x =<或}3x ≥.【小问2详解】解:因为{}|23A x x =≤≤, 所以{2U A x x =<或}3x >,因为{2B x x =<或}3x ≥,所以U x A ∈是x B ∈的充分不必要条件.20、(1)T π=., ()536k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦, (2)56π 【解析】(1)直接利用三角函数关系式的恒等变换和正弦型函数的性质的应用求出结果(2)利用正弦型函数的性质的应用求出结果【详解】(1)由题意,函数()()2222121263f x sin x cos x cos x cos x ππ⎡⎤⎛⎫⎛⎫=+-=-++- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,=122222cos x cos x x ⎛⎫-++ ⎪ ⎪⎝⎭=122222226sin x cos x sin x π⎛⎫-+=-+ ⎪⎝⎭, 所以()f x 的最小正周期:22T ππ== 由()3222262k x k k Z πππππ+≤-≤+∈,解得()5,36k x k k Z ππππ+≤≤+∈ 即函数()f x 的单调递减区间是 ()536k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦, (2)由(1)知()226f x sin x π⎛⎫=-+ ⎪⎝⎭, 因为3x m π⎡⎤∈⎢⎥⎣⎦,,所以22626x m πππ⎡⎤-∈-⎢⎥⎣⎦, 要使f (x )在区间3m π⎡⎤⎢⎥⎣⎦,上的最小值为1,即26y sin x π⎛⎫=-⎪⎝⎭在区间3m π⎡⎤⎢⎥⎣⎦,上的最小值为-1 所以3262m ππ-≥,即56m π≥ 所以m 的最小值为56π 【点睛】本题考查了三角函数关系式的变换,正弦型函数的性质的应用,其中解答中熟练应用三角函数的图象与性质,准确运算是解答的关键,着重考查了运算能力和转换能力及思维能力,属于基础题型21、1,54π. 【解析】由韦达定理结合两角和差的正切公式可得()tan tan tan 11tan tan αβαβαβ++==-.结合所给的角的范围可知2,παβπ<+<则54παβ+=. 试题解析: tan tan αβ、为方程26510x x -+=的两根,51tan tan tan tan 66αβαβ∴+==,, ()5tan tan 6tan 111tan tan 16αβαβαβ++===--. 350,,2,224πππαπβπαβπαβ<<<<∴<+<∴+=. 点睛:三角函数式的化简、求值问题的常用技巧:①寻求角与角之间的关系,化非特殊角为特殊角;②正确灵活地运用公式,通过三角变换消去或约去一些非特殊角的三角函数值;③一些常规技巧:“1”的代换、和积互化等常用方法:异名三角函数化为同名三角函数,异角化为同角,异次化为同次,切化弦,特殊值与特殊角的三角函数互化。

上海市虹口区上海外国语大学附属外国语学校2023届高一上数学期末质量跟踪监视模拟试题含解析

上海市虹口区上海外国语大学附属外国语学校2023届高一上数学期末质量跟踪监视模拟试题含解析
【详解】当 时, ,
当 时, ,
当 时, ,
所以 ,或 ,或
因为 ,
所以 .
故选:A
3、B
【解析】 或 ,分类求解 ,根据 可求得 的取值集合
【详解】 或 ,
, ,
或 或 ,解得 或 ,综上 ,
故选:
4、A
【解析】设出直线方程,利用待定系数法得到结果.
【详解】设与直线 平行的直线方程为 ,
将点 代入直线方程 可得 ,解得
(2) ;
(3)存在,正整数 或2.
【解析】(1)根据 , ,即可求出 的值,从而可求函数的解析式;
(2)根据函数的奇偶性和单调性由题意可得到 恒成立,然后通过分类讨论,根据二次不等式恒成立问题的解决方法即可求出答案;
(3)设等分点的横坐标为 , .首先根据 ,可得到函数 的图象关于点 对称,从而可得到 , ;进而可求出 ;再根据 ,从而只需求 即可.
又f =2,f(6)=log36<2,
故f(x)在区间 值对数型函数的图像和性质,考查数形结合的思想,属于基础题
20、(1) (2)偶函数(3) 在 上是减函数,证明见解析.
【解析】(1)根据对数函数成立的条件即可求函数f(x)的定义域及 的值;
(2)根据函数奇偶性的定义即可判断函数 的奇偶性;
C.2x+y-2=0D.x+2y-1=0
5.给定函数:① ;② ;③ ;④ ,其中在区间 上单调递减的函数序号是()
A.①②B.②③
C.③④D.①④
6.已知集合A={x|-1 ≤x≤2},B={0,1,2,3},则A∩B=()
A.{0,1}B.{-1,0,1}
C.{0,1,2}D.{-1,0,1,2}

2020-2021学年上海市虹口区高一(上)期末数学试卷(附答案详解)

2020-2021学年上海市虹口区高一(上)期末数学试卷(附答案详解)

