上海市虹口区2019-2020学年高一上学期期末数学试卷 (有解析)
2019-2020学年上海市中学高一上学期期末数学试题及答案解析

2019-2020学年上海市中学高一上学期期末数学试题及答案解析一、单选题1.已知复数113z i =+,23z i =+(i 为虚数单位),在复平面内,12z z -对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B【解析】利用复数的减法求出复数12z z -,即可得出复数12z z -对应的点所在的象限.【详解】复数113z i =+,23z i =+,()()1213322z z i i i ∴-=+-+=-+, 因此,复数12z z -在复平面内对应的点在第二象限. 故选B. 【点睛】本题考查复数的几何意义,同时也考查了复数的减法运算,利用复数的四则运算法则将复数表示为一般形式是解题的关键,考查计算能力,属于基础题.2.设点M 、N 均在双曲线22:143x y C -=上运动,1F 、2F 是双曲线C 的左、右焦点,则122MF MF MN +-的最小值为( ) A .B .4C .D .以上都不对【解析】根据向量的运算,化简得1212222MF MF MN MO MN NO+-=-=,结合双曲线的性质,即可求解. 【详解】由题意,设O 为12,F F 的中点, 根据向量的运算,可得122222MF MFMN MO MN NO+-=-=,又由N 为双曲线22:143x y C -=上的动点,可得NO a ≥,所以122224MF MFMN NO a +-=≥=,即122MF MFMN+-的最小值为4.故选:B. 【点睛】本题主要考查了向量的运算,以及双曲线的标准方程及简单的几何性质的应用,其中解答中利用向量的运算,合理化简,结合双曲线的几何性质求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题. 3.已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C交于A ,B 两点.若222AF F B =││││,1AB BF =││││,则C 的方程为A .2212x y += B .22132x y += C .22143x y += D .22154x y +=【答案】B【解析】由已知可设2F B n =,则212,3AF n BF AB n ===,得12AF n =,在1AF B △中求得11cos 3F AB ∠=,再在12AF F △中,由余弦定理得n =,从而可求解.法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22aBF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得32n =. 2222423,3,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4,422cos 9n n AF F n n n BF F n⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩,又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得3n =.2222423,3,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑二、填空题4.椭圆22154x y +=的焦距等于________【答案】2【解析】根据椭圆方程,求出,a b ,即可求解. 【详解】设椭圆的焦距为2c ,椭圆方程为22154x y +=, 225,4,1a b c ∴==∴=.故答案为:2. 【点睛】本题考查椭圆标准方程及参数的几何意义,属于基础题.5.双曲线221169x y -=的两条渐近线的方程为________.【答案】34yx 【解析】令220169x y -=解得结果【详解】令220169x y -=解得两条渐近线的方程为34yx 【点睛】本题考查双曲线渐近线的方程,考查基本分析求解能力,属基础题.6.若线性方程组的增广矩阵是123c ⎛⎫⎪,其解为1x =⎧⎨,则12c c +=________【答案】6【解析】本题可先根据增广矩阵还原出相应的线性方程组,然后将解11x y =⎧⎨=⎩代入线性方程组即可得到1c 、2c 的值,最终可得出结果. 【详解】解:由题意,可知:此增广矩阵对应的线性方程组为:1223x y c y c +=⎧⎨=⎩, 将解11x y =⎧⎨=⎩代入上面方程组,可得:1251c c =⎧⎨=⎩. 126c c ∴+=.故答案为:6. 【点睛】本题主要考查线性方程组与增广矩阵的对应关系,以及根据线性方程组的解求参数.本题属基础题. 7.已知复数22iz i+=,则z 的虚部为________.【答案】-1【解析】先根据复数的除法中的分母实数化计算出z 的结果,然后根据z 的结果直接确定虚部. 【详解】 因为()22242122242i i i i z i i i i +⋅+-====-⋅-,所以z 虚部为1-.【点睛】(1)复数的除法运算,采用分母实数化的方法,根据“平方差公式”的形式完成分母实数化;(2)复数z a bi =+,则z 的实部为a ,虚部为b ,注意实、虚部都是数值.8.圆22240x y x y +-+=的圆心到直线3450x y +-=的距离等于________。
2019-2020学年上海市上海中学高一上学期期末数学试题解析

2019-2020学年上海市上海中学高一上学期期末数学试题一、单选题1)A BC D答案:C调区间,借助于自变量的大小,得到函数值的大小,从而得到结果解:项不正确;观察B、C、D三项很明显C项正确,故选:C.点评:该题考查的是有关根据偶函数在给定区间上的单调性,判断函数值的大小的问题,涉及到的知识点有偶函数图象的对称性,偶函数的定义,根据单调性比较函数值的大小,属于简单题目.21)A B C D答案:D首先设出()y g x =图象上任意一点的坐标为(,)x y ,求得其关于直线y x =的对称点为(,)y x ,根据图象变换,得到函数()f x 的图象上的点为(,1)x y +,之后应用点在函数图象上的条件,求得对应的函数解析式,得到结果. 解:设()y g x =图象上任意一点的坐标为(,)x y , 则其关于直线y x =的对称点为(,)y x ,再将点(,)y x 向左平移一个单位,得到(1,)y x +, 其关于直线y x =的对称点为(,1)x y +,该点在函数()f x 的图象上,所以有1()y f x +=, 所以有()1y f x =-,即()()1g x f x =-, 故选:D. 点评:该题考查的是有关函数解析式的求解问题,涉及到的知识点有点关于直线的对称点的求法,两个会反函数的函数图象关于直线y x =对称,属于简单题目. 3.设方程3|ln |xx -=的两个根1x 、2x ,则( )A .120x x <B .121=x xC .121x x >D .121x x <答案:D作出函数图象,根据图象和对数的运算性质即可求出答案. 解:作出函数图象如图所示:若方程3ln xx -=的两根为12,x x ,则1201x x <<<,12123ln ,3ln x x x x --==故选:D.点评:该题考查的是有关方程的根的大小的判断,涉及到的知识点有对数的运算法则,解决方程根的问题时,可以应用图象的交点来完成,属于简单题目.4()A B C D答案:B. 解:故选:B.点评:该题以分段函数的形式考查了函数的值域,函数解析式的求解,以及利用恒成立求参数取值范围的问题,属于较难题目,解决该题的关键是利用条件可分析函数的图象,利用数形结合比较好分析.二、填空题5_________.在保证对数式的真数大于0的前提下由对数的差等于商的对数去掉对数符号,求解分式方程得答案.解:点评:该题考查的是有关对数方程的求解问题,在解题的过程中,注意对数式有意义的条件,对数式的运算法则,属于基础题目.6________.根据指数函数的值域,结合根式有意义的条件,求得函数的值域,得到答案.解:点评:该题考查的是有关函数的值域的求解问题,属于基础题目.7先用待定系数法设出函数的解析式,再代入点的坐标,计算出参数的值即可得出正确选项.解:点评:该题考查的是有关应用待定系数法求幂函数的解析式的问题,属于基础题目.8;.解:.点评:本题考查了函数的定义域和值域,分类讨论是一种常用的方法,需要熟练掌握.9_________;.解:点评:本题考查了反函数的计算,忽略掉定义域是容易发生的错误.10_______.将0写成1. 解:点评:该题考查的是有关对数不等式的解法,在解题的过程中,注意结合函数有意义的条件,应用对数函数的单调性,属于简单题目.11________.答案:奇函数 2数,得到结果. 解:2的周期函数,故答案为:奇函数. 点评:该题考查的是有关函数奇偶性的判断问题,在解题的过程中,注意借助于函数的周期性来完成,属于简单题目. 12_______.结合复合函数的单调性法则,.解:递减,根据复合函数单调性法则,点评:该题考查的是有关函数单调区间的求解问题,涉及到的知识点有对勾函数的单调区间,复合函数单调性法则,属于简单题目.13__________..解:点评:该题考查的是有关根据函数的单调性确定参数的取值范围的问题,涉及到的知识点有指数型函数的单调性,对勾函数的单调区间,复合函数单调性法则,属于中档题目.14_________.根据式子的意义,只有一个正根,画出函数图象求得结果.解:可知所求m 的取值范围是:1(,1]4,故答案为:1(,1]4.点评:该题考查的是有关根据方程根的情况求参数的取值范围的问题,在解题的过程中,注意将问题正确转化,注意应用函数图象解决问题,属于简单题目. 15.已知函数23()4f x ax =+,()ag x x x =+,对任意的1[1,2]x ∈,存在2[1,2]x ∈,使得()()12f x g x ≥恒成立,则a 的取值范围为__________. 答案:5,42⎡⎤⎢⎥⎣⎦对任意的1[1,2]x ∈,存在2[1,2]x ∈,使得()()12f x g x ≥恒成立,等价于min max ()()f x g x ≥在区间[1,2]上恒成立,对a 的取值进行分类讨论,利用单调性求出min ()f x 和min ()g x ,列出关于a 的不等式组求得答案.解:当0a <时,23()4f x ax =+在区间[1,2]上单调递减,min 3()(2)44f x f a ==+,()ag x x x=+在区间[1,2]上单调递增,min ()1g x a =+, 所以3414a a +≥+,解得112a ≥,因为0a <,所以无解; 当0a ≥时,可知min 3()(1)4f x f a ==+, 当01a ≤≤时,()ag x x x=+在区间[1,2]上单调递增,其最小值为(1)1g a =+,点评:该题考查的是有关根据恒成立求参数的取值范围的问题,涉及到的知识点有根据题意将恒成立问题向最值转化,求含参的函数在给定区间上的最值,属于中档题目.16值范围为_______.会出现哪些情况,列出对应的式子求解即可.解:画出函数图象如图所示:可以看到(2)(3)1f f ==,要使2(46)(4)f a a f a +=,则有以下几种情况:①246141a a a ⎧+≤⎨≤⎩,解得31331344x ---+≤≤; ②22146 2.514 2.5464a a a a a a ⎧<+≤⎪<≤⎨⎪+=⎩,无解; ③222.54632.543464a a a a a a ⎧<+≤⎪<≤⎨⎪+=⎩,无解. ④2214631434645a a a a a a ⎧<+≤⎪<≤⎨⎪++=⎩,无解; ⑤246343a a a ⎧+≥⎨≥⎩,解得34a ≥,⑥246243a a a ⎧+=⎨≥⎩,无解; ⑦246342a a a ⎧+≥⎨=⎩,解得12a =;所以a 的取值范围为31331313[,][,)4424---+⎧⎫+∞⎨⎬⎩⎭U U , 故答案为:31331313[,][,)4424---+⎧⎫+∞⎨⎬⎩⎭U U . 点评:该题考查的是有关根据函数值相等,求参数的取值范围的问题,涉及到的知识点有含有绝对值的式子的化简,函数值相等的条件,属于中档题目.三、解答题17(1(2.答案:(1(2(1(2. 解:(1(2点评:该题考查的是有关根据函数在某一区间上的解析式,结合函数奇偶性的定义,求得函数的解析式,属于简单题目.18(1(2.答案:(1(2(1)(2. 解:(1(2点评:该题考查的是有关求方程的解或者方程在某个区间上有解求参数的取值范围的问题,在解题的过程中,注意换元思想的应用,以及二次函数在某个区间上的值域的求解方法,属于中档题目.19.某环线地铁按内、外线同时运行,内、外环线的长均为30千米(忽略内、外环线长度差异),新调整的方案要求内环线列车平均速度为20千米/小时,外环线列车平均速度为30千米/小时,现内、外环线共有18列车.(1(2)要使内、外环线乘客的最长候车时问之差距不超过1分钟,问内、外环线应各投入几列列车运行?(3)要使内、外环线乘客的最长候车时间之和最小,问内、外环线应各投入几列列车运行?答案:(1(2)内环线11列列车,外环线7列列车;(3)内环线10列列车,外环线8列列车..(1)根据题意,结合最长候车时间等于两列列车对应的时间差,列车式子得出结果,注意自变量的取值范围;(2)根据题意,列出对应的不等关系式,求解即可,在解的过程中,注意自变量的取值范围;(3)根据题意,列出式子,结合对勾函数的单调性,求得函数的变化趋势,最后求得.解:(1(2所以当内环线投入11列列车运行,外环线投入7列列车时,内外环线乘客的最长候车时间之差不超过1分钟; (3所以内环线10列列车,外环线8列列车时,内、外环线乘客的最长候车时间之和最小. 点评:该题考查的是有关函数的应用题,涉及到的知识点有建立函数模型,求解不等式,求函数的最小值,属于较难题目.20(1(2(3答案:(1)属于;(2(3)证明见解析(1(2结果;(3解:(1此方程恒成立,(2(3点评:该题考查的是有关函数的问题,涉及到的知识点有新定义,方程有解转化为函数有零点,分类讨论思想,属于难题.21(1点;(2(3.答案:(1(2)单调递增;(3(1(2)将函数解析式中的绝对值符号去掉,得到分段函数,利用导数,分类讨论求得函数的单调性;(3)化简函数解析式,将不等式转化,找出不等式恒成立的关键条件,得到结果. 解:(1(2,(3点评:该题考查的是有关函数的综合题,涉及到的知识点有绝对值的意义,求函数的零点,应用导数研究函数的单调性,根据恒成立求参数的取值范围,属于难题.。
2019-2020学年上海市虹口区高一期末数学试题及答案