2020-2021学年上海市虹口区高一(上)期末数学试卷一、单选题(本大题共6小题,共18.0分)1.已知a、b都是实数,那么“a>b”是“a3>b3”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件2.函数f(x)=4x+12x的图象()A. 关于y轴对称B. 关于x轴对称C. 关于原点对称D. 关于直线y=x对称3.已知全集U=R及集合A={a|14≤22−a<8,且a∈Z},B={b|b2+3b−10>0,其中b∈R},则A∩B−的元素个数为()A. 4B. 3C. 2D. 14.已知函数y=2x+x,y=lnx+x,y=lgx+x的零点依次为x1、x2、x3,则x1、x2、x3的大小关系为()A. x1<x2<x3B. x2<x1<x3C. x2<x3<x1D. x1<x3<x25.设f(x)是定义在R上的奇函数,且当x≥0时,f(x)=x2,若对任意的x∈[t,t+2],不等式f(x+t)≥2f(x)恒成立,则实数t的取值范围是()A. [√2,+∞)B. [2,+∞)C. (0,2]D. [−√2,−1]∪[√2,√3]6.若函数y=−|x−a|与y=ax+1在区间[1,2]上都是严格减函数,则实数a的取值范围为()A. (−∞,0)B. (−1,0)∪(0,1]C. (0,1)D. (0,1]二、单空题(本大题共13小题,共39.0分)7.已知集合A={−1,1,2},B={x|x2+x=0},则A∩B=.8.不等式x+3x−1≤0的解集为______ .9.函数f(x)=x+4x ,x∈[12,4]的值域为______ .10.计算:log2209+2log23−log25+7log72=______ .11.用“二分法”求方程x3+x−4=0在区间(1,2)内的实根,首先取区间中点x=1.5进行判断,那么下一个取的点是x=.12. 已知条件p :2k −1≤x ≤1−k ,q :−3≤x <3,且p 是q 的必要条件,则实数k 的取值范围为______ .13. 不等式|x +2|+|x −1|≤5的解集为______ .14. 已知函数f(x)=3x +a 的反函数为y =f −1(x),若函数y =f −1(x)的图象过点(3,2),则实数a 的值为______ .15. 已知函数f(x)=2|x−a|在区间[1,+∞)上是严格增函数,则实数a 的取值范围为______ .16. 已知集合A ={x||x −m|<m +13,其中x ,m ∈Z ,且m >0},B ={x||x +13|<2m ,其中x ,m ∈Z ,且m >0},则A ∩B 的元素个数为______ .(用含正整数m 的式子表示)17. 若集合A ={x|x 2+5x −6=0},B ={x|ax +3=0,a ∈R},且B ⊂A ,则满足条件的实数a 的取值集合为______ .18. 已知函数f(x)={x 2+3x,x ≥03x −x 2,x <0,若f(a 2−3)+f(2a)>0,则实数a 的取值范围为______ .19. 已知函数y =f(x)是定义在实数集R 上的偶函数,若f(x)在区间(0,+∞)上是严格增函数,且f(2)=0,则不等式f(x)x ≤0的解集为______ .三、解答题(本大题共7小题,共84.0分)20. 已知a 、b 是任意实数,求证:a 4+b 4≥a 3b +ab 3,并指出等号成立的条件.21. 某居民小区欲在一块空地上建一面积为1200m 2的矩形停车场,停车场的四周留有人行通道,设计要求停车场外侧南北的人行通道宽3m ,东西的人行通道宽4m ,如图所示(图中单位:m),问如何设计停车场的边长,才能使人行通道占地面积最小?最小面积是多少?22. 已知函数y =|2x−3x+1|.(1)作出这个函数的大致图象; (2)讨论关于x 的方程|2x−3x+1|=t 的根的个数.23. 已知函数f(x)=1−6a x+1+a (a >0,a ≠1)是定义在R 上的奇函数.(1)求实数a 的值及函数f(x)的值域;(2)若不等式t ⋅f(x)≥3x −3在x ∈[1,2]上恒成立,求实数t 的取值范围.24. 已知函数f(x)={log 2(1+x)x ≥0log 12(1−x)x <0.(1)判断函数y =f(x)的奇偶性;(2)对任意的实数x 1、x 2,且x 1+x 2>0,求证:f(x 1)+f(x 2)>0;(3)若关于x 的方程[f(x)]2+af(−x)+a −34=0有两个不相等的正根,求实数a取值范围.25.设a是正常数,函数f(x)=log2(√x2+1+ax)满足f(−1)+f(1)=0.(1)求a的值,并判断函数y=f(x)的奇偶性;(2)是否存在一个正整数M,使得M>f(x)对于任意x∈[1,√3]恒成立?若存在,求出M的最小值,若不存在,请说明理由.26.对于定义在D上的函数y=f(x),设区间[m,n]是D的一个子集,若存在x0∈(m,n),使得函数y=f(x)在区间[m,x0]上是严格减函数,在区间[x0,n]上是严格增函数,则称函数y=f(x)在区间[m,n]上具有性质P.(1)若函数y=ax2+bx在区间[0,1]上具有性质P,写出实数a、b所满足的条件;(2)设c是常数,若函数y=x3−cx在区间[1,2]上具有性质P,求实数c的取值范围.答案和解析1.【答案】C【解析】解:若a >b 则a 3>b 3.是真命题,即a >b ⇒a 3>b 3. 若a 3>b 3则a >b.是真命题,即a 3>b 3⇒a >b . 所以a >b 是a 3>b 3的充要条件. 故选:C .判断命题的真假:若a >b 则a 3>b 3.是真命题,即a >b ⇒a 3>b 3.若a 3>b 3则a >b.是真命题,即a 3>b 3⇒a >b .解决判断充要条件问题可以先判断命题的真假,最好用⇒来表示,再转换为是什么样的命题.2.【答案】A【解析】解:因为f(x)=4x +12x═4x2x +12x =2x +2−x ,所以f(−x)=2−x +2x =2x +2−x =f(x),所以函数f(x)是偶函数,即函数图象关于y 轴对称. 