2019-2020学年上海市虹口区高一期末数学试题及答案一、单选题1.已知13a <<,24b <<,现给出以下结论:(1)37a b <+<;(2)31a b -<-<;(3)212a b <⋅<;(4)1342a b <<,以上结论正确的个数是( )A .1个B .2个C .3个D .4个 【答案】D【解析】根据不等式的可加性,同向不等式且为正值的可乘性即可得到答案.【详解】因为13a <<,24b <<,所以37a b <+<,故(1)正确. 因为42b -<-<-,所以31a b -<-<,故(2)正确. 因为13a <<,24b <<,根据同向不等式且为正值的可乘性知:212a b <⋅<,故(3)正确. 因为11142b <<,13a <<,根据同向不等式且为正值的可乘性知:1342a b <<,故(4)正确. 故选:D【点睛】本题主要考查不等式的基本性质,属于简单题.2.已知a R ∈,则“1a <”是“11a >”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件【答案】B【解析】首先解不等式11a >,再根据充分条件和必要条件即可得到答案.【详解】 因为1111100(1)001a a a a a a a ->⇔->⇔>⇔-<⇔<<. 所以“1a <”是“11a>”的必要非充分条件. 故选:B【点睛】 本题主要考查充分条件和必要条件,同时考查了分式不等式的解法,属于简单题.3.已知函数32x y =-的值域是( )A .RB .()2,-+∞C .[)2,-+∞D .[)1,-+∞【答案】D【解析】首先令x t =,根据指数函数的图像得到:31t ≥,即1y ≥-.【详解】 令x t =,0t ≥,则32t y =-,因为31t ≥,所以1y ≥-.故选:D【点睛】本题主要考查指数函数的值域问题,同时考查了换元法求函数的值域,属于简单题.4.定义在R 上的函数()f x 的图象是连续不断的,此函数有两个不同的零点,这两个零点分别在区间()0,2和()4,6内,那么下列不等式中一定正确的是( )A .()()020f f ⋅<B .()()020f f ⋅>C .()()240f f ⋅>D .()()260f f ⋅>【答案】C【解析】首先根据题意得到函数()f x 在区间(2,4)上没有零点,即可得到(2)(4)0f f >.【详解】因为定义在R 上的函数()f x 的图象是连续不断的,此函数有两个不同的零点,这两个零点分别在区间()0,2和()4,6内,所以函数()f x 在区间(2,4)上没有零点,若(2)f 与(4)f 的函数值异号,根据零点存在性定理可得以函数()f x 在区间(2,4)上必有零点,所以(2)f 与(4)f 的函数值同号,即(2)(4)0f f >.故选:C【点睛】本题主要考查函数的零点存在定义和零点的区间,属于简单题.5.已知函数()f x 是定义在R 上的奇函数,现给出以下结论:(1)此函数一定有零点;(2)此函数可能没有零点;(3)此函数有奇数个零点;(4)此函数有偶数个零点.以上结论正确的个数是( )A .1个B .2个C .3个D .4个 【答案】B【解析】根据奇函数的定义及性质,对题目中的命题判断正误即可.【详解】因为()f x 是定义在R 上的奇函数,所以(0)=0f .故0是函数()f x 的零点,所以(1)正确,(2)错误. 根据奇函数的对称性知:函数()f x 有零点,则零点关于原点对称,再加上原点,共有奇数个零点,所以(3)正确,(4)错误.故选:B【点睛】本题主要考查函数的奇偶性,同时考查了方程与零点,属于中档题.二、填空题6.用列举法表示集合{}2230,x xx x Z --<∈=________. 【答案】{}0,1,2【解析】首先解不等式2230x x --<,再用列举法表示集合即可.【详解】2{|230,}{|13,}{0,1,2}x x x x Z x x x Z --<∈=-<<∈=.故答案为:{0,1,2}【点睛】本题主要考查集合的表示,同时考查了二次不等式的解法,属于简单题.7.命题“若2x >且3y >,则5x y +>”的否命题是__________命题.(填入“真”或“假”)【答案】假【解析】写出否命题,即可判断命题的真假.【详解】命题“若2x >且3y >,则5x y +>”的否命题:“若2x ≤或3y ≤,则5x y +≤”是假命题,例如1,9x y ==,满足2x ≤或3y ≤,但不能推出5x y +≤. 故答案为:假【点睛】此题考查根据已知命题写出否命题,并判断真假,涉及含有逻辑联结词的命题的否定.8.函数4y x =,[]1,12x ∈的值域为________. 【答案】1,43⎡⎤⎢⎥⎣⎦ 【解析】根据函数的单调性即可求出值域.【详解】 因为函数4y x=在区间[]1,12为减函数, 所以值域为1,43⎡⎤⎢⎥⎣⎦. 故答案为:1,43⎡⎤⎢⎥⎣⎦【点睛】本题主要考查反比例函数的单调性,属于简单题. 9.己知函数()2x f x =.则()()2f f =________.【答案】16【解析】首先计算(2)f ,再代入计算((2))f 即可.【详解】2(2)24f ==,4((2))(4)216f f ===.故答案为:16【点睛】本题主要考查函数值的求法,属于简单题.10.不等式|x ﹣1|<2的解集为 .【答案】(﹣1,3).【解析】试题分析:由不等式|x ﹣1|<2,可得﹣2<x ﹣1<2,解得﹣1<x <3.解:由不等式|x ﹣1|<2可得﹣2<x ﹣1<2,∴﹣1<x <3,故不等式|x ﹣1|<2的解集为(﹣1,3),故答案为(﹣1,3).【考点】绝对值不等式的解法.11.已知112112322α⎧⎫∈---⎨⎬⎩⎭,,,,,,,若幂函数()a f x x =为奇函数,且在()0+∞,上递减,则a =____. 【答案】-1【解析】由幂函数f (x )=x α为奇函数,且在(0,+∞)上递减,得到a 是奇数,且a <0,由此能求出a 的值.【详解】∵α∈{﹣2,﹣1,﹣1122,,1,2,3}, 幂函数f (x )=x α为奇函数,且在(0,+∞)上递减, ∴a 是奇数,且a <0,∴a=﹣1.故答案为﹣1.【点睛】本题考查实数值的求法,考查幂函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题. 12.已知()y f x =是定义在R 上的奇函数,当0x >时,()21x f x =-,则(2)f -=____.【答案】3-【解析】 由题意得,函数()y f x =为奇函数,所以()2(2)2(21)3f f -=-=--=-.13.已知2m >,且()110lg 100lgx m m =+则x 的值为________.【答案】lg 2【解析】首先计算1lg(100)lg lg1002m m +==,再解方程102x =即可.【详解】 因为1lg(100)lg lg1002m m +==,所以,102x =,即lg 2x =.故答案为:lg 2【点睛】本题主要考查对数的运算,同时考查了指数方程,熟练掌握对数的运算法则是解题的关键,属于简单题.14.已知0a >,0b >,且44a b +=,则ab 的最大值等于________. 【答案】1【解析】首先根据题意得到114a b =-,代入a b 得到21=(2)14a ab --+,再利用二次函数的性质即可得到最大值. 【详解】 因为44a b +=,所以114a b =-. 因为0a >,0b >,所以104a ->,即04a <<. 所以21=(1)(2)144a a a ab -=--+. 当2a =时,max ()=1a b .故答案为:1【点睛】 本题主要考查二次函数的最值,将a b转化为二次函数的形式为解题的关键,属于中档题.15.已知函数()(0,1)x f x a b a a =+>≠的定义域和值域都是[]1,0-,则a b += . 【答案】32-【解析】若1a >,则()f x 在[]1,0-上为增函数,所以11{10a b b -+=-+=,此方程组无解;若01a <<,则()f x 在[]1,0-上为减函数,所以10{11a b b -+=+=-,解得1{22a b ==-,所以32a b +=-. 【考点】指数函数的性质.16.记函数()f x x b =+,2,2x 的最大值为()g b ,则()g b =________.【答案】()2 02 0b b g b b b +≥⎧=⎨-<⎩ 【解析】首先将()f x 转化为分段函数,再对b 进行讨论,即可求出最大值()g b【详解】,(),x b x b f x x b x b x b+≥-⎧=+=⎨--<-⎩. 当0b =时,()f x x =,max ()2f x =,即()2g b =.当0b -<,即0b >时,max ()(2)2f x f b ==+,即()2g b b =+. 当0b ->,即0b <时,max ()(2)2f x f b =-=-,即()2g b b =-.综上:2? 0()2? 0b b g b b b +≥⎧=⎨-<⎩. 故答案为:2? 0()2?0b b g b b b +≥⎧=⎨-<⎩ 【点睛】本题主要考查含参绝对值函数的最值问题,同时考查了分类讨论的思想,属于中档题.17.已知()f x 是定义在R 上的偶函数,且在[)0,+∞上单调递增,则关于x 的不等式()()2110f x f x -+-<的解是________.【答案】()1,1-【解析】首先将不等式变形,根据()f x 是定义在R 上的偶函数,且在[)0,+∞上单调递增,设2()()g x f x x =+,得到()g x 在R 上为偶函数,且在[)0,+∞上单调递增,再解不等式即可.【详解】因为2()(1)10f x f x -+-<,所以2()(1)1f x x f +<+.因为()f x 是定义在R 上的偶函数,且在[)0,+∞上单调递增. 设2()()g x f x x =+,()g x 在R 上为偶函数,且在[)0,+∞上单调递增.所以2()(1)1f x x f +<+,即()()1g x g <. 所以1x <,解得11x -<<.故答案为:(1,1)-.【点睛】本题主要考查抽象函数的单调性和奇偶性,属于中档题. 18.函数()22f x x x =-,[]2,2x ∈-的最大值为________.【答案】8【解析】首先画出()f x 的图象,根据图象即可求出函数的最大值. 【详解】函数()f x 的图象如图所示:由图可知,max ()(2)44=8f x f =-=+. 故答案为:8 【点睛】本题主要考查利用函数的图象求最值,熟练画出函数图象为解题的关键,属于中档题.19.已知()42f x x x =+,则关于x 的不等式()()12f x f +<的解是________. 【答案】()3,1-【解析】首先根据函数()f x 的解析式,得到()f x 为偶函数,且在(0,)+∞为增函数,再利用偶函数的对称性解不等式即可. 【详解】因为42()f x x x =+,所以()f x 为偶函数,且在(0,)+∞为增函数. 所以(1)(2)f x f +<根据偶函数的对称性知:212x -<+<,解得:31x -<<. 故答案为:(3,1)- 【点睛】本题主要考查函数的奇偶性和单调性,熟练掌握奇偶函数的性质为解题的关键,属于中档题.三、解答题 20.解下列方程 (1)2223x x -+⋅=; (2)2lg lg 20x x --=【答案】(1)0x =或1x =(2)100x =或110x =【解析】(1)首先令2x t =,根据二次方程和指数方程即可解出方程的根.(2)根据二次方程和对数方程即可解出方程的根. 【详解】(1)令2xt =,0t >,得23t t+=. 整理得:2320t t -+=.解得:1t =或2t =. 即:21x =或22x =,0x =或1x =.(2)因为2lg lg 20x x --=,所以(lg 2)(lg 1)0x x -+=. 解得:lg 2x =或lg 1=-,100x =或110x =. 【点睛】本题主要考查了指数方程和对数方程的求解,同时考查了二次方程的求解,属于简单题.21.设a R ∈,函数()221x x af x +=+.(1)当1a =-时,判断()f x 的奇偶性,并给出证明; (2)当0a =时,证明此函数在(),-∞+∞上单调递增. 【答案】(1)奇函数;证明见解析(2)证明见解析 【解析】(1)首先求出函数()f x 的定义域为R ,再判断()f x 与()f x -的关系即可.(2)根据题意设任意12,x x R ∈,且12x x <,作差比较12()()f x f x -即可. 【详解】(1)当1a =-时,21()21x x f x ,定义域关于原点对称. 112112222()()11212121221xx x x x x x x x xf x f x ----====+--=-+++. 所以()f x 为奇函数. (2)当0a =时,2()21xx f x =+,设任意12,x x R ∈,且12x x <. 1212211212121212222(21)2(21)22()()2121(21)(21)(21)(21)x x x x x x x x x x x x x x f x f x +-+--=-==++++++. 因为12220xx -<,1210x +>,2210x +>,所以12())0(f x f x -<.即:12()()f x f x <.所以2()21xx f x =+在R 上为增函数. 【点睛】本题第一问考查函数奇偶性的判断,第二问考查了函数单调性的判断,属于中档题.22.某商场在促销期间规定:商场内所有商品按标价的80%出售,同时当顾客在该商场内消费满一定金额后,按如下方案获得相应金额的奖券:根据上述促销方法,顾客在该商场购物可以获得双重优惠.例如:购买标价为400元的商品,则消费金额为320元,然后还能获得对应的奖券金额为28元.于是,该顾客获得的优惠额为:4000.228108⨯+=元.设购买商品得到的优惠率=购买商品获得的优惠额商品的标价.试问:(1)购买一件标价为1000元的商品,顾客得到的优惠率是多少?(2)当商品的标价为[]100,600元时,试写出顾客得到的优惠率y关于标价x元之间的函数关系式;(3)当顾客购买标价不超过600元的商品时,该顾客是否可以得到超过30%的优惠率?试说明理由.【答案】(1)25.8%(2)[)[]0.2 100,360280.2360,600xyxx⎧∈⎪=⎨+∈⎪⎩(3)不能,详见解析【解析】(1)根据题意得到购买1000元商品,则消费800元,获得对应的奖券58元,再计算优惠率即可.(2)根据题意,分段讨论当标价为[100,360)元和标价为[360,600]元时的优惠率即可.(3)根据(2)得到当顾客在买标价为360元商品时,优惠率最大,再计算最大优惠率比较即可. 【详解】(1)购买1000元商品的优惠率10000.25810025.81000%%=⨯+=⨯.(2)当标价为[100,360)元时,则消费[80,288)元,不能获得优惠券.所以顾客得到的优惠率为:0.20.2xy x==. 当标价为[360,600]元时,则消费[288,480]元,获得28元优惠券.所以顾客得到的优惠率为:0.228280.2x y x x+==+. 综上[)[]0.2? 100,360280.2?360,600x y x x ⎧∈⎪=⎨+∈⎪⎩. (3)当顾客买标价不超过360元商品时,优惠率为20%. 当顾客买标价在[360,600]元商品时,优惠率为280.2y x=+,为减函数.所以当顾客在买标价为360元商品时,优惠率最大.max 280.227.8%30%360y =+≈<. 所以顾客不能得到超过30%的优惠率. 【点睛】本题主要考查函数的实际应用,弄清题意为解题的关键,属于中档题.23.已知函数()222f x x ax =-+,[]1,1x ∈-. (1)当1a =时,求()11f -; (2)当12a =-时,判断此函数有没有反函数,并说明理由; (3)当a 为何值时,此函数存在反函数?并求出此函数的反函数()1f x -.【答案】(1)1,(2)没有,详见解析,(3)1a ≥或1a ≤-;当1a ≥时,()1f x a -=,[]32,32x a a ∈-+,当1a ≤-时,()1f x a -=[]32,32x a a ∈+-.