故选A .将函数进行化简,利用函数的奇偶性的定义进行判断.本题主要考查函数奇偶性和函数图象的关系,利用函数奇偶性的定义判断函数的奇偶性是解决本题的关键.3.【答案】B【解析】解:∵A ={a|−2≤2−a <3,a ∈Z}={a|−1<a ≤4,a ∈Z}={0,1,2,3,4},B ={b|b <−5或b >2},且U =R , ∴B −={b|−5≤b ≤2},A ∩B −={0,1,2}, ∴A ∩B −的元素个数为:3. 故选:B .可求出集合A ,B ,然后进行交集和补集的运算求出A ∩B −,然后即可得出A ∩B −的元素本题考查了描述法、列举法的定义,指数函数的单调性,一元二次不等式的解法,交集和补集的运算,考查了计算能力,属于基础题.4.【答案】D【解析】解:已知函数y=2x+x,y=lnx+x,y=lgx+x的零点依次为x1、x2、x3,y=2x+x=0时,2x=−x,即2x1=−x1,y=lnx+x=0时,lnx=−x,即lnx2=−x2,y=lgx+x=0时,lgx=−x,即lgx3=−x3,在同一坐标系中画出函数y=2x,y=lnx,y=lgx和y=−x的图象,由图象可知,这三个函数的零点依次增大,故x1、x2、x3的大小关系为x1<x3<x2.故选:D.化函数的零点为方程的根,然后在同一坐标系中画出函数y=2x,y=lnx,y=lgx和y=−x的图象,根据图象即可判断x1、x2、x3的大小关系.本题考查函数零点的定义,函数零点就是相应方程的根,考查了数形结合思想,属于基础题.5.【答案】A【解析】本题考查函数单调性的应用,利用单调性处理不等式恒成立问题,属于中档题. 由题意可得2f(x)=f(√2x),由题意可知f(x)为R 上的增函数,故对任意的x ∈[t,t +2],不等式f(x +t)≥2f(x)恒成立可转化为x +t ≥√2x 对任意的x ∈[t,t +2]恒成立,求解即可. 【解答】解:当x ≥0时,f(x)=x 2,当x <0时,−x >0,f (−x )=x 2=−f (x ),所以当x <0时,f (x )=−x 2,所以f(x)在R 上单调递增, 对于x ∈R,都有2f (x )=f(√2x),∴f(x +t)≥2f(x)⇒f (x +t )≥f(√2x),即x +t ≥√2x ⇒x ≤√2−1=(√2+1)t 对任意的x ∈[t,t +2]恒成立, ∴x max =t +2≤(√2+1)t ⇒t ≥√2, ∴实数t 的取值范围为[√2,+∞); 故选:A .6.【答案】D【解析】解:因为y =−|x −a|与y =ax+1在区间[1,2]上都是严格减函数, 所以{a ≤1a >0,故0<a ≤1. 故选:D .结合函数图象的变换及反比例函数与一次函数性质可求. 本题主要考查了基本初等函数单调性的应用,属于基础题.7.【答案】{−1}【解析】 【分析】可求出集合B ,然后进行交集的运算即可.本题考查了交集的定义及运算,考查了计算能力,属于基础题. 【解答】解:∵A={−1,1,2},B={−1,0},∴A∩B={−1}.故答案为:{−1}.8.【答案】[−3,1)【解析】解:x+3x−1≤0⇒(x+3)(x−1)≤0且x−1≠0,解得−3≤x<1,即不等式的解集为[−3,1),故答案为:[−3,1).根据题意,原不等式等价于(x+3)(x−1)≤0且x−1≠0,再得到不等式的解集.本题考查分式不等式的解法,注意将分式不等式变形为整式不等式,属于基础题.9.【答案】[4,172]【解析】解:∵f(x)=x+4x 在[12,2]上单调递减,在(2,4]上单调递增,且f(12)=172,f(2)=4,f(4)=5,∴f(x)在[12,4]上的最大值为172,最小值为4,∴f(x)的值域为[4,172].故答案为:[4,172].可看出f(x)在[12,2]上单调递减,在(2,4]上单调递增,这样即可求出f(x)在[12,4]上的最大值和最小值,从而得出f(x)的值域.本题考查了函数值域的定义及求法,函数f(x)=x+4x的单调性,根据函数单调性求函数值域的方法,考查了计算能力,属于基础题.10.【答案】4【解析】解:原式=log2(209×9×15)+2=log24+2=2+2=4,故答案为:4.根据对数的运算法则即可求出.本题考查了对数的运算性质,属于基础题.11.【答案】1.25【解析】 【分析】构造函数f(x)=x 3+x −4,确定f(1),f(2),f(1.5)的符号,根据零点存在定理,即可得到结论.本题考查二分法,考查零点存在定理,考查学生的计算能力,属于基础题. 【解答】解:设函数f(x)=x 3+x −4,易知函数为增函数,∵f(1)=−2<0,f(2)=6>0,f(1.5)=1.53+1.5−4=0.875>0 ∴下一个有根区间是(1,1.5), 那么下一个取的点是x =1+1.52=1.25,故答案为:1.25.12.【答案】(−∞,−2]【解析】解:∵条件p :2k −1≤x ≤1−k ,q :−3≤x <3,且p 是q 的必要条件, ∴{2k −1≤33≤1−k,解得k ≤−2.则实数k 的取值范围是(−∞,−2]. 故答案为:(−∞,−2].条件p :2k −1≤x ≤1−k ,q :−3≤x <3,根据p 是q 的必要条件,可得{2k −1≤33≤1−k ,解得k 实数k 的取值范围.本题考查了不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.13.【答案】[−3,2]【解析】解:①当x<−2时,不等式可化为−x−2−x+1≤5,∴x≥−3∴−3≤x<−2②当−2≤x≤1时,不等式可化为x+2−x+1≤5,恒成立,−2≤x≤1;③当x>1时,不等式可化为x+2+x−1≤5,x≤2,∴1<x≤2,综上所述:不等式的解集为[−3,2],故答案为:[−3,2].对x分3种情况他要论去绝对值.本题考查了绝对值不等式的解法.属中档题.14.