【解析】(1)当1a =时,由互为反函数的性质可得:1(1)f -等价于()1f x =在[1,1]x ∈-求解,再解方程即可.(2)当12a =-时,2()2f x x x =++,根据函数在区间[1,1]-的单调性即可判定.(3)首先根据函数()f x 存在反函数,得到1a ≥或1a ≤-,在分类讨论求反函数即可. 【详解】(1)当1a =时,2()22f x x x =-+. 求1(1)f -即等价于()1f x =在[1,1]x ∈-求解.2221x x -+=,解得:1x =.所以1(1)1f -=. (2)当12a =-时,2217()2()24f x x x x =++=++.[1,1]x ∈-时,显然函数不单调,所以在区间[1,1]-没有反函数.(3)若函数()f x 存在反函数,则函数()f x 在区间[1,1]-单调.222()22()2f x x ax x a a =-+=-+-,对称轴为x a =.所以当1a ≥或1a ≤-时,函数()f x 存在反函数.当1a ≥时,1)(f a x -=[]32,32x a a ∈-+.当1a ≤-时,()1f x a -=[]32,32x a a ∈+-.【点睛】本题主要考查反函数的求法,同时考查了学生的计算能力,属于中档题.24.已知函数()f x 的定义域是使得解析式有意义的x 集合,如果对于定义域内的任意实数x ,函数值均为正,则称此函数为“正函数”. (1)证明函数()()2lg 11f x x =++是“正函数”;(2)如果函数()11af x x x =+-+不是“正函数”,求正数a 的取值范围. (3)如果函数()()()222242122x a x a f x x a x a +--+=+--+是“正函数”,求正数a 的取值范围.【答案】(1)证明见解析,(2)(,1]-∞(3)(){}6,13- 【解析】(1)有题知:()1f x ≥,即证. (2)首先讨论当0a ≤时,显然()11af x x x =+-+不是“正函数”.当0a >时,从反面入手,假设()f x 是“正函数”,求出a 的范围,再取其补集即可.(3)根据题意得到:22(2)4(42)0(1)8(22)0a a a a ⎧---<⎨---<⎩或12242122a a a a --+==--+,解方程和不等式组即可. 【详解】(1)2()lg(1)1lg111f x x =++≥+=.函数值恒为正数,故函数2()lg(1)1f x x =++是“正函数”. (2)当0a ≤时,(0)10f a =-<, 显然()11af x x x =+-+不是“正函数”. 当0a >时 假设()11af x x x =+-+为“正函数”.则()f x 恒大于零.()1221af x x x =++-≥+. 所以20>,即1a >所以()11af x x x =+-+不是“正函数”时, 01a <≤.综上:1a ≤.(3)有题知:若函数()22(2)242(1)22x a x a f x x a x a +--+=+--+是“正函数”, 则22(2)4(42)0(1)8(22)0a a a a ⎧---<⎨---<⎩或12242122a a a a --+==--+. 解得:61a -<<或3a =. 【点睛】本题主要考查函数的新定义,同时考查了对所学知识的综合应用,属于难题.。
2019-2020学年上海市虹口区高一上学期期末数学试题(解析版)

2019-2020学年上海市虹口区高一上学期期末数学试题一、单选题1.已知13a <<,24b <<,现给出以下结论:(1)37a b <+<;(2)31a b -<-<;(3)212a b <⋅<;(4)1342a b <<,以上结论正确的个数是( ) A .1个B .2个C .3个D .4个 【答案】D【解析】根据不等式的可加性,同向不等式且为正值的可乘性即可得到答案.【详解】因为13a <<,24b <<,所以37a b <+<,故(1)正确.因为42b -<-<-,所以31a b -<-<,故(2)正确.因为13a <<,24b <<,根据同向不等式且为正值的可乘性知: 212a b <⋅<,故(3)正确. 因为11142b <<,13a <<,根据同向不等式且为正值的可乘性知: 1342a b <<,故(4)正确. 故选:D【点睛】本题主要考查不等式的基本性质,属于简单题.2.已知a R ∈,则“1a <”是“11a>”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分也非必要条件【答案】B【解析】首先解不等式11a >,再根据充分条件和必要条件即可得到答案. 【详解】 因为1111100(1)001a a a a a a a->⇔->⇔>⇔-<⇔<<. 所以“1a <”是“11a >”的必要非充分条件. 故选:B【点睛】本题主要考查充分条件和必要条件,同时考查了分式不等式的解法,属于简单题. 3.已知函数32x y =-的值域是( )A .RB .()2,-+∞C .[)2,-+∞D .[)1,-+∞【答案】D【解析】首先令x t =,根据指数函数的图像得到:31t ≥,即1y ≥-.【详解】 令x t =,0t ≥,则32t y =-, 因为31t ≥,所以1y ≥-.故选:D【点睛】本题主要考查指数函数的值域问题,同时考查了换元法求函数的值域,属于简单题. 4.定义在R 上的函数()f x 的图象是连续不断的,此函数有两个不同的零点,这两个零点分别在区间()0,2和()4,6内,那么下列不等式中一定正确的是( ) A .()()020f f ⋅< B .()()020f f ⋅> C .()()240f f ⋅>D .()()260f f ⋅>【答案】C【解析】首先根据题意得到函数()f x 在区间(2,4)上没有零点,即可得到(2)(4)0f f >.【详解】因为定义在R 上的函数()f x 的图象是连续不断的,此函数有两个不同的零点, 这两个零点分别在区间()0,2和()4,6内,所以函数()f x 在区间(2,4)上没有零点,若(2)f 与(4)f 的函数值异号,根据零点存在性定理可得以函数()f x 在区间(2,4)上必有零点,所以(2)f 与(4)f 的函数值同号,即(2)(4)0f f >.故选:C【点睛】本题主要考查函数的零点存在定义和零点的区间,属于简单题.5.已知函数()f x 是定义在R 上的奇函数,现给出以下结论:(1)此函数一定有零点;(2)此函数可能没有零点;(3)此函数有奇数个零点;(4)此函数有偶数个零点.以上结论正确的个数是( )A .1个B .2个C .3个D .4个 【答案】B【解析】根据奇函数的定义及性质,对题目中的命题判断正误即可.【详解】因为()f x 是定义在R 上的奇函数,所以(0)=0f .故0是函数()f x 的零点,所以(1)正确,(2)错误.根据奇函数的对称性知:函数()f x 有零点,则零点关于原点对称,再加上原点,共有奇数个零点,所以(3)正确,(4)错误.故选:B【点睛】本题主要考查函数的奇偶性,同时考查了方程与零点,属于中档题.二、填空题6.用列举法表示集合{}2230,x x x x Z --<∈=________.【答案】{}0,1,2【解析】首先解不等式2230x x --<,再用列举法表示集合即可.【详解】 2{|230,}{|13,}{0,1,2}x x x x Z x x x Z --<∈=-<<∈=.故答案为:{0,1,2}【点睛】本题主要考查集合的表示,同时考查了二次不等式的解法,属于简单题.7.命题“若2x >且3y >,则5x y +>”的否命题是__________命题.(填入“真”或“假”)【答案】假【解析】写出否命题,即可判断命题的真假.【详解】命题“若2x >且3y >,则5x y +>”的否命题:“若2x ≤或3y ≤,则5x y +≤”是假命题,例如1,9x y ==,满足2x ≤或3y ≤,但不能推出5x y +≤.故答案为:假【点睛】此题考查根据已知命题写出否命题,并判断真假,涉及含有逻辑联结词的命题的否定. 8.函数4y x=,[]1,12x ∈的值域为________. 【答案】1,43⎡⎤⎢⎥⎣⎦【解析】根据函数的单调性即可求出值域.【详解】 因为函数4y x=在区间[]1,12为减函数, 所以值域为1,43⎡⎤⎢⎥⎣⎦. 故答案为:1,43⎡⎤⎢⎥⎣⎦ 【点睛】本题主要考查反比例函数的单调性,属于简单题.9.己知函数()2x f x =.则()()2f f =________.【答案】16【解析】首先计算(2)f ,再代入计算((2))f 即可.【详解】2(2)24f ==,4((2))(4)216f f ===.故答案为:16【点睛】本题主要考查函数值的求法,属于简单题.10.不等式|x ﹣1|<2的解集为 .【答案】(﹣1,3).【解析】试题分析:由不等式|x ﹣1|<2,可得﹣2<x ﹣1<2,解得﹣1<x <3. 解:由不等式|x ﹣1|<2可得﹣2<x ﹣1<2,∴﹣1<x <3,故不等式|x ﹣1|<2的解集为(﹣1,3),故答案为(﹣1,3).【考点】绝对值不等式的解法.11.已知112112322α⎧⎫∈---⎨⎬⎩⎭,,,,,,,若幂函数()a f x x =为奇函数,且在()0+∞,上递减,则a =____.【答案】-1【解析】由幂函数f (x )=x α为奇函数,且在(0,+∞)上递减,得到a 是奇数,且a <0,由此能求出a 的值.【详解】∵α∈{﹣2,﹣1,﹣1122,,1,2,3},幂函数f (x )=x α为奇函数,且在(0,+∞)上递减,∴a 是奇数,且a <0,∴a=﹣1.故答案为﹣1.【点睛】本题考查实数值的求法,考查幂函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.12.已知()y f x =是定义在R 上的奇函数,当0x >时,()21x f x =-,则(2)f -=____.【答案】3-【解析】 由题意得,函数()y f x =为奇函数,所以()2(2)2(21)3f f -=-=--=-. 13.已知2m >,且()110lg 100lg x m m=+则x 的值为________. 【答案】lg 2【解析】首先计算1lg(100)lg lg1002m m+==,再解方程102x =即可.【详解】 因为1lg(100)lglg1002m m +==, 所以,102x =,即lg 2x =.故答案为:lg 2【点睛】本题主要考查对数的运算,同时考查了指数方程,熟练掌握对数的运算法则是解题的关键,属于简单题.14.已知0a >,0b >,且44a b +=,则a b 的最大值等于________. 【答案】1【解析】首先根据题意得到114a b =-,代入a b 得到21=(2)14a a b --+,再利用二次函数的性质即可得到最大值.【详解】 因为44a b +=,所以114a b =-. 因为0a >,0b >,所以104a ->,即04a <<. 所以21=(1)(2)144a a a ab -=--+. 当2a =时,max ()=1a b . 故答案为:1【点睛】本题主要考查二次函数的最值,将a b转化为二次函数的形式为解题的关键,属于中档题. 15.已知函数()(0,1)x f x a b a a =+>≠的定义域和值域都是[]1,0-,则a b += . 【答案】32- 【解析】若1a >,则()f x 在[]1,0-上为增函数,所以11{10a b b -+=-+=,此方程组无解;若01a <<,则()f x 在[]1,0-上为减函数,所以10{11a b b -+=+=-,解得1{22a b ==-,所以32a b +=-. 【考点】指数函数的性质.16.记函数()f x x b =+,[]2,2x Î-的最大值为()g b ,则()g b =________.【答案】()2 02 0b b g b b b +≥⎧=⎨-<⎩【解析】首先将()f x 转化为分段函数,再对b 进行讨论,即可求出最大值()g b【详解】,(),x b x b f x x b x b x b +≥-⎧=+=⎨--<-⎩. 当0b =时,()f x x =,max ()2f x =,即()2g b =.当0b -<,即0b >时,max ()(2)2f x f b ==+,即()2g b b =+.当0b ->,即0b <时,max ()(2)2f x f b =-=-,即()2g b b =-.综上:2? 0()2? 0b b g b b b +≥⎧=⎨-<⎩. 故答案为:2? 0()2? 0b b g b b b +≥⎧=⎨-<⎩ 【点睛】本题主要考查含参绝对值函数的最值问题,同时考查了分类讨论的思想,属于中档题. 17.已知()f x 是定义在R 上的偶函数,且在[)0,+∞上单调递增,则关于x 的不等式()()2110f x f x -+-<的解是________.【答案】()1,1-【解析】首先将不等式变形,根据()f x 是定义在R 上的偶函数,且在[)0,+∞上单调递增,设2()()g x f x x =+,得到()g x 在R 上为偶函数,且在[)0,+∞上单调递增,再解不等式即可.【详解】因为2()(1)10f x f x -+-<,所以2()(1)1f x x f +<+.因为()f x 是定义在R 上的偶函数,且在[)0,+∞上单调递增.设2()()g x f x x =+,()g x 在R 上为偶函数,且在[)0,+∞上单调递增. 所以2()(1)1f x x f +<+,即()()1g x g <. 所以1x <,解得11x -<<.故答案为:(1,1)-.【点睛】本题主要考查抽象函数的单调性和奇偶性,属于中档题.18.函数()22f x x x =-,[]2,2x ∈-的最大值为________. 【答案】8【解析】首先画出()f x 的图象,根据图象即可求出函数的最大值.【详解】函数()f x 的图象如图所示:由图可知,max ()(2)44=8f x f =-=+.故答案为:8【点睛】本题主要考查利用函数的图象求最值,熟练画出函数图象为解题的关键,属于中档题. 19.已知()42f x x x =+,则关于x 的不等式()()12f x f +<的解是________. 【答案】()3,1-【解析】首先根据函数()f x 的解析式,得到()f x 为偶函数,且在(0,)+∞为增函数,再利用偶函数的对称性解不等式即可.【详解】因为42()f x x x =+,所以()f x 为偶函数,且在(0,)+∞为增函数.所以(1)(2)f x f +<根据偶函数的对称性知:212x -<+<,解得:31x -<<.故答案为:(3,1)-【点睛】本题主要考查函数的奇偶性和单调性,熟练掌握奇偶函数的性质为解题的关键,属于中档题.三、解答题20.解下列方程(1)2223x x -+⋅=;(2)2lg lg 20x x --=【答案】(1)0x =或1x =(2)100x =或110x = 【解析】(1)首先令2x t =,根据二次方程和指数方程即可解出方程的根.(2)根据二次方程和对数方程即可解出方程的根.【详解】(1)令2x t =,0t >,得23t t+=. 整理得:2320t t -+=.解得:1t =或2t =.即:21x =或22x =,0x =或1x =.(2)因为2lg lg 20x x --=,所以(lg 2)(lg 1)0x x -+=.解得:lg 2x =或lg 1=-,100x =或110x =. 【点睛】 本题主要考查了指数方程和对数方程的求解,同时考查了二次方程的求解,属于简单题.21.