【答案】−6【解析】解:∵y=f−1(x)的图象过点(3,2),∴函数y=f(x)的图象过点(2,3),又f(x)=3x+a,∴32+a=3,即a=−6.故答案为:−6.由y=f−1(x)的图象过点(3,2)得函数y=f(x)的图象过点(2,3),把点(2,3)代入y=f(x)的解析式求得a的值.本题考查了互为反函数的两个函数图象间的关系,是基础的计算题.15.【答案】(−∞,1]【解析】解:令t(x)=|x−a|,原函数化为y=2t,函数y=2t为增函数,要使函数f(x)=2|x−a|在区间[1,+∞)上是严格增函数,则t=|x−a|在[1,+∞)上单调递增,则a≤1.∴实数a的取值范围为(−∞,1].故答案为:(−∞,1].令t(x)=|x−a|,函数y=2t为增函数,问题转化为t=|x−a|在[1,+∞)上单调递增,由此可得a的取值范围.本题考查复合函数的单调性,利用换元法结合复合函数单调性之间的关系是解决本题的关键,是基础题.16.【答案】2m【解析】解:∵A={x|−13<x<2m+13,x,m∈Z,m>0},B={x|−2m−13<x<2m−13,x,m∈Z,m>0},∴A∩B={x|−13<x<2m−13,x,m∈Z,m>0},∵x,m∈Z,且m>0,∴A∩B={0,1,2,…,2m−1},∴A∩B元素的个数为:2m.可求出集合A,B,然后进行交集的运算求出A∩B,根据x,m∈Z且m>0即可得出A∩B 的元素个数.本题考查了绝对值不等式的解法,描述法的定义,考查了计算能力,属于基础题.17.【答案】{−3,0,12}【解析】解:由集合A={x|x2+5x−6=0}={1,−6},∵B⊂A,当B=⌀时,即ax+3=0无解,此时a=0;当B≠⌀时,ax+3=0有解,x=−3a若1=−3a,可得a=−3;若−6=−3a ,可得a=12;∴满足条件的实数a的取值集合为{−3,0,12}.故答案为:{−3,0,12}.根据B⊂A,对B讨论,建立条件关系即可求实数a的取值集合.本题主要考查集合的基本运算,比较基础.18.【答案】{a|a>1或a<−3}【解析】解:因为f(x)={x 2+3x,x ≥03x −x 2,x <0的图象如图所示,故f(x)为单调递增的奇函数, 若f(a 2−3)+f(2a)>0, 则f(a 2−3)>−f(2a)=f(−2a), 所以a 2−3>−2a ,即a 2+2a −3>0, 解得,a >1或a <−3.故a 的取值范围{a|a >1或a <−3}. 故答案为:{a|a >1或a <−3}.先利用图象求解函数的单调性及奇偶性,然后结合单调性及奇偶性即可求解不等式. 本题考查函数的奇偶性和单调性的判断和运用,考查不等式的求解,属于中档题.19.【答案】(−∞,−2]∪(0,2]【解析】解:因为y =f(x)是定义在实数集R 上的偶函数,f(x)在区间(0,+∞)上是严格增函数,且f(2)=0,所以f(x)在(−∞,0)上单调递减,且f(−2)=f(2)=0,所以在(−∞,−2]∪[2,+∞)上f(x)≥0,在(−2,0)∪(0,2)上f(x)<0, 因为不等式f(x)x≤0,所以{f(x)≥0x <0或{f(x)≤0x >0,即x =−2或x =2或{x <−2或x >2x <0或{−2<x <0或0<x <2x >0, 解得x ≤−2或0<x ≤2, 即不等式f(x)x≤0的解集为(−∞,−2]∪(0,2].故答案为:(−∞,−2]∪(0,2].根据题意可得f(x)在(−∞,0)上单调递减,且f(−2)=0,利用单调性即可得出在(−∞,−2]∪[2,+∞)上f(x)≥0,在(−2,0)∪(0,2)上f(x)<0,将不等式合理转化即可求得解集.本题考查了函数的奇偶性与单调性的综合,属于中档题.20.【答案】证明:a 4+b 4−a 3b −ab 3=(a 4−a 3b)+(b 4−ab 3),=a 3(a −b)+b 3(b −a)=(a −b)(a 3−b 3),=(a −b)2(a 2+ab +b 2)=(a −b)2[(a +12)2+34b 2]≥0, 即a 4+b 4≥a 3b +ab 3, 当且仅当a =b 时,等号成立.【解析】作差,再进行配方,与0比较,即可得到结论. 本题考查了不等式的证明,考查了推理论证能力,属于基础题.21.【答案】解:设矩形车场南北侧边长为xm ,则其东西侧边长为1200xm ,人行道占地面积为S =(x +6)(8+1200x)−1200=8x +7200x+48≥2√8x ⋅7200x+48=96, 当且仅当8x =7200x,即x =30(m)时取等号,S min =96(m 2),此时1200x=40(m),所以矩形停车场的南北侧边长为30m ,则其东西侧边长为40m ,才能使人行通道占地面积最小,最小面积是528m 2.【解析】设矩形车场南北侧边长为xm ,则其东西侧边长为1200xm ,人行道占地面积为S =(x +6)(8+1200x)−1200=8x +7200x+48,然后结合基本不等式即可求解.本题主要考查了基本不等式在实际问题中的应用,体现了转化思想的应用.22.【答案】解:(1)∵y =|2x−3x+1|=|2−5x+1|,首先将y =−5x 的图象向左平移1个单位,再向上平移2个单位,得到y =2−5x+1的图象,最后将y =2−5x+1的图象在x 轴下方的部分翻折到x 轴上方, 便可得到y =|2x−3x+1|的图象;(2)当t <0时,方程|2x−3x+1|=t 的根的个数为0; 当t =0或t =2时,|2x−3x+1|=t 的根的个数为1;当0<t<2或t>2时,|2x−3x+1|=t的根的个数为2.【解析】(1)把已知函数解析式变形,再由函数图象的平移与翻折变换可得y=|2x−3x+1|的图象;(2)对t分类,数形结合得答案.本题考查函数零点与方程根的关系,考查数形结合的解题思想,是中档题.23.