设a R ∈,函数()221x x a f x +=+. (1)当1a =-时,判断()f x 的奇偶性,并给出证明;(2)当0a =时,证明此函数在(),-∞+∞上单调递增.【答案】(1)奇函数;证明见解析(2)证明见解析【解析】(1)首先求出函数()f x 的定义域为R ,再判断()f x 与()f x -的关系即可. (2)根据题意设任意12,x x R ∈,且12x x <,作差比较12()()f x f x -即可.【详解】 (1)当1a =-时,21()21x x f x -=+,定义域关于原点对称. 112112222()()11212121221xx x x x x x x x xf x f x ----====+--=-+++. 所以()f x 为奇函数.(2)当0a =时,2()21xx f x =+,设任意12,x x R ∈,且12x x <. 1212211212121212222(21)2(21)22()()2121(21)(21)(21)(21)x x x x x x x x x x x x x x f x f x +-+--=-==++++++. 因为12220x x -<,1210x +>,2210x +>,所以12())0(f x f x -<.即:12()()f x f x <. 所以2()21xx f x =+在R 上为增函数. 【点睛】本题第一问考查函数奇偶性的判断,第二问考查了函数单调性的判断,属于中档题. 22.某商场在促销期间规定:商场内所有商品按标价的80%出售,同时当顾客在该商场内消费满一定金额后,按如下方案获得相应金额的奖券:根据上述促销方法,顾客在该商场购物可以获得双重优惠.例如:购买标价为400元的商品,则消费金额为320元,然后还能获得对应的奖券金额为28元.于是,该顾客获得的优惠额为:4000.228108⨯+=元.设购买商品得到的优惠率=购买商品获得的优惠额商品的标价.试问:(1)购买一件标价为1000元的商品,顾客得到的优惠率是多少?(2)当商品的标价为[]100,600元时,试写出顾客得到的优惠率y关于标价x元之间的函数关系式;(3)当顾客购买标价不超过600元的商品时,该顾客是否可以得到超过30%的优惠率?试说明理由.【答案】(1)25.8%(2)[)[]0.2 100,360280.2360,600xyxx⎧∈⎪=⎨+∈⎪⎩(3)不能,详见解析【解析】(1)根据题意得到购买1000元商品,则消费800元,获得对应的奖券58元,再计算优惠率即可.(2)根据题意,分段讨论当标价为[100,360)元和标价为[360,600]元时的优惠率即可. (3)根据(2)得到当顾客在买标价为360元商品时,优惠率最大,再计算最大优惠率比较即可.【详解】(1)购买1000元商品的优惠率10000.25810025.81000%%=⨯+=⨯.(2)当标价为[100,360)元时,则消费[80,288)元,不能获得优惠券.所以顾客得到的优惠率为:0.20.2xyx==.当标价为[360,600]元时,则消费[288,480]元,获得28元优惠券.所以顾客得到的优惠率为:0.228280.2xyx x+==+.综上[)[]0.2?100,360280.2?360,600xyxx⎧∈⎪=⎨+∈⎪⎩.(3)当顾客买标价不超过360元商品时,优惠率为20%.当顾客买标价在[360,600]元商品时,优惠率为280.2yx=+,为减函数.所以当顾客在买标价为360元商品时,优惠率最大.max280.227.8%30%360y=+≈<.所以顾客不能得到超过30%的优惠率. 【点睛】本题主要考查函数的实际应用,弄清题意为解题的关键,属于中档题.23.已知函数()222f x x ax =-+,[]1,1x ∈-. (1)当1a =时,求()11f-; (2)当12a =-时,判断此函数有没有反函数,并说明理由; (3)当a 为何值时,此函数存在反函数?并求出此函数的反函数()1f x -.【答案】(1)1,(2)没有,详见解析,(3)1a ≥或1a ≤-;当1a ≥时,()1f x a -=[]32,32x a a ∈-+,当1a ≤-时,()1f x a -=[]32,32x a a ∈+-.【解析】(1)当1a =时,由互为反函数的性质可得:1(1)f-等价于()1f x =在[1,1]x ∈-求解,再解方程即可.(2)当12a =-时,2()2f x x x =++,根据函数在区间[1,1]-的单调性即可判定. (3)首先根据函数()f x 存在反函数,得到1a ≥或1a ≤-,在分类讨论求反函数即可.【详解】(1)当1a =时,2()22f x x x =-+.求1(1)f -即等价于()1f x =在[1,1]x ∈-求解.2221x x -+=,解得:1x =.所以1(1)1f -=.(2)当12a =-时,2217()2()24f x x x x =++=++. [1,1]x ∈-时,显然函数不单调,所以在区间[1,1]-没有反函数.(3)若函数()f x 存在反函数,则函数()f x 在区间[1,1]-单调.222()22()2f x x ax x a a =-+=-+-,对称轴为x a =.所以当1a ≥或1a ≤-时,函数()f x 存在反函数.当1a ≥时,1)(f a x -=,[]32,32x a a ∈-+.当1a ≤-时,()1f x a -=[]32,32x a a ∈+-.【点睛】本题主要考查反函数的求法,同时考查了学生的计算能力,属于中档题.24.已知函数()f x 的定义域是使得解析式有意义的x 集合,如果对于定义域内的任意实数x ,函数值均为正,则称此函数为“正函数”.(1)证明函数()()2lg 11f x x =++是“正函数”; (2)如果函数()11a f x x x =+-+不是“正函数”,求正数a 的取值范围. (3)如果函数()()()222242122x a x a f x x a x a +--+=+--+是“正函数”,求正数a 的取值范围. 【答案】(1)证明见解析,(2)(,1]-∞(3)(){}6,13-U【解析】(1)有题知:()1f x ≥,即证.(2)首先讨论当0a ≤时,显然()11a f x x x =+-+不是“正函数”. 当0a >时,从反面入手,假设()f x 是“正函数”,求出a 的范围,再取其补集即可.(3)根据题意得到:22(2)4(42)0(1)8(22)0a a a a ⎧---<⎨---<⎩或12242122a a a a --+==--+,解方程和不等式组即可.【详解】(1)2()lg(1)1lg111f x x =++≥+=.函数值恒为正数,故函数2()lg(1)1f x x =++是“正函数”.(2)当0a ≤时,(0)10f a =-<, 显然()11a f x x x =+-+不是“正函数”. 当0a >时 假设()11a f x x x =+-+为“正函数”.则()f x 恒大于零.()1221a f x x x =++-≥+.所以20>,即1a > 所以()11a f x x x =+-+不是“正函数”时, 01a <≤.综上:1a ≤.(3)有题知:若函数()22(2)242(1)22x a x a f x x a x a +--+=+--+是“正函数”, 则22(2)4(42)0(1)8(22)0a a a a ⎧---<⎨---<⎩或12242122a a a a --+==--+. 解得:61a -<<或3a =.【点睛】本题主要考查函数的新定义,同时考查了对所学知识的综合应用,属于难题.。
2019-2020学年上海市高一(上)期末数学试卷 (2)

2019-2020 学年上海市高一(上)期末数学试卷题号 得分一 二 三 总分第 I 卷(选择题)一、选择题(本大题共 4 小题,共 20.0 分) 1. 下列选项中,表示的是同一函数的是( )A. B. D. ( ) = , ( ) = − 1)2( ) = 2, ( ) = ( 2 √2≥ 0C. = {, = | |( ) = √, ( ) = √ ( ) < 0√2. 设非零实数 ,则“ ≥ 2”是“ ≥ 3”成立的( )2A. C.B. D. 充分不必要条件 充要条件必要不充分条件 既不充分也不必要条件3. 函数的图象可能是( )B.D.C. 4. 若函数 的定义域是[−1,4],则 = − 1)的定义域是( )B. C. D.[−3,7]A. 5]2[−1,4] [−5,5][0, 第 II 卷(非选择题)二、填空题(本大题共 12 小题,共 36.0 分) 5. 函数= √的定义域是________.6. 集合 = {1,2,3}, = ∈ ,则用列举法表示 为________. 2B 7. 若 , ∈,且= 0,则的最小值为___________.x −8. 已知函数 =__________. = 2lg(的图象经过点(2,2 2),则 = + > 0且 ≠ 1)的图象恒过定点 2),则 +9. 若+),则log的值为__________√210. 若幂函数=________________.√11. 已知集合 = |围是__________. 1 = 0, ∈ ,若集合 是有限集,则实数 的取值范2A a 12. 函数=,< 2) 的反函数是______ .2 13. 若奇函数______ . 在(∞, 0)内是减函数,且= 0,则不等式 ⋅> 0的解集为√ √ ≥ 0< 014. 设函数 = {,若 = 2,则实数 =______. ++ > 0,若函数 = ≤ 0 15. 已知函数= { + 有且只有一个零点,则实2 2 +数 的取值范围是________. a 16. 若曲线 = |21|与直线 = 有两个公共点,则 的取值范围是____.b 三、解答题(本大题共 5 小题,共 38.0 分) 17. 已知集合 =1 ⩽ 2⩽ 32},集合 = < 2 或 > 2}.2(1)求 ∩ ; (2)若 = { | ≤1},且 ⊆ ,求实数 的取值范围.a 1+ 1, ≤ 0;(2)若 > 0,解关于 的不等式18. 已知 =+ 2(1)当 = 2时,解不等式≥ 0.x19.某厂生产某种产品的年固定成本为250万元,每生产万件,需另投入的成本为x单位:万元),当年产量小于80万件时,=1+;当年产量不小于231000−1450.假设每万件该产品的售价为50万元,且该厂80万件时,=+当年生产的该产品能全部销售完.(1)写出年利润万元)关于年产量万件)的函数关系式;(2)年产量为多少万件时,该厂在该产品的生产中所获利润最大?最大利润是多少?20.已知函数=是定义在上的奇函数,当>0时,=2−,其中∈R(1)求函数=(2)若函数=(3)当=0时,若的解析式;在区间(0,+∞)不单调,求出实数的取值范围;a∈(−1,1),不等式−+−2>0成立,求实2数的取值范围.k21.若函数=log−有零点,求实数a的取值范围.32答案和解析1.【答案】D【解析】【分析】本题主要考查同一函数的判断,结合条件分别判断两个函数的定义域和对应法则是否相同是解决本题的关键,属于基础题.分别判断两个函数的定义域和对应法则是否相同即可.【解答】解:的定义域是R,的定义域为[0,+∞),两个函数的定义域不相同,不是同一函数;B.两个函数的对应法则不相同,不是同一函数;+1≥0−1>0≥−1 >1C.由{,得{,即>1,由⩾0得>1或≤−1,两个函数的定义域不相同,不是同一函数;D.由已知有故选D.=,两个函数的定义域和对应法则相同,是同一函数.2.【答案】B【解析】只有当同号时,“2+2≥”才是“+≥3”成立的充要条件.而由+≥3可知同号,故+≥2.23.【答案】C【解析】【分析】本题考查函数的性质与函数图象的识别,属于中档题.根据函数值的符号即可选择出正确选项.【解答】解:当>0时,+1>1,+1|>0,故>0,即可排除A,B两项;当−2<<−1时,>0,即可排除D选项.4.【答案】A【解析】∵函数的定义域是[−1,4],∴函数=−1)的定义域满足−1≤−1≤4,∴0≤≤5,2∴=−1)的定义域是[0,5].25.【答案】(−∞,1)∪(1,4]【解析】【分析】本题主要考查定义域问题,分母和偶次下的取值问题.【解答】4−≥0解:由题意得{,−1≠0解得≤4且≠1.故答案为(−∞,1)∪(1,4].6.【答案】{3,6,11}【解析】【分析】本题考查了集合内的元素的特征,要满足:确定性,无序性,互异性,属于基础题.集合内的元素要满足:确定性,无序性,互异性.【解答】解:={1,2,3},=2+∈.∴={3,6,11}故答案为{3,6,11}.7.【答案】18【解析】【分析】本题考查利用基本不等式求最值,注意等号成立的条件,属于中档题.由题意,可得2+8=1,利用基本不等式即可求出+的最小值.∵ , ∈ ,且 = 0,− ∴ =,8= 1, = (∴ 2 ∴) · (28) =10 ≥ 2√ · 10 = 18,= 当且仅当 所以,即 = = 12时等号成立,的最小值为 18,故答案为 18. 8.【答案】3【解析】 【分析】本题考查指数函数的性质,关键是掌握该种题型的求解方法,是基础题. 由题知 恒过定点(2,1),∴= 2, = 1,= 3.【解答】解:由指数函数 = 的图象过定点(0,1),所以,函数 即 = 2,1= > 0且 ≠ 1)的图象恒过定点(2,1 = 3.,= 2,故故答案为:3. 9.【答案】4【解析】 【分析】 由= 2lg( −),先求出 的值,然后再求的值.本题考查对数的运算性质,解题时要认真审题,仔细解答,注意公式的灵活运用. 【解答】 解:∵ = 2lg( − ),∴ = ( − )2, > 0, > 0, − > 0,∴ ( ) − 5( ) 4 = 0, 解得 = 1(舍去)或 = 4,∴ l og= log 4 = 4 ∴−= 0,2 2 2 .√2√2故答案为4.10.【答案】27【解析】【分析】本题考查了求函数的解析式与计算函数值的应用问题,是基础题目.用待定系数法求出幂函数=的解析式,再计算的值.【解答】解:设幂函数==,∈,且图象过点(2,22),√∴2=2√2,3解得=,23 2;∴∴=3.=9=272故答案为27.11.【答案】≥−1【解析】当=0时,=−1,满足;当≠0时,由=4+得,≥−1.综上,实数的取值范围是≥−1.12.【答案】=−√>4)【解析】【分析】本题考查反函数的定义的应用,考查计算能力.直接利用反函数的定义求解即可.【解答】解:函数=2,<−2),则>4.可得=−,√所以函数的反函数为:=−√>4).故答案为:=−√>4).13.【答案】(−2,0) ∪ (0,2)【解析】解:奇函数 在(−∞, 0)内是减函数,则 且在(0, +∞)内是减函数. == 0,> 0> 0 =< 0< 0 =不等式 ⋅ > 0 > 0等价为 或 ,< 0,即有或 < 2 > −2 即有0 < < 2或−2 < < 0. 则解集为(−2,0) ∪ (0,2). 故答案为:(−2,0) ∪ (0,2) 奇函数 在(−∞, 0)内是减函数,则在(0, +∞)内是减函数.且 == 0,> 0< 0不等式 ⋅> 0等价为 或 ,运用单调性去掉 ,f> 0 =< 0 =解出它们,再求并集即可.本题考查函数的奇偶性和单调性的运用:解不等式,注意讨论 的范围,属于中档题.x 14.【答案】±1【解析】解:由分段函数可知 ∴由= 2得= 2 − 1 = 1.若 < 0,则√ = 1,解得 = −1.= 1,+若 ≥ 0,则√ = 1,解得 = 1, ∴ = ±1, 故答案为:±1.根据分段函数的表达式,解方程即可. 本题主要考查分段函数的应用,注意 自变量的取值范围.