【答案】解:(1)由f(0)=0,解得:a=3,反之a=3时,f(x)=1−63x+1+3=3x−13x+1,f(−x)=−f(x),符合题意,故a=3,由f(x)=1−23x+1,x→0时,f(x)→−1,x→∞时,f(x)→1,故函数的值域是(−1,1);(2)f(x)=1−23x+1在x∈[1,2]递增,故f(x)∈[12,35 ],故t≥(3x−3)⋅3x+13x−1,故t≥[(3x−3)⋅3x+13x−1]max,令3x−1=m,m∈[2,8],则(3x−3)⋅3x+13x−1=(m−2)⋅m+2m=m−4m随m的增大而增大,最大值是152,故实数t的取值范围是[152,+∞).【解析】(1)根据函数的奇偶性求出a的值,检验即可;(2)问题转化为t≥[(3x−3)⋅3x+13x−1]max,令3x−1=m,m∈[2,8],根据函数的单调性求出t的范围即可.本题考查了函数的奇偶性,单调性问题,考查函数恒成立,转化思想,是一道中档题.24.【答案】解:(1)f(0)=log 2(1+0)=0.当x >0时,−x <0,有f(−x)=log 12[1−(−x)]=−log 2(1+x)=−f(x), 即f(−x)=−f(x).当x <0时,−x >0,有f(−x)=log 2[1+(−x)]=−log 12(1−x)=−f(x), 即f(−x)=−f(x).综上,函数f(x)是R 上的奇函数;证明:(2)∵函数y =log 2x 是(0,+∞)上的严格增函数,函数u =1+x 在R 上也是严格增函数,故函数y =log 2(1+x)在[0,+∞)上是严格增函数.由(1)知,函数y =f(x)在R 上为奇函数,由奇函数的单调性可知,y =log 12(1−x) 在(−∞,0)上也是严格增函数,从而y =f(x)在R 上是严格增函数. 由x 1+x 2>0,得x 1>−x 2,∴f(x 1)>f(−x 2)=−f(x 2), 即f(x 1)+f(x 2)>0;解:(3)由(1)知,y =f(x)是R 上的奇函数,故原方程可化为 [f(x)]2−af(x)+a −34=0.令f(x)=t ,则当x >0时,t =f(x)>0,于是,原方程有两个不等正根等价于: 关于t 的方程t 2−at +(a −34)=0有两个不等的正根.即{△=a 2−4(a −34)>0a >0a −34>0⇔{a <1,或a >3a >0a >34⇔34<a <1或a >3. 因此,实数a 的取值范围是(34,1)∪(3,+∞).【解析】(1)利用函数奇偶性的定义判断函数的奇偶性;(2)证明函数y =log 2(1+x)在[0,+∞)上是严格增函数,结合函数的奇偶性可得y =log 12(1−x)在(−∞,0)上也是严格增函数,从而y =f(x)在R 上是严格增函数,由x 1+x 2>0,即可证明f(x 1)+f(x 2)>0;(3)由(1)知,y =f(x)是R 上的奇函数,故原方程可化为[f(x)]2−af(x)+a −34=0,把原方程有两个不等正根转化为关于a 的不等式组求解.本题考查函数奇偶性的判定及应用,考查函数的单调性,考查函数零点与方程根的关系,考查化归与转化思想,是中档题.25.【答案】解:(1)由f(−1)+f(1)=0得:log2(√2−a)+log2(√2+a)=log2(2−a2)= 0,解得:a=±1,∵a>0,∴a=1,f(x)=log2(√x2+1+x),x∈R,=−log2(√x2+1+x)=−f(x),又f(−x)=log2(√x2+1−x)=−log√x2+1−x∴f(x)为奇函数;(2)由(1)知:f(x)=log2(√x2+1+x),x∈R,设任意的x1,x2满足1≤x1<x2≤√3,则有0<x12+1<x22+1,∴0<√x12+1+x1<√x22+1+x2,∴f(x1)=log2(√x12+1+x1)<f(x2)=log2(√x22+1+x2),∴函数y=f(x)在[1,√3]上单调递增,∴f(x)max=f(√3)=log2(2+√3),又由M>f(x)对于任意x∈[1,√3]恒成立可得:M>f(x)max=log2(2+√3),∵M为正整数,∴存在M,且M min=2.【解析】(1)先由f(−1)+f(1)=0求解出a的值,进而求得函数f(x),再利用函数奇偶性的定义判断其奇偶性即可;(2)先由题设和函数单调性的定义推导出函数f(x)在x∈[1,√3]的单调性,然后利用其单调性求得f(x)的最大值,再由M>f(x)对于任意x∈[1,√3]恒成立求得M的取值范围,进而求得M的最小值即可.本题主要考查函数的奇偶性判断、单调性的定义及单调性在处理恒成立问题中的应用,属于中档题.26.【答案】解:(1)当y=ax2+bx在[0,1]上具有性质P时,由其图象在R上是抛物线,∈(0,1),故此抛物线开口向上即a>0,且对称轴x=−b2a于是,实数a,b满足的条件−2a<b<0;(2)记f(x)=x3−cx,设x1,x2是区间[1,2]上任意给定的两个实数,总有f(x1)−f(x2)=(x1−x2)(x12+x1x2+x22−c),若c≤3,当x1<x2时,总有x1−x2<0且x12+x1x2+x22−c>0,故f(x1)−f(x2)<0,因此y=x3−cx在区间[1,2]上单调递增,不符合题意,若c≥12,x1<x2时,总有x1−x2<0且x12+x1x2+x22−c<0,故f(x1)−f(x2)>0,因此y=x3−cx在区间[1,2]上单调递减,不符合题意,若3<c<12,]时,总有x1−x2<0且x12+x1x2+x22−c>0,当x1<x2,且x1,x2∈[1,√c3故f(x1)−f(x2)>0,]上单调递减,因此y=x3−cx在区间[1,√c3,2]时,总有x1−x2<0且x12+x1x2+x22−c<0,当x1<x2,且x1,x2∈[√c3故f(x1)−f(x2)<0,]上单调递增,因此y=x3−cx在区间[1,√c3故3<c<12.综上,c的范围(3,12)【解析】本题以新定义为载体,综合考查了函数性质,考查了逻辑推理的能力,体现了分类讨论思想的应用.∈(0,1),从而可求,(1)由题意得,抛物线开口向上即a>0,且对称轴x=−b2a(2)利用作差法f(x1)−f(x2)=(x1−x2)(x12+x1x2+x22−c),结合x的范围对c的范围分类讨论,结合已知新定义可求.。