【解析】【分析】本题考查了函数的性质,图象的运用,利用函数的交点问题解决函数零点问题,属于中档题.化简构造得出= +>0与=≤02有且只有一个交点,利用函数的图象的交点求解即可.2+【解答】解+>0,若=≤0:∵函数=2+有且只有一个零点,2++>0与=≤0∴=2有且只有一个交点,2+根据图形得出:>1,∴<−1故答案为<−1.16.【答案】(0,1)【解析】【分析】画出图像可得解.【解答】解:曲线=−1|与直线=如图所示.由图像可得,的取值范围是(0,1).b故答案为(0,1).17.【答案】解:(1)∵=∴∩=(2,5];−1≤≤5},=<−2或>2},(2)∵⊆,且=≤−1},∴−1≥5,解得≥6,∴实数的取值范围为[6,+∞).a【解析】本题考查了描述法的定义,交集的定义及运算,子集的定义,考查了计算能力,属于基础题.(1)可以求出=−1≤≤5},然后进行交集的运算即可;(2)根据⊆即可得出−1≥5,解出的范围即可.a18.【答案】解:12= 2时,不等式化为− − 2) ≤ 0,∴ 1 ≤ ≤ 2,21 2≤≤ 2};∴不等式的解集为 (2)由题意得 =−− ),1 11};当0 << 1时, < ,不等式解集为≤ 或 ≥ 1 当 = 1时, = ,不等式解集为 ; R 1 1 }.≥ 或 ≤当 > 1时, > ,不等式解集为【解析】本题考查不等式的解法,考查分类讨论的数学思想,属于中档题.= 2时,不等式化为− 1− 2) ≤ 0,即可解不等式≤ 0,2(2)若 > 0,分类讨论解关于 的不等式≥ 0.x 19.【答案】【解答】解:(1)①当0 < < 80时,根据年利润=销售收入−成本, ∴=− 1−− 250 = − 1+2− 250;2 33 ②当 ≥ 80时,根据年利润=销售收入−成本, ∴=−− 10000 + 1450 − 250 = 1200 −+ 10000).− 1 + − 250(0 < < 80)2 综合①②可得,= { 3 ; 1200 − + 10000≥ 80) − 250(0 < < 80) − 1 + 2 (2)由(1)可知,= { 3 , 1200 − + 10000≥ 80)①当0 < < 80时,= − 2 +1− 250 = − 13− 60)2 + 950,3∴当 = 60时, ②当 ≥ 80时,取得最大值 = 950万元; = 1200 −+ 10000) ≤ 1200 −⋅ 10000 = 1200 − 200 = 1000, = 1000万元.当且仅当 = 10000,即 = 100时, 综合①②,由于950 < 1000,取得最大值∴当产量为 100 万件时,该厂在这一商品中所获利润最大,最大利润为1000 万元.【解析】【试题解析】本题主要考查函数模型的选择与应用,属于一般题目. (1)分两种情况进行研究,当0 < < 80时,投入成本为= 13+万元),根据 2 年利润=销售收入−成本,列出函数关系式,当 ≥ 80时,投入成本为 =+1450,根据年利润=销售收入−成本,列出函数关系式,最后写成分段函数的形式,从而得到答案;(2)根据年利润的解析式,分段研究函数的最值,当0 << 80时,利用二次函数求最值,当 ≥ 80时,利用基本不等式求最值,最后比较两个最值,即可得到答案.20.【答案】解:(1)由 是定义在 上的奇函数,所以R= 0,又 > 0时, =2 −,所以 < 0时, > 0, 所以==2 − ,− ≥ 02 所以函数的解析式为 = ; −< 02 (2)当 > 0时,=−,2 ①若 ≤ 0,由 = ⩽ 0知,在(0, +∞)上递增,不合题意;2> 0, = ∈ (0, +∞),2所以 在(0, +∞)上先减再增,符合函数在(0, +∞)上不单调,综上,实数 的取值范围为 > 0; a 2,≥ 0(3)当 = 0时, =,2, < 0可得函数 是定义域 上的单调递增,R又 是定义域 上的奇函数,R由 ∈ (−1,1), ∈ (−1,1),∈ (−1,1),2 − 2− + 2 − −> 0成立, 2)成立,可得 ∴> −>−2 2⇒ < −=− 3) − 92,2 8 16 ∵ ∈ (−1,1),∴ (−) ∈ [− 9 , 7),2 16【解析】本题主要考查了函数的解析式、不等式存在性问题,涉及函数的奇偶性、单调 性,属于中档题. (1)由函数的奇偶性先求导求得 < 0的解析式,总结可得(2)结合二次函数的单调性,分类讨论即可求得 的取值范围;= 0,在由 < 0转化为> 0,根据奇函数=在 上的解析式;R a = 0时,结合函数的单调性、奇偶性得到 不等式存在性问题即可求解. 21.【答案】解:因为 ∈ (−1,1), < − ,进而根据2 2 −有零点,= log 3所以log 3 2 −= 0有解,所以2 −= 1有解.当 = 0时, = −1; 当 ≠ 0时,若2 −− 1 = 0有解,1 则 = 1 +≥ 0,解得 ≥ − 且 ≠ 0.41 综上,实数 的取值范围是[ − ,+∞).a 4【解析】函数 = log 32 − 有零点,即 2 −= 1有解,讨论 = 0和 ≠ 0两种情况求解即可.本题主要考查函数模型的选择与应用,属于一般题目. (1)分两种情况进行研究,当0 < < 80时,投入成本为= 13+万元),根据 2 年利润=销售收入−成本,列出函数关系式,当 ≥ 80时,投入成本为 =+10000 −1450,根据年利润=销售收入−成本,列出函数关系式,最后写成分段函数的形式,从而得到答案;(2)根据年利润的解析式,分段研究函数的最值,当0 << 80时,利用二次函数求最值,当 ≥ 80时,利用基本不等式求最值,最后比较两个最值,即可得到答案.20.【答案】解:(1)由 是定义在 上的奇函数,所以R= 0,又 > 0时, =2 −,所以 < 0时, > 0, 所以==2 − ,− ≥ 02 所以函数的解析式为 = ; −< 02 (2)当 > 0时,=−,2 ①若 ≤ 0,由 = ⩽ 0知,在(0, +∞)上递增,不合题意;2> 0, = ∈ (0, +∞),2所以 在(0, +∞)上先减再增,符合函数在(0, +∞)上不单调,综上,实数 的取值范围为 > 0; a 2,≥ 0(3)当 = 0时, =,2, < 0可得函数 是定义域 上的单调递增,R又 是定义域 上的奇函数,R由 ∈ (−1,1), ∈ (−1,1),∈ (−1,1),2 − 2− + 2 − −> 0成立, 2)成立,可得 ∴> −>−2 2⇒ < −=− 3) − 92,2 8 16 ∵ ∈ (−1,1),∴ (−) ∈ [− 9 , 7),2 16【解析】本题主要考查了函数的解析式、不等式存在性问题,涉及函数的奇偶性、单调 性,属于中档题. (1)由函数的奇偶性先求导求得 < 0的解析式,总结可得(2)结合二次函数的单调性,分类讨论即可求得 的取值范围;= 0,在由 < 0转化为> 0,根据奇函数=在 上的解析式;R a = 0时,结合函数的单调性、奇偶性得到 不等式存在性问题即可求解. 21.【答案】解:因为 ∈ (−1,1), < − ,进而根据2 2 −有零点,= log 3所以log 3 2 −= 0有解,所以2 −= 1有解.当 = 0时, = −1; 当 ≠ 0时,若2 −− 1 = 0有解,1 则 = 1 +≥ 0,解得 ≥ − 且 ≠ 0.41 综上,实数 的取值范围是[ − ,+∞).a 4【解析】函数 = log 32 − 有零点,即 2 −= 1有解,讨论 = 0和 ≠ 0两种情况求解即可.。
虹口区高一上期末详解(2020.1)

虹口区高一上期末数学试卷2020.01一、填空题1.用列举法表示集合2{|230,}x x x x --<∈=Z .2.命题“若2x >且3y >,则5x y +>”的逆否命题是 命题(填“真”或“假”)3.函数4,[1,12]y x x=∈的值域为 . 4.已知函数()2x f x =,则((2))f f = .5.不等式|1|2x -<的解为 .6.已知112,1,,,1,2,322α⎧⎫∈---⎨⎬⎩⎭,若幂函数()f x x α=为奇函数,且在(0,)+∞上递减,则α= .7.已知函数()f x 为R 上的奇函数,当0x ≥时,()21x f x =-,则(2)f -= .8.已知0m >,且110lg(100)lgx m m =+,则x 的值为 . 9.已知0a >,0b >且44a b +=,则a b的最大值等于 . 10.已知函数()x f x a b =+(0a >,1a ≠)的定义域和值域都是[1,0]-,则a b += .11.(A 组题)记函数()||f x x b =+,[2,2]x ∈-的最大值为()g b ,则()g b = . (B 组题)函数2()|2|f x x x =-,[2,2]x ∈-的最大值为 .12.(A 组题)已知()f x 是定义在R 上的偶函数,且在[0,)+∞上单调递增,则关于x 的不等式2()(1)10f x f x -+-<的解是 .(B 组题)已知42()f x x x =+,则关于x 的不等式(1)(2)f x f +<的解是 .二、选择题13.已知13a <<,24b <<,现给出以下结论:(1)37a b <+<;(2)31a b -<-<;(3)212a b <⋅<;(4)1342a b <<.以上结论正确的个数是( ) A .1个 B .2个 C .3个 D .4个14.已知a ∈R ,则“1a <”是“11a>”的( ) A .充分非必要条件 B .必要非充分条件C .充要条件D .既非充分也非必要条件15.已知函数||32x y =-的值域是( )A .RB .(2,)-+∞C .[2,)-+∞D .[1,)-+∞16.(A 组题)定义在R 上的函数()f x 的图像是连续不断的,此函数有两个不同的零点,这两个零点分别在区间(0,2)和(4,6)内,那么下列不等式中一定正确的是( )A .(0)(2)0f f ⋅<B .(0)(6)0f f ⋅>C .(2)(4)0f f ⋅>D .(2)(6)0f f ⋅>(B 组题)已知函数()f x 是定义在R 上的奇函数,现给出以下结论:(1)此函数一定有零点;(2)此函数可能没有零点;(3)此函数有奇数个零点;(4)此函数有偶数个零点.以上结论正确的个数是( )A .1个B .2个C .3个D .4个三、解答题17.解下列方程:(1)2223x x -+⋅=;(2)2lg lg 20x x --=.18.设a ∈R ,函数2()21x x a f x +=+. (1)当1a =-时,判断()f x 的奇偶性,并给出证明;(2)当0a =时,证明此函数在(,)-∞+∞上单调递增.19.某商场在促销期间规定:商场内所有商品按标价的80%出售,同时当顾客在该商场内消费满一定金额后,按如下方案获得相应金额的奖券:则消费金额为320元,然后还能获得对应的奖券金额为28元,于是,该顾客获得的优惠额为:4000.228108⨯+=元.设购买商品得到的优惠率=购买商品获得的优惠额商品的标价.试问:(1)购买一件标价为1000元的商品,顾客得到的优惠率是多少?(2)当商品的标价为[100,600]元时,试写出顾客得到的优惠率y关于标价x元之间的函数关系式;(3)当顾客购买标价不超过600元的商品时,该顾客是否可以得到超过30%的优惠率?试说明理由.20.已知函数2()22f x x ax=-+,[1,1]x∈-.(1)当1a=时,求1(1)f-;(2)当12a=-时,判断此函数有没有反函数,并说明理由;(3)当a为何值时,此函数存在反函数?并求出此函数的反函数1()f x-.21.已知函数()f x 的定义域是使得解析式有意义的x 的集合,如果对于定义域内的任意实 数x ,函数值均为正,则称此函数为“正函数”.(1)证明函数2()lg(1)1f x x =++是“正函数”;(2)(A 组题)如果函数()||1||1a f x x x =+-+不是..“正函数”,求正数..a 的取值范围; (B 组题)如果函数1()||||f x x a x =+-不是..“正函数”,求实数a 的取值范围; (3)(A 组题)如果函数22(2)24()2(1)22x a x a f x x a x a +--+=+--+是“正函数”,求正数..a 的取值范围; (B 组题)如果函数2()2f x ax ax =++是“正函数”,求实数a 的取值范围.参考答案一、填空题1.{0,1,2}2.真3.1[,4] 34.16 5.(1,3)-6.1-7.3-8.lg2 9.1 10.32-11.(A组题)2,0()2,0b bg bb b+⎧=⎨-<⎩≥;(B组题)812.(A组题)(1,1)-;(B组题)(3,1)-【第12题A组题解析】2()(1)10f x f x-+-<即2()(1)1f x x f+<+(*),记2()()F x f x x=+,则(*)式即()(1)F x F<,由题意()F x仍为R上的偶函数,且在[0,)+∞上单调递增,∴||111x x<⇒-<<.二、选择题13.D 14.B 15.D 16.(A组题)C;(B组题)B【第16题A组题解析】A、B、D的反例分别对应如下:三、解答题17.(1)0x=或1x=;(2)100x=或110x=.18.(1)奇函数,证明略;(2)用定义证明,略.19.(1)25.8%;(2)0.2,[100,360)280.2,[360,600]xyxx∈⎧⎪=⎨+∈⎪⎩;(3)不能,最大优惠为27.8%.20.(1)1;(2)没有,函数不单调;(3)1a-≤或1a≥,①当1a-≤时,12()2f x a x a-=++-,[32,32]x a a∈+-;当1a≥时,12()2f x a x a-=-+-,[32,32]x a a∈-+.21.(1)()1f x≥,函数值恒为正;(2)(A组题)即min()0f x≤,令||1,(1)t x t=+≥,则()2ay f x tt==+-,①当1a>,即1a>时,min()220f x a=-≤,无解,②当01,即01a <≤时,min ()10f x a =-≤,解得01a <≤, 综上,01a <≤;(B 组题)2a ≥;(3)(A 组题)记2212(2)24,2(1)22y x a x a y x a x a =+--+=+--+,对应的判别式分别为12,∆∆,则12()y f x y =, ①10y >且20y ≥恒成立,计算1200∆<⎧⎨∆⎩≤,得61a -<≤,∵0a >,∴01a <≤; ②20∆>,必须有10∆>,且方程2(2)240x a x a +--+=与方程22(1)22x a x a +--+两实根必须完全相同,此时必有系数对应成比例,即12242122a a a a --+==--+,解得3a =,满足判别式的条件,综上,01a <≤或3a =.(B 组题)08a <≤.。
上海市上海中学2019-2020学年高一数学上学期期末考试试题(含解析)

【详解】因为函数
y
x2
x 2x
5
的定义域为 R
,
y 1
当 x 0 时,
x 5 2 x,
u
因为
x
5 x
在
(,
5) 和(
5, ) 上单调递增,在[
5, 0) 和 (0,
5] 上单调递减,
y 1
根据复合函数单调性法则,可知
x
5 x
2
应该在
[
5, 0) 和 (0,
5] 上单调递增,
y x 而函数 x2 2x 5 本身在 x 0 处有意义,且函数图象不间断,
【详解】当 a 1时:函数 y f (x) ax 单调递增,
f 2 a2 2, f (4) a4 4a 2
;
当 0 a 1时:函数
y
f
(x) ax 单调递减,
f
2 a2
4,
f (4) a4
2
,无解.
综上所述: a 2
故答案为 2
【点睛】本题考查了函数的定义域和值域,分类讨论是一种常用的方法,需要熟练掌握.
意将恒成立问题向最值转化,求含参的函数在给定区间上的最值,属于中档题目.
12.已知函数 f (x) || x 1| | x 3 | 1| ,若 f 4a2 6a f (4a) ,则实数 a 的取值范围
为_______.
3
【答案】
4
13 , 3 4
13
1 2
3 4
,
5.函数 f (x) x2 4x(x 0) 的反函数为_________;
【答案】 2 x 4(x 0)
【解析】
【分析】
x 2 y 4 y 0
上海市虹口区2019届高一第一学期数学期末考试( 解析版)

2018-2019学年上海市虹口区高一(上)期末数学试卷一、填空题1.(3分)函数的定义域为.2.(3分)函数f(x)=2x﹣1(x∈R)的值域是.3.(3分)函数f(x)=x2(x≥0),则f﹣1(x)=.4.(3分)已知1≤a≤2,3≤b≤6,则3a﹣2b的取值范围为.5.(3分)函数f(x)=x3+2x,如果f(1)+f(a)>0,则实数a的范围是.6.(3分)已知函数f(x)=若f(a)=,则a=.7.(3分)函数f(x)=|x+1|+|x﹣2|,则此函数的最小值为.8.(3分)直角三角形的周长等于2,则这个直角三角形面积的最大值为.9.(3分)已知函数f(x)=log a x(a>0且a≠1),若f(x1•x2•x3)=8,则f(x12)+f (x22)+f(x32)=.10.(3分)若命题“存在x∈R,使得ax2+2x+a≤0”为假命题,则实数a的取值范围为.11.(3分)(A组题)已知f(x)=,若a<b<c,满足f(a)=f(b)=f(c),则a+b+f(c)的取值范围是.12.(3分)(A组题)已知函数f(x)=e x﹣1+x﹣2,g(x)=x2﹣2ax+a2﹣a+2,若存在实数x1,x2,使得f(x1)=g(x2)=0,且|x1﹣x2|≤1,则实数a的取值范围是.13.(B组题)已知f(x)=x2﹣2|x|+2,若a<b<c<d,满足f(a)=f(b)=f(c)=f (d),则a+b+c+d的值等于.14.(B组题)已知f(x)=lgx,则实数y=f(f(x)的零点x0等于.二、选择题15.(3分)已知幂函数的图象经过点(9,3),则此函数是(()A.奇函数B.偶函数C.既是奇函数又是偶函数D.非奇非偶函数16.(3分)对于实数a,α:>0,β:关于x的方程x2﹣ax+1=0有实数根,则α是β成立的()A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件17.(3分)已知函数y =f (x ),记A ={(x ,y )|y =f (x )},B ={(x ,y )|x =0,y ∈R },则A ∩B 的元素个数(( ) A .至多一个元素 B .至少一个元素C .一个元素D .没有元素18.(3分)(A 组题)已知f (m )=(3m ﹣1)a +1﹣2m ,当m ∈[0,1]时,f (m )≤1恒成立,则实数a 的取值范围是( ) A .0≤a ≤1B .0<a <1C .a ≤0或a ≥1D .a <0或a >119.(B 组题)函数f (x )=(3a ﹣2)x +1﹣a ,在[﹣2,3]上的最大值是f (﹣2),则实数a 的取值范围是( )A .a ≥B .a >C .a ≤D .a <三、解答题20.已知A ={x |22x ﹣2x ﹣2≤0,x ∈R },B ={x |lg (|x |﹣1)<0,x ∈R },求A ∩B ,A ∪B . 21.已知函数f (x )=10x ﹣10﹣x . (1)判断f (x )的奇偶性,并说明理由; (2)判断f (x )在R 上的单调性,并说明理由.22.矩形ABCD 的面积为4,如果矩形的周长不大于10,则称此矩形是“美观矩形”. (1)当矩形ABCD 是“美观矩形”时,求矩形周长的取值范围; (2)就矩形ABCD 的一边长x 的不同值,讨论矩形是否是“美观矩形”? 23.已知f (x )是定义在R 上的奇函数,且x ≥0时有f (x )=x 2﹣4x . (1)写出函数f (x )的单调区间(不要证明); (2)(A 组题)解不等式f (x )≥3;(3)(A 组题)求函数f (x )在[﹣m ,m ]上的最大值和最小值. (2)(B 组题)求函数f (x )的解析式; (3)(B 组题)解不等式f (x )≥3.24.已知f (x )是定义在R 上且满足f (x +2)=f (x )的函数. (1)如果0≤x <2时,有f (x )=x ,求f (3)的值;(2)(A 组题)如果0≤x ≤2时,有f (x )=(x ﹣1)2,若﹣2≤a ≤0,求f (a )的取值范围;(3)(A组题)如果g(x)=x+f(x)在[0,2]上的值域为[5,8],求g(x)在[﹣2,4]的值域.(2)(B组题)如果0≤x≤2时,有f(x)=(x﹣1)2,若﹣2≤a≤0且f(a)=0,求a 的值;(3)(B组题)如果0≤x≤2时,有f(x)=(x﹣1)2,若﹣2≤a≤4,求f(a)的取值范围.2018-2019学年上海市虹口区高一(上)期末数学试卷参考答案与试题解析一、填空题1.(3分)函数的定义域为[2,+∞).【分析】直接由根式内部的代数式大于等于0求解.【解答】解:由x﹣2≥0,得x≥2.∴函数的定义域为[2,+∞).故答案为:[2,+∞).【点评】本题考查函数的定义域及其求法,是基础题.2.(3分)函数f(x)=2x﹣1(x∈R)的值域是(﹣1,+∞).【分析】根据指数函数y=2x的值域减一可得.【解答】解:因为y=2x的值域为(0,+∞),∴y=2x﹣1的值域为(﹣1,+∞)故答案为:(﹣1,+∞).【点评】本题考察了函数的值域,属基础题.3.(3分)函数f(x)=x2(x≥0),则f﹣1(x)=.【分析】令y=f(x)=x2,由x≥0,得出y≥0,并在y=x2中解出x,即可得出函数y=f (x)的反函数的表达式.【解答】解:令y=f(x)=x2,由于x≥0,则y≥0,所以,因此,,故答案为:.【点评】本题考查反函数解析式的求解,解决本题的关键在于灵活利用反函数的定义,属于基础题.4.(3分)已知1≤a≤2,3≤b≤6,则3a﹣2b的取值范围为[﹣9,0].【分析】法1,根据不等式的运算性质进行判断求解即可.法2利用线性规划的知识进行求解.【解答】解:方法一、∵1≤a≤2,3≤b≤6,∴3≤3a≤6,﹣12≤﹣2b≤﹣6,则﹣9≤3a﹣2b≤0,即3a﹣2b的取值范围为[﹣9,0]方法2:设z=3a﹣2b,则b=a﹣,作出不等式组对应的平面区域如图:则平移直线b=a﹣,由图象知当直线经过点C(1,6)时,直线的截距最大,此时z最小,最小z=3﹣2×6=3﹣12=﹣9,当直线经过点A(2,3)时,直线的截距最小,此时z最大,最小z=3×2﹣2×3=6﹣6=0,即3a﹣2b的取值范围为[﹣9,0].故答案为:[﹣9,0]【点评】本题主要考查不等式性质的应用,根据不等式的关系是解决本题的关键.比较基础.5.(3分)函数f(x)=x3+2x,如果f(1)+f(a)>0,则实数a的范围是a>﹣1.【分析】根据题意,分析可得f(x)为奇函数且在R上为增函数,则原不等式可以转化为a >﹣1,即可得答案.【解答】解:根据题意,函数f(x)=x3+2x,有f(﹣x)=(﹣x)3+2(﹣x)=﹣(x3+2x)=﹣f(x),则函数f(x)为奇函数,f′(x)=3x2+2>0,则函数f(x)在R上为增函数;如果f(1)+f(a)>0,则f(a)>﹣f(1)=f(﹣1),故a>﹣1,故答案为:a>﹣1.【点评】本题考查函数的单调性与奇偶性的综合应用,注意分析函数f(x)的奇偶性与单调性,属于基础题.6.(3分)已知函数f(x)=若f(a)=,则a=﹣1或.【分析】当a>0时,log2a=;当a≤0时,2a=.由此能求出a的值.【解答】解:当a>0时,log2a=∴a=,当a≤0时,2a==2﹣1,∴a=﹣1.∴a=﹣1或.故答案为:﹣1或.【点评】本题考查孙数值的求法,解题时要认真审题,注意分段函数的函数值的求法.7.(3分)函数f(x)=|x+1|+|x﹣2|,则此函数的最小值为3.【分析】根据|x﹣a|的几何意义,得到f(x)=|x+1|+|x﹣2|的几何意义,再求出函数的最小值.【解答】解:∵|x﹣a|几何意义表示数轴上坐标为x与坐标为a的点的距离,∴f(x)=|x+1|+|x﹣2|表示X轴上的点X到点﹣1,2的距离和,∴最小值为此两点线段上的点,即当﹣1≤x≤2时,f(x)最小值为3,故答案为:3.【点评】本题考查了绝对值式子的几何意义的应用,属于基础题.8.(3分)直角三角形的周长等于2,则这个直角三角形面积的最大值为.【分析】设直角三角形的两直角边为a、b,斜边为c,因为L=a+b+c,c=,两次运用均值不等式即可求解.【解答】解:直角三角形的两直角边为a、b,斜边为c,面积为s,周长L=2,由于a+b+=L≥2+.(当且仅当a=b时取等号)∴≤.∴S=ab≤()2=•[]2=L2=.故答案为:.【点评】利用均值不等式解决实际问题时,列出有关量的函数关系式或方程式是均值不等式求解或转化的关键.9.(3分)已知函数f(x)=log a x(a>0且a≠1),若f(x1•x2•x3)=8,则f(x12)+f (x22)+f(x32)=16.【分析】表示出f(x1x2x3)=8,再表示出,根据对数运算法则化简即可【解答】解:∵f(x)=log a x且f(x1x2x3)=8∴log a(x1x2x3)=8又==2[log a(x1)+log a (x2)+log a(x3)]=2[log a(x1•x2•x3]=2log a(x1x2x3)=2×8=16故答案为:16【点评】本题考查对数运算,要求能熟练应用对数运算法则.属简单题10.(3分)若命题“存在x∈R,使得ax2+2x+a≤0”为假命题,则实数a的取值范围为(1,+∞).【分析】命题“∃x0∈R,使得x2+2x+a≤0”是假命题,则命题“∀x∈R,使得x2+2x+a>0”是真命题,可得:△<0,解出a的范围.【解答】解:命题“∃x0∈R,使得x2+2x+a≤0”是假命题,则命题“∀x∈R,使得x2+2x+a>0”是真命题,∴△=4﹣4a<0,解得a>1.实数a的取值范围是:(1,+∞).故答案为:(1,+∞).【点评】本题考查了简易逻辑的判定方法、不等式的解法,考查了推理能力与计算能力,属于中档题.11.(3分)(A组题)已知f(x)=,若a<b<c,满足f(a)=f(b)=f(c),则a+b+f(c)的取值范围是(1,2).【分析】画出函数f(x)的图象,如图所示,结合图象,即可求出.【解答】解:画出函数f(x)的图象,如图所示,若a<b<c,满足f(a)=f(b)=f(c),∴a+b=0,1<f(c)<2,∴a+b+f(c)的范围为(1,2),故答案为:(1,2)【点评】本题考查了分段函数的图象和性质,考查了函数的值域,属于中档题.12.(3分)(A组题)已知函数f(x)=e x﹣1+x﹣2,g(x)=x2﹣2ax+a2﹣a+2,若存在实数x1,x2,使得f(x1)=g(x2)=0,且|x1﹣x2|≤1,则实数a的取值范围是[2,+∞).【分析】求出f′(x)=e x﹣1+1>0,f(x)在R上递增,由f(1)=0,得x1=1,从而g (x2)=0且|1﹣x2|≤1,进而x2﹣2ax+a2﹣a+2=0在0≤x≤2有解,由此能求出a的范围.【解答】解:函数f(x)=e x﹣1+x﹣2的导数为f′(x)=e x﹣1+1>0,f(x)在R上递增,由f(1)=0,可得f(x1)=0,解得x1=1,存在实数x1,x2,使得f(x1)=g(x2)=0.且|x1﹣x2|≤1,即为g(x2)=0且|1﹣x2|≤1,即x2﹣2ax+a2﹣a+2=0在0≤x≤2有解,即x2﹣2ax+a2﹣a+2=0在0≤x≤2有解,∴△=4a2﹣4(a2﹣a+2)≥0,解得a≥2.故a的范围为[2,+∞).故答案为:[2,+∞).【点评】本题考查实数的取值范围的求法,考查导数、二次函数的性质等基础知识,考查运算求解能力,是中档题.13.(B组题)已知f(x)=x2﹣2|x|+2,若a<b<c<d,满足f(a)=f(b)=f(c)=f (d),则a+b+c+d的值等于0.【分析】根据题意,由函数的解析式分析可得f(﹣x)=f(x),即函数f(x)为偶函数,进而分析可得直线y=m与函数f(x)最多只有4个交点;据此分析可得a+d=b+c=0,进而分析可得答案.