上海市虹口高级中学2025届高一数学第一学期期末检测试题含解析

上海市虹口高级中学2025届高一数学第一学期期末检测试题含解析

15.对数函数 f x loga x ( a 0 且 a 1)的图象经过点 4, 2 ,则此函数的解析式 f x ________
16.已知函数

______;
②函数 与函数
,二者图象有______个交点
三、解答题:本大题共 5 小题,共 70 分。解答时应写出文字说明、证明过程或演算步骤。
19.已知函数 f x ex 1 aex
(1)若 f x 是偶函数,求 a 值;
(2)若对任意 x 0, ,不等式 f x a 1恒成立,求 a 的取值范围
的 20.已知集合 A x x2 x 0 ,记函数 f (x) 1ax2 (a 0)的定义域为集合 B.
(1)当 a=1 时,求 A∪B; (2)若“x∈A”是“x∈B”的充分不必要条件,求实数 a 的取值范围.
【解析】分别判断 a, b, c 与 0,1 等的大小关系判断即可.
【详解】因为1.50.2 1.50 1 .故 a 1.又 log0.2 1.5 log0.2 1 0 ,故 b 0 .又 0 0.21.5 0.20 1,故 0 c 1.所以
a c b.
故选:B
【点睛】本题主要考查了根据指对幂函数的单调性判断函数值大小的问题,属于基础题.
所以可知错误的是 C.由折线图可看出乙的波动比甲大,所以甲更稳定.
故选 C
4、C
【解析】由补集的概念,得 AB 0, 2,6,10,故选 C
【考点】集合的补集运算 【名师点睛】研究集合的关系,处理集合的交、并、补的运算问题,常用韦恩图、数轴等几何工具辅助解题.一般地, 对离散的数集、抽象的集合间的关系及运算,可借助韦恩图,而对连续的集合间的运算及关系,可借助数轴的直观性, 进行合理转化 5、B 【解析】利用函数奇偶性的定义可判断 A、B、C 选项中各函数的奇偶性,利用特殊值法可判断 D 选项中函数的奇偶 性.

2020_2021学年上海虹口区高一上学期期末数学试卷(答案版)

2020_2021学年上海虹口区高一上学期期末数学试卷(答案版)

2020~2021学年上海虹口区高一上学期期末数学试卷(详解)一、填空题(本大题共10小题,每小题3分,共30分)1.【答案】【解析】【踩分点】已知集合,,则 .∵集合,.∴.2.【答案】【解析】【踩分点】不等式的解集为 .不等式可化为,或,解得,或,∴原不等式的解集为:.3.【答案】【解析】【踩分点】函数,的值域为 .由双勾函数性质可知:函数在上单调递减,在上单调递增,又∵,,,∴函数,的值域是.4.【答案】【解析】【踩分点】计算: ..5.【答案】【解析】【踩分点】用“二分法”求方程在区间内的实根,首先取区间中点进行判断,那么下一个取的点是 .设函数,易知函数为增函数,∵,,,∴下一个有根区间是,那么下一个取的点是.故答案为:.6.【答案】【解析】已知条件,,且是的必要条件,则实数的取值范围为 .∵条件:,:,且是的必要条件,∴,解得,则实数的取值范围是.【踩分点】故答案为︰.7.【答案】【解析】【踩分点】不等式的解集为 .①当时,不等式可化为,∴,∴;②当时,不等式可化为,恒成立,;③当时,不等式可化为,,∴,综上所述:不等式的解集为.故答案为∶.8.【答案】【解析】【踩分点】已知函数的反函数为,若函数的图象过点,则实数的值为 .的反函数为,∵函数的图象经过点,∴函数的图象经过点,∴,解得.故答案为:.9.已知函数在区间上是增函数,则实数的取值范围为 .【答案】【解析】【踩分点】令,原函数化为,函数为增函数,要使函数在区间上是增函数,则在上单调递增,则.∴实数的取值范围为.故答案为:.10.【答案】【解析】【踩分点】,其中,,且,,其中,,且,则的元素个数为 .(用含正整数的式子表示)∵,,∴,∵,,且,∴,∴元素的个数为:.11.【答案】【解析】若集合,,且,则满足条件的实数的取值集合为 .,解得或,则,【踩分点】①时,,此时满足条件;②时,要满足,则或,解得或,综上所述,实数的取值集合为.12.【答案】【解析】【踩分点】已知函数,若,则实数的取值范围为 .函数的图象如图所示,当时,,,当时,,,所以在上单调递增,且,,所以,所以是奇函数,若,则相当于,相当于,即,得或,所以的取值范围是.13.已知函数是定义在实数集上的偶函数,若在区间上是增函数,且,则不等式的解集为 .【答案】【解析】【踩分点】因为是定义在实数集上的偶函数,在区间上是增函数,且,所以在上单调递减,且,所以在上,在上.因为不等式,所以或,即或或或,解得或,即不等式的解集为.故答案为:.或或二、选择题(本大题共5小题,每小题4分,共20分)14.A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】【解析】已知,都是实数,那么“”是“”的( ).C ∵函数在上单调递增,则当时,有,故充分性成立,当,即时,有,故必要性成立,∴“”是“”的充要条件.故选.15.A.关于轴对称B.关于轴对称函数的图象的对称性为( ).C.关于原点对称D.关于直线对称【答案】【解析】B 因为,定义域为,且,所以函数是偶函数,即函数图象关于轴对称.故选.16.A.B. C. D.【答案】【解析】已知全集及集合,,则的元素个数为( ).B 集合,集合,则,所以,含个元素.故选.且其中且且或17.A.B. C. D.【答案】【解析】已知函数,,的零点依次为,,,则,,的大小关系为( ).D 已知函数,,的零点依次为、、,当时,,即;当时,,即;当时,,即.在同一平面直角坐标系中分别作出函数,,,的图象,如图:由图知.故选.18.A. B.C.D.【答案】【解析】设是定义在上的奇函数,且当时,,若对任意的,不等式恒成立,则实数的取值范围是( ).A(排除法)当则得,即在时恒成立,而最大值,是当时出现,故的最大值为,则恒成立,排除项,同理再验证时,恒成立,排除项,时,不成立,故排除项.故选:.19.A.B.C.D.【答案】【解析】若函数与在区间上都是严格减函数,则实数的取值范围为( ).D 对于函数,时,为减函数,时,为增函数,故应有.对于函数,显然不为,对比函数可知,时,在上为减函数,时,在上为增函数,因此.故选.三、解答题(本大题共5小题,共50分)20.【答案】【解析】【踩分点】已知,是任意实数,求证:,并指出等号成立的条件.证明见解析,时,等号成立.证明:因故,即.当且仅当时,等号成立.21.【答案】【解析】某居民小区欲在一块空地上建一面积为的矩形停车场,停车场的四周留有人行通道.设计要求停车场外侧南北的人行通道宽,东西的人行通道宽,如图所示(图中单位:).问如何设计停车场的边长,才能使人行通道占地面积最小?最小面积是多少?北南停车场设计矩形停车场南北侧边长为,其东西侧边长为,人行通道占地面积最小,最小面积是.设矩形停车场南北侧边长为,则其东西侧边长为,【踩分点】人行通道占地面积为,由均值不等式,得 ,当且仅当,即时,,此时.所以,设计矩形停车场南北侧边长为,则其东西侧边长为,人行通道占地面积最小.22.(1)(2)(1)(2)【答案】(1)(2)【解析】【踩分点】已知函数.作出这个函数的大致图象.讨论关于的方程的根的个数.图象见解析.当时,方程的根的个数为;当或时,方程的根的个数为;当或时,方程的根的个数为.,故先将函数的图象向左平移个单位,再向上平移个单位,得到函数的图象,最后将函数的图象轴下方部分翻折到轴上方,即可得到函数的大致图象.–8–6–4–22468–22468当时,方程的根的个数为;当或时,方程的根的个数为;当或时,方程的根的个数为.23.24.(1)(2)(3)(1)(2)【答案】已知函数.判断函数的奇偶性.对任意的实数,,且,求证:.若关于的方程有两个不相等的正根,求实数的取值范围.奇函数.证明见解析.(1)(2)(1)(2)【答案】(1)(2)【解析】【踩分点】已知函数是定义在上的奇函数.求实数的值及函数的值域.若不等式在上恒成立,求实数的取值范围.,函数的值域是.实数的取值范围是:.由,解得:,反之时,,,符合题意,故,由,时,,时,,故函数的值域是.在递增,故,故,故,令,,则随的增大而增大,最大值是,故实数的取值范围是:.(3)(1)(2)(3)【解析】.因为,当时,,所以,即.当时,,,即.综上知,是奇函数.因为是单调递增函数,也是单调递增函数,由复合函数的单调性,知在上是单调递增函数.由()知是上的奇函数.由奇函数的单调性知当时是单调递增函数,从而是定义在上的单调递增的奇函数.由,得,所以,即.由()知函数是上的奇函数,故原方程可化为.令,则当时,,于是,原方程有两个不相等的正根等价于:关于的方程有两个不相等的正根,即【踩分点】或,因此实数的取值范围为.或25.(1)(2)(1)(2)【答案】(1)(2)【解析】设是正常数,函数满足.求的值,并判断函数的奇偶性.是否存在一个正整数,使得对于任意恒成立?若存在,求出的最小值;若不存在,请说明理由.;奇函数.存在;.由,得,即,注意到,解得.于是,对于任意实数,均有,即恒成立,故的定义域为.在中任取一个实数,都有,并且,故,因此是奇函数.设、是区间上任意给定实数,且,易知,故,因在上是严格增函数,故,【踩分点】从而在上是严格增函数,此时函数的最大值为.由对于任意恒成立,得,又是正整数,因此的最小值为.四、附加题26.(1)(2)(1)(2)【答案】(1)(2)【解析】对于定义在上的函数,设区间是的一个子集.若存在,使得函数在区间上是严格减函数,在区间上是严格增函数,则称函数在区间上具有性质.若函数在区间上具有性质,写出实数,所满足的条件.设是常数,若函数在区间上具有性质,求实数的取值范围...当函数在区间上具有性质时,由其图象在上是抛物线,故此抛物线的开口向上(即),且对称轴是;于是,实数,所满足的条件为:.记.设,是区间上任意给定的两个实数,总有.若,当时,总有且,故,因此在区间上是严格增函数,不符合题目要求.若,当时,总有且,故,因此在区间上是严格减函数,不符合题目要求.若,当且,时,总有且,故,因此在区间上是考查严格减函数;当且,时,总有且,故,因此在区间上是严格增函数.【踩分点】。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