【解答】解:根据题意,f(x)=x2﹣2|x|+2,则f(﹣x)=x2﹣2|x|+2=f(x),即函数f(x)为偶函数,f(x)=x2﹣2|x|+2=,则直线y=m与函数f(x)最多只有4个交点;若a<b<c<d,满足f(a)=f(b)=f(c)=f(d),则有a+d=b+c=0,故a+b+c+d=0;故答案为:0【点评】本题考查函数的奇偶性的判定以及应用,注意分析f(x)的奇偶性.14.(B组题)已知f(x)=lgx,则实数y=f(f(x)的零点x0等于10.【分析】根据题意,由函数的解析式可得f(f(x))=lg(lgx),令f(f(x0))=lg(lgx0)=0,解可得x0的值,由零点的定义即可得答案.【解答】解:根据题意,f(x)=lgx,则f(f(x))=lg(lgx),若f(f(x0))=lg(lgx0)=0,即lgx0=1,解可得x0=10,即函数y=f(f(x)的零点x0等于10;故答案为:10.【点评】本题考查函数零点的计算,关键是掌握函数零点的定义,属于基础题.二、选择题15.(3分)已知幂函数的图象经过点(9,3),则此函数是(()A.奇函数B.偶函数C.既是奇函数又是偶函数D.非奇非偶函数【分析】由幂函数y=x a的图象经过点(9,3),求出a=,由此能求出此函数是y=,是非奇非偶函数.【解答】解:∵幂函数y=x a的图象经过点(9,3),∴9a=3,解得a=,∴此函数是y=,是非奇非偶函数.故选:D.【点评】本题考查命题真假的判断,考查幂函数的性质等基础知识,考查运算求解能力,是基础题.16.(3分)对于实数a,α:>0,β:关于x的方程x2﹣ax+1=0有实数根,则α是β成立的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件【分析】求出α,β的等价条件,结合不等式的关系,利用充分条件和必要条件的定义进行判断即可.【解答】解:α:>0得a>1或a<﹣1,β:关于x的方程x2﹣ax+1=0有实数根,则判别式△=a2﹣4≥0,得a≥2或a≤﹣2,∵{a|a≥2或a≤﹣2}⊊{a|a>1或a<﹣1},∴α是β成立的必要不充分条件,故选:B.【点评】本题主要考查充分条件和必要条件的判断,求出命题的等价条件是解决本题的关键.17.(3分)已知函数y=f(x),记A={(x,y)|y=f(x)},B={(x,y)|x=0,y∈R},则A∩B的元素个数(()A.至多一个元素B.至少一个元素C.一个元素D.没有元素【分析】根据函数的定义,在定义域内有且只有一个函数值与它对应,y=f(x)定义域是F,当F包括x=0,则x=0时候,有且只有一个函数值,所以函数图象与x=0只有一个交点,也就是两个集合的交集元素个数只有1个,则答案可求.【解答】解:设函数y=f(x)定义域是F,当0∈F,A∩B中所含元素的个数为1.∴A∩B中所含元素的个数是1.故选:A.【点评】本题考查交集及其运算,解答此题的关键是对题意的理解,是基础题.18.(3分)(A组题)已知f(m)=(3m﹣1)a+1﹣2m,当m∈[0,1]时,f(m)≤1恒成立,则实数a的取值范围是()A.0≤a≤1B.0<a<1C.a≤0或a≥1D.a<0或a>1【分析】利用一次函数的最值求解即可.【解答】解:f(m)=(3m﹣1)a+1﹣2m=(3a﹣2)m﹣a+1①3a﹣2=0,即a=时,f(m)=<1,符合题意;②3a﹣2>0,即a>时,f(m)max=f(1)=2a﹣1∵2a﹣1≤1,∴a≤1,∴<a≤1;③3a﹣2<0,即a<时,f(m)max=f(0)=﹣a+1∵﹣a+1≤1,∴a≥0,∴0≤a<;综上可知:实数a的取值范围是[0,1];故选:A.【点评】本题主要考查了函数恒成立问题的求解,分类讨论思想的应用,一次函数闭区间的最值以及单调性的应用.19.(B组题)函数f(x)=(3a﹣2)x+1﹣a,在[﹣2,3]上的最大值是f(﹣2),则实数a的取值范围是()A.a≥B.a>C.a≤D.a<【分析】根据函数的最值和函数单调性的关系即可求出a的范围【解答】解:函数f(x)=(3a﹣2)x+1﹣a,在[﹣2,3]上的最大值是f(﹣2),则函数f(x)在[﹣2,3]上为减函数,则3a﹣2<0,解得a<,故选:D.【点评】本题考查了函数的单调性和最值得关系,考查了转化与化归思想,属于基础题三、解答题20.已知A={x|22x﹣2x﹣2≤0,x∈R},B={x|lg(|x|﹣1)<0,x∈R},求A∩B,A∪B.【分析】先分别求出集合A和B,由此能求出A∩B,A∪B.【解答】解:A={x|22x﹣2x﹣2≤0,x∈R}={x|x≤1},B={x|lg(|x|﹣1)<0,x∈R}={x|﹣2<x<﹣1或1<x<2},∴A∩B={x|﹣2<x<﹣1},A∪B={x|x<2}.【点评】本题考查交集、并集的求法,考查交集、并集定义、不等式性质等基础知识,考查运算求解能力,是基础题.21.已知函数f(x)=10x﹣10﹣x.(1)判断f(x)的奇偶性,并说明理由;(2)判断f(x)在R上的单调性,并说明理由.【分析】(1)容易求出f(﹣x)=﹣f(x),从而判断出f(x)是奇函数;(2)可以看出函数y=10x和y=﹣10﹣x在R上都是增函数,从而得出f(x)在R上的单调性.【解答】解:(1)f(﹣x)=10﹣x﹣10x=﹣(10x﹣10﹣x)=﹣f(x);∴f(x)为奇函数;(2)∵y=10x和y=﹣10﹣x在R上都是增函数;∴f(x)=10x﹣10﹣x在R上是增函数.【点评】考查奇函数的定义及判断,指数函数的单调性,以及增函数的定义.22.矩形ABCD的面积为4,如果矩形的周长不大于10,则称此矩形是“美观矩形”.(1)当矩形ABCD是“美观矩形”时,求矩形周长的取值范围;(2)就矩形ABCD的一边长x的不同值,讨论矩形是否是“美观矩形”?【分析】(1)根据基本不等式和定义即可得出周长的范围;(2)令周长不大于10,列不等式求出x的范围,得出结论.【解答】解:(1)设AB=x,则BC=,故而矩形ABCD的周长为2(AB+BC)=2(x+)≥2•2=8,当且仅当x=即x=2时取等号.又矩形ABCD是“美观矩形”,故而矩形的周长不大于10.∴当矩形ABCD是“美观矩形”时,矩形周长的取值范围是[8,10].(2)设矩形ABCD的周长为f(x),则f(x)=2(x+)(x>0),令f(x)≤10得x2﹣5x+4≤0,解得:1≤x≤4,∴当x∈[1,4]时,矩形是“美观矩形”,当x∈(0,1)∪(4,+∞)时,矩形不是“美观矩形”.【点评】本题考查了基本不等式的应用,属于基础题.23.已知f(x)是定义在R上的奇函数,且x≥0时有f(x)=x2﹣4x.(1)写出函数f(x)的单调区间(不要证明);(2)(A组题)解不等式f(x)≥3;(3)(A组题)求函数f(x)在[﹣m,m]上的最大值和最小值.(2)(B组题)求函数f(x)的解析式;(3)(B组题)解不等式f(x)≥3.【分析】(1)根据题意,由函数的解析式结合函数的奇偶性可得f(x)的单调区间;(2)(A组题),根据题意,由函数的奇偶性可得函数f(x)的解析式,则有f(x)≥3⇒或,解可得不等式的解集,即可得答案;(3)(A组题)由函数的解析式可得在区间(﹣∞,﹣2)上为增函数,在(﹣2,2)上为减函数,在(2,+∞)为增函数;对m的值进行分情况讨论,求出函数的最值,即可得答案;(2)(B组题)设x<0,则﹣x>0,由函数的解析式可得f(﹣x)的表达式,由函数的奇偶性可得f(x)在x<0时的解析式,综合即可得答案;(B组题)根据题意,由函数的奇偶性可得函数f(x)的解析式,则有f(x)≥3⇒(3)或,解可得不等式的解集,即可得答案.【解答】解:(1)根据题意,f(x)是定义在R上的奇函数,且x≥0时有f(x)=x2﹣4x;则f(x)的单调递增区间为(﹣∞,﹣2]或[2,+∞),递减区间为[﹣2,2];(2)(A组题)f(x)是定义在R上的奇函数,且x≥0时有f(x)=x2﹣4x,设x<0,则﹣x>0,则f(﹣x)=(﹣x)2﹣4(﹣x)=x2+4x,则f(x)=﹣f(﹣x)=﹣x2﹣4x,综合可得:f(x)=,若f(x)≥3⇒或,解可得:﹣3≤x≤﹣1或x≥2+,则不等式f(x)≥3的解集为[﹣3,﹣1]∪[2+,+∞);(3)(A组题)由(2)的结论,f(x)=,在区间(﹣∞,﹣2)上为增函数,在(﹣2,2)上为减函数,在(2,+∞)为增函数;对于区间[﹣m,m],必有m>﹣m,解可得m>0;故当0<m≤2时,f(x)max=﹣m2+4m,f(x)min=m2﹣4m,当2<m≤4时,f(x)max=4,f(x)min=﹣4,当m>4时,f(x)max=m2﹣4m,f(x)min=﹣m2+4m,(2)(B组题)f(x)是定义在R上的奇函数,且x≥0时有f(x)=x2﹣4x,设x<0,则﹣x>0,则f(﹣x)=(﹣x)2﹣4(﹣x)=x2+4x,则f(x)=﹣f(﹣x)=﹣x2﹣4x,综合可得:f(x)=,(3)(B组题)由(2)的结论,f(x)=,若f(x)≥3⇒或,解可得:﹣3≤x≤﹣1或x≥2+,则不等式f(x)≥3的解集为[﹣3,﹣1]∪[2+,+∞).【点评】本题考查函数奇偶性的性质以及应用,涉及分段函数的性质以及应用,属于基础题.24.已知f(x)是定义在R上且满足f(x+2)=f(x)的函数.(1)如果0≤x<2时,有f(x)=x,求f(3)的值;(2)(A组题)如果0≤x≤2时,有f(x)=(x﹣1)2,若﹣2≤a≤0,求f(a)的取值范围;(3)(A组题)如果g(x)=x+f(x)在[0,2]上的值域为[5,8],求g(x)在[﹣2,4]的值域.(2)(B组题)如果0≤x≤2时,有f(x)=(x﹣1)2,若﹣2≤a≤0且f(a)=0,求a 的值;(3)(B组题)如果0≤x≤2时,有f(x)=(x﹣1)2,若﹣2≤a≤4,求f(a)的取值范围.【分析】根据f(x+2)=f(x)的函数.可知函数f(x)是周期2的函数;依次求解各式即可.【解答】解:(1)f(3)=f(1+2)=f(1)=1;(2)(A组题)若﹣2≤a≤0,则0≤a+2≤2,∴f(a)=f(a+2)=(a+2﹣1)2=(a+1)2∈[0,1];(3)(A组题)因为g(x)=x+f(x)在[0,2]上的值域为[5,8],所以f(x)在[0,2]上的值域为[3,6],所以g(x)在[﹣2,4]上的值域为[1,10];(2)(B组题)根据(2)(A组题)可得f(a)=(a+1)2=0,可得a=﹣1;(3)(B组题)由题意,当0≤a≤2时,f(a)=(a﹣1)2∈[0,1];当﹣2≤a≤0时,则0≤a+2≤2,可得f(a)=(a+1)2∈[0,1],当2≤a≤4时,则0≤a﹣2≤2,可得f(a)=(a﹣3)2∈[0,1],故得当﹣2≤a≤4,f(a)的取值范围是[0,1].【点评】本题考查抽象函数的问题,值域的求法,体现了分类讨论的数学思想方法,解答此题的关键是理解题意,是中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海市虹口区2019-2020学年高一上学期期末数学试卷一、选择题(本大题共5小题,共15.0分)1.若1a <1b<0,则下列不等式:①a<b;②|a|>|b|;③a+b<ab;④ba+ab>2,其中正确的是()A. ①②B. ①④C. ②③D. ③④2.设a∈R,则“a>0”是“a2>0”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3.函数f(x)=√1−5x的值域为()A. [0,+∞)B. (0,+∞)C. [0,1)D. (0,1)4.已知y=f(x)是定义在R上的函数,下列命题正确的是()A. 若f(x)在区间[a,b]上的图象是一条连续不断的曲线,且在(a,b)内有零点,则有f(a)⋅f(b)<B. 若f(x)在区间[a,b]上的图象是一条连续不断的曲线,且有f(a)⋅f(b)>0,则其在(a,b)内没有零点C. 若f(x)在区间(a,b)上的图象是一条连续不断的曲线,且有f(a)⋅f(b)<0,则其在(a,b)内有零点D. 如果函数f(x)在区间[a,b]上的图象是一条连续不断的曲线,且有f(a)⋅f(b)<0,则其在(a,b)内有零点5.已知函数f(x)=(x−1x)⋅cosx,x∈[−π,π]且x≠0,则下列描述正确的是()A. 函数f(x)为偶函数B. 