则 cos | AD1 CE | 1 1 , | AD1 | | CE | 2 2 2
60 ,
异面直线 AD1 与 CE 所成角为 60
故选: C
【点睛】本题考查异面直线所成角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运
算求解能力,属于中档题
4、D
【解析】利用扇形的面积公式即得.
(1)设在 A 俱乐部租一-张球台开展活动 xh 的收费为 f x 元 (15 x 40) ,在 B 俱乐部租一张球台开展活动 xh 的
收费为 g x 元 (15 x 40) ,试求 f x 和 g x 的解析式;
(2)问选择哪家俱乐部比较合算?为什么?
22.已知函数 f (x) 2x , h(x) x2 4x 5m ,g (x)与 f (x)互为反函数.
若 a 0 时,由 f (x) 0 解得 x 0 或 x 1,满足题意.
若 a 0 时,a 2a , f (1) a 0 ,当 x 时, f (x) 0 ,即函数 f x 在区间[1, ) 上只有一个零点,因为函
数 f x 恰有 2 个零点,所以 2a 1且 0 a 1.
当 a 0 时, 2a a 0, f (1) a 0 ,此时函数 f x 有两个零点,满足题意.
【详解】函数 f (x) x 3 的定义域为 (0, ) ,且 f (x) 在 (0, ) 上单调递增, x
而 f (2) 2 3 0 , f (3) 3 1 0 , 2
所以函数 f (x) 的零点所在的区间为 (2, 3) .
故选:C 8、C
【解析】分析函数 f x 的单调性,可得出 f 2 f 2 0 ,分 x 0 、 x 0 两种情况解不等式 f x 0 ,综
21.某市有 A , B 两家乒乓球俱乐部,两家的设备和服务都很好,但收费标准不同, A 俱乐部每张球台每小时 5 元,
B 俱乐部按月收费,一个月中 30h 以内(含 30h )每张球台 90 元,超过 30h 的部分每张球台每小时加收 2 元.某学校
准备下个月从这两家中的一家租一张球台开展活动,其活动时间不少于15h ,也不超过 40h
(2)已知函数
F
x
logc
f
x
9 4
(c
0
且c
1 ),已知
F
x

x 2, 4的最大值为
2,求 c
的值
18.已知函数 f (x) 3 sin(2x ) . 4
(1)利用“五点法”完成下面表格,并画出函数 f (x) 在区间[ , 9 ] 上的图像. 88
2x 4
x
f (x)
(2)解不等式 f (x) 3 . 2
2、C
【解析】根据给定函数图象求出函数 f (x) 的解析式,再逐一分析各个选项即可判断作答.
【详解】观察函数 f (x) 的图象得: A 2,令 f (x) 的周期为T ,则 T 2 ,即T 2 ,
4 3 62
2 1,由 f (2 ) 2sin(2 ) 2 ,且 得: ,于是有 f (x) 2sin(x ) ,
11.已知直三棱柱 ABC A1B1C1 的顶点都在球 O 上,且 AB 4 , AA1 6 , ACB 30 ,则此直三棱柱的外接球
O 的表面积是( )
A. 25π
C.100π
12.方程
B. 50π 500π
D.
3
的解所在的区间是
A.
B.
C.
D.
二、选择题(本大题共 4 小题,每小题 5 分,共 20 分,将答案写在答题卡上.)
f (x2 ) ,B 不正确;
对于 C, x R , f (5π x) 2sin(x 3 ) 2cos x , f (5π x) 2sin(3 x) 2cos x ,
3
2
3
2
即 x R ,都有 f (5π x) f (5π x) ,C 正确;
3
3
对于 D,由 f (x) 2得: x 2k , k Z ,解得: x 2k , k Z ,
1、C
【解析】根据题意,由于函数 f (x) lg sin x 是 f (x) lg sin x f (x) ,因此排除线线 A,B,
然后对于选项 C,D,由于正弦函数周期为 2 ,那么利用图象的对称性可知,函数的周期性为 ,故选 C.
考点:函数的奇偶性和周期性
点评:解决的关键是根据已知函数解析式俩分析确定奇偶性,那么同时结合图像的变换来得到周期,属于基础题
16.函数 y 3 2x x2 的定义域是__________,值域是__________.
三、解答题(本大题共 6 个小题,共 70 分。解答时要求写出必要的文字说明、证明过程或演算步骤。)
17.已知函数 f x x a b 是奇函数,且 f 1 2 ;
x
(1)判断函数 f x 在区间2, 4 的单调性,并给予证明;
x
综上所述,不等式 f x 0 的解集为 2,0 0,2 .
x
故选:C. 9、D
【解析】由 f x 在区间[1, ) 上单调递减,分类讨论 a 0 , a 0 , a 0 三种情况,根据零点个数求出实数 a 的
取值范围.
【详解】函数 f x 在区间[1, ) 上单调递减,且方程 x a x 2a 0 的两根为 a, 2a .
19.在平面直角坐标系 xOy 中,角 α 与角 β 均以 Ox 为始边,它们的终边关于 y 轴对称.若 sin 1 ,则 3
cos( ) =___________.
20.计算下列各题:
(1)
2log2
1 4
8 27
2
3
log 4
8;
(2) 2log3 6 log3 4 lg5lg5 lg 4 lg 22 .
B.对于任意
x1

x2
(
π 6
,
5π ) 6
,且
x1
x2
,都有
f (x1)
f (x2 )
C. x R ,都有 f (5π x) f (5π x)
3
3
D. x [17π , 5π] ,使得 f (x) 2
12 12
3.长方体 ABCD A1B1C1D1 中, AA1 AD 1, AB 2 ,E 为 C1D1 中点,则异面直线 AD1 与 CE 所成角为()
x
合可得出原不等式的解集.
【详解】因为定义在 R 上的奇函数 f x 在 ,0 单调递减,则函数 f x 在 0, 上为减函数.
且 f 2 f 2 0 ,
当 x 0 时,由 f x 0 可得 f x 0 f 2,则 2 x 0 ;
x
当 x 0 时,由 f x 0 可得 f x 0 f 2 ,则 0 x 2.
13.在直角坐标系中,直线 3x 3y 3 0 的倾斜角 ________
14.已知扇形的弧长为 6,圆心角弧度数为 2,则其面积为______________. 15.高三年级的一次模拟考试中,经统计某校重点班 30 名学生的数学成绩均在[100,150](单位:分)内,根据统计 的数据制作出频率分布直方图如右图所示,则图中的实数 a=__________,若以各组数据的中间数值代表这组数据的平 均水平,估算该班的数学成绩平均值为__________
1.函数 f x lg sin x 是
A.最小正周期为 的奇函数
B.最小正周期为 2 的奇函数 C.最小正周期为 的偶函数
D.最小正周期为 2 的偶函数 2.已知函数 f (x) Asin(x ) ( A 0 , 0 , )的图象如图所示,则( )
2
A. f (x π) f (x)
6
2
3
令 17π 2k 5π ,解得 13 k 1 与 k Z 矛盾,D 不正确.
12
3 12
24
24
故选:C
3、C
【解析】以 D 为原点,DA 为 x 轴,DC 为 y 轴,DD1 为 z 轴,建立空间直角坐标系,利用向量法能求出异面直线 AD1 与 CE 所成角 【详解】解:长方体 ABCD A1B1C1D1 中, AA1 AD 1, AB 2 , E 为 C1D1 中点,
T
3
3
2
6
6
对于 A, f (x π) 2sin(x ) 2sin(x ) f (x) ,A 不正确;
6
6
对于 B,取 x1
2 3
且 x2
3 4
,满足
x1

x2
(
π 6
,
5π 6
)
,且
x1
x2 ,而
f
( x1 )
2sin 2
2,
f
(
x2
)
2
sin
7 12
2 ,此时
f
(x1)
023 学年高一上数学期末模拟试卷
注意事项 1.考生要认真填写考场号和座位序号。 2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用 2B 铅笔作答;第二部分必须用黑 色字迹的签字笔作答。 3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(本大题共 12 小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的, 请将正确答案涂在答题卡上.)
A. 30
B. 45
C. 60
D. 90
4.半径为 2,圆心角为1rad 的扇形的面积为()
9
9
A.
B.
2
4
C.
D.2
5.当 x 越来越大时,下列函数中增长速度最快的是( )
A. y 100x
B.
y
e 2
x
相关文档
最新文档