函数f(x)在(0,π)上有最大值无最小值C. 函数f(x)有2个不同的零点D. 函数f(x)在(−π,0)上单调递减二、填空题(本大题共14小题,共42.0分)6.集合{x|63−x∈R,x∈N}用列举法表示为________.7.命题“若a>1且b>1,则a+b>2”的否命题是______.(选填“真”或“假”)8. 函数f(x)=1−2x ,x ∈[1,2]的值域为______ .9. 设函数f(x)={x 2−2x ,(x ⩽0)f(x −3),(x >0),则f (5)的值为________. 10. 不等式|x +3|>1的解集是______ .11. 设α∈{−3,−2,−1,−12,13,12 ,1 , 2,3},则使得f(x)=x α为奇函数且在区间(0,+∞)上单调递减的α的值为___________.12. 已知f(x)是R 上的奇函数,g(x)=1−f(x),则g(0)=________.13. 已知4a =2,lgx =a ,则x =__________.14. 函数y =(3−x)(2+x),−2≤x ≤2的最大值为_________.15. 若函数y =a x +b 的定义域为[0,2],值域为[14,1],则a 的值为__________.16. 函数f(x)=x 2−2x +3在[0,a +2]上最大值为3,则a 的取值范围______ .17. 已知函数f(x)=2x−1(x ∈[2,6]),则函数的最大值为__________.18. 已知偶函数f(x)在区间[0,+∞)上单调递增,则满足f(x)<f(1)的x 的取值范围是______ .19. 函数f (x )=√−x 2+2x +3的单调递减区间是 _____________ .三、解答题(本大题共6小题,共72.0分)20. 解下列方程:(1)9x −4⋅3x +3=0;(2)log 3(x 2−10)=1+log 3x.21. 已知函数f(x)=1−2x 1+2x(1)分别求出f (1),f (a )的值.(2)判断函数f(x)的奇偶性并证明;22.“双十一”期间,某电商店铺A的活动为:全场商品每满60元返5元的优惠券(例如:买130]=130−5×2=120(元).其中[x]表示不大元的商品,可用两张优惠券,只需付130−5×[13060于x的最大整数).此外,在店铺优惠后,电商平台全场还提供每满400元减40元的优惠(例如:店铺A原价880元的一单,最终价格是880−5×14−40×2=730(元)),店铺优惠后不满400元则不能享受全场每满400元减40元的优惠活动.(1)小明打算在店铺A买一款250元的耳机和一款650元的音箱,是下两单(即耳机、音箱分两次购买)划算?还是下一单(即耳机、音箱一起购买)划算?(2)小明打算趁“双十一”囤积某生活日用品若干,预算不超过700元,该生活日用品在店铺A的售价为30元/件,试计算购买多少件该生活日用品平均价格最低?最低平均价格是多少?23.求函数y=2x+1(x<0)的反函数.24.已知函数f(x)=x|x2−12|的定义域为[0,m],值域为[0,am2],则实数a的取值范围是.25.已知函数f(x)=.√ax2+ax+3(1)若函数定义域为R,求实数a的取值范围;,1),求实数a的值.(2)若函数定义域为(3a-------- 答案与解析 --------1.答案:D解析:本题综合考查不等式的性质,属于基础题.由1a <1b<0可得b<a<0,根据不等式性质判断各式正误即可.解:由1a <1b<0可得b<a<0,则:①a>b;②|a|<|b|;③a+b<ab;④ba +ab>2.即正确的不等式有③④.故选D.2.答案:A解析:本题主要考查充分条件和必要条件的判断,属于基础题.根据不等式的关系,结合充分条件和必要条件的定义进行判断即可.解:由a>0可得a2>0,由a2>0得a≠0即可,即“a>0”是“a2>0”的充分不必要条件,故选A.3.答案:C解析:根据指数函数性质及面函数性质,求值域即可,本题考查指数函数的范围及值域值域的求法,属基础题.解:∵5x>0,∴0≤1−5x<1,∴0≤√1−5x<1,∴0≤ y<1,所以函数f(x)=√1−5x的值域为[0,1).故选C.4.答案:D解析:解:①y=x2,在(−1,1)内有零点,但是f(−1)⋅f(1)>0,故A不正确,②y=x2,f(−1)⋅f(1)>0,在(−1,1)内有零点,故B不正确,③若f(x)在区间(a,b)上的图象是一条连续不断的曲线,f(a)=−1,f(b)=1,在(a,b)恒成立有f(x)>0,可知满足f(a)⋅f(b)<0,但是其在(a,b)内没有零点.故C不正确.所以ABC不正确,故选;D据函数零点的定义,函数零点的判定定理,运用特殊函数判断即可.本题主要考查函数零点的定义,函数零点的判定定理,利用特殊值代入法,排除不符合条件的选项,是一种简单有效的方法,属于基础题5.答案:B解析:解:A.函数的定义域关于原点对称,则f(−x)=(−x+1 x )⋅cosx=−(x−1x)⋅cosx=−f(x),即函数f(x)为奇函数.故A错误,B.当x∈(0,π)时,设g(x)=x−1x,ℎ(x)=cosx,当x∈(0,1]时,g(x)<0,且为增函数,ℎ(x)为减函数,且ℎ(x)>0,此时f(x)为增函数,当x∈(1,π2)时,g(x)>0,且为增函数,ℎ(x)为减函数,且ℎ(x)>0,此时f(x)≥0,当x∈[π2,π)时,g(x)>0,且为增函数,ℎ(x)为减函数,且ℎ(x)<0,此时f(x)<0,则函数f(x)为减函数无最小值,则函数存在极大值,同时也是最大值,故B正确,C.由f(x)=(x−1x )⋅cosx=x2−1xcosx=0得cosx=0或x2−1=0,即x=±1或x=π2或x=−π2,即函数f(x)有4个不同的零点,故C错误,D.当x∈(−π,0)时,设g(x)=x−1x,ℎ(x)=cosx,)时,g(x)和ℎ(x)都是增函数且ℎ(x)<0,g(x)<0,此时f(x)为减函数,当x∈(−π,−π2当x∈(1,π)时,g(x)和ℎ(x)都是增函数且ℎ(x)>0,g(x)>0,此时f(x)为增函数,故函数f(x)在(−π,0)上不单调,故D错误,故选:B.A.根据函数奇偶性的定义进行判断,B.将函数分解为g(x)=x−1,ℎ(x)=cosx,讨论g(x)和ℎ(x)的单调性和符号,进行判断,xC.根据函数零点的定义解方程f(x)=0进行判断,D.将函数分解为g(x)=x−1,ℎ(x)=cosx,讨论g(x)和ℎ(x)的单调性即可.x本题主要考查与函数性质有关的命题的真假判断,涉及函数奇偶性,单调性以及函数与方程的应用,综合性较强,难度较大.6.答案:{0,1,2}解析:解析:本题考查集合的表示方法,根据列举法定义表示出来即可.∈R,x∈N},解:集合{x|63−x用列举法表示为{0,1,2}.故答案为{0,1,2}.7.答案:假解析:本题考查命题的否命题及真假判断,属于基础题.由互为逆否命题的命题同真假,判断原命题即可.解:由题意,命题“若a>1且b>1,则a+b>2”的逆命题是:“若a+b>2,则a>1且b>1”,例如:a=1,b=3时,此时a+b>2成立,但a>1且b>1不成立,则逆命题为假命题,根据四种命题的等价关系,原命题的逆命题与否命题是等价的,所以其否命题也是假命题.故答案为:假.8.答案:[−3,−1]解析:解:函数f(x)=1−2x,是减函数,x∈[1,2]的值域为:[−3,−1].故答案为:[−3,−1].利用已知条件直接求解即可.本题考查函数的值域的求法,是基础题.9.答案:12解析:本题考查函数值的求法,属于基础题.根据题设条件可得f(5)=f(2)=f(−1),然后代入已知函数解析式即可求解.解:由题意得f(5)=f(2)=f(−1),当x≤0时,f(x)=x2−2x,所以f(−1)=(−1)2−2−1=1−12=12,故答案为12.10.答案:(−∞,−4)∪(−2,+∞)解析:解:不等式|x+3|>1等价于x+3>1或x+3<−1,解得x∈(−∞,−4)∪(−2,+∞).故答案为:(−∞,−4)∪(−2,+∞).直接转化绝对值不等式,求解即可.本题考查绝对值不等式的解法,考查计算能力.11.答案:−3和−1解析:本题考查了幂函数奇偶性和单调性的问题,对α的取值逐个判断即可.解:当α=−3时,函数为奇函数,在(0,+∞)上单调递减,故满足,当α=−2时,函数为偶函数,故不满足,当α=−1时,函数为奇函数,在(0,+∞)上单调递减,故满足,当α=−1时,函数不具备奇偶性,故不满足,2时,函数为奇函数,在(0,+∞)上单调递增,故不满足,当α=13时,函数不具备奇偶性,故不满足,当α=12当α=1时,函数为奇函数,在(0,+∞)上单调递增,故不满足,当α=2时,函数为偶函数,故不满足,当α=3时,函数为奇函数,在(0,+∞)上单调递增,故不满足,故满足条件的α的值为−1,故答案为−3和−1.12.答案:1解析:本题考查奇函数的性质.根据奇函数的性质直接求解.解:因为f(x)是R上的奇函数,所以f(0)=0,g(0)=1−f(0)=1.故答案为1.13.答案:√10解析:本题考查了指数和对数的运算性质,属于基础题.根据指数的运算性质求出a的值,再根据对数的运算性质求出x的值.解:∵4a=2,∴22a=2,∴a=1,2∵lgx=a=1=lg√10,2∴x =√10,故答案为√10.14.答案:254解析:本题考查了二次函数的最值问题,属基础题.先配方,再根据二次函数的性质,结合x 的取值范围求解即可. 解:∵y =(3−x)(2+x)=−x 2+x +6=−(x −12)2+254,又−2≤x ≤2,∴当x =12时,函数取得最大值254.故答案为254.15.答案:12或√72解析:本题考查函数的定义域和值域与指数函数的性质,属于中档题. 根据a 进行分类讨论求值域即可.解:当a >1时,函数y =a x +b 在[0,2]单调递增,∴当x =0时,y 取最小值为1+b ,当x =2时,y 取最大值为a 2+b ,∵函数y =a x +b 值域为[14,1],∴{1+b =14a 2+b =1, ∵a >1,∴{b =−34a =√72;当0<a <1时,函数y =a x +b 在[0,2]单调递减,∴当x =0时,y 取最大值为1+b ,当x =2时,y 取最小值为a 2+b ,∵函数y =a x +b 值域为[14,1],∴{1+b =1a 2+b =14, ∵0<a <1,∴{b =0a =12.∴a 的值为12或√72. 故答案为12或√72. 16.答案:(−2,0]解析:解:二次函数f(x)=x 2−2x +3=(x −1)2+2,当0<a +2<2,即−2<a <0时, 函数在[0,a +2]上的最大值为f(0)=3,满足条件.当a +2≥2,即a ≥0时,根据函数在[0,a +2]上的最大值为f(a +2)=a 2+2a +3=3,求得a =0,或a =−2(舍去).综上可得,−2<a ≤0,故答案为:(−2,0].当0<a +2<2时,利用二次函数的性质可得函数在[0,a +2]上的最大值为f(0)=3,满足条件,由此可得a 的范围.当a +2≥2时,根据函数在[0,a +2]上的最大值为f(a +2)=a 2+2a +3=3,求得a 的值,再把这2个a 的范围取并集,即得所求.本题主要考查求二次函数在闭区间上的最值,二次函数的性质的应用,体现了分类讨论的数学思想,属于基础题.17.答案:2解析:本题考查了函数的最值,易知f(x)为单调递减函数,所以当x =2时,f(x)取得最大值.解:易知函数f(x)=2x−1(x ∈[2,6])为单调递减函数,∴当x =2时,f(x)取得最大值为f(2)=2,故答案为2.18.答案:(−1,1)解析:解:∵偶函数f(x)在区间[0,+∞)上单调递增,∴f(x)<f(1)等价为f(|x|)<f(1),即|x|<1,解得−1<x <1,故答案为:(−1,1)根据函数奇偶性和单调性之间的关系进行转化即可.本题主要考查不等式的求解,根据函数奇偶性和单调性之间的关系是解决本题的关键.19.答案:[1,3]解析:本题考查函数单调性的判断与证明,属于基础题.函数的定义域为[−1,3],由二次函数的单调性结合复合函数的单调性可得.解:由−x 2+2x +3⩾0可解得−1⩽x ⩽3,即函数的定义域为[−1,3],函数t =−x 2+2x +3在[1,+∞)单调递减,由复合函数的单调性可知,函数f (x )=√−x 2+2x +3的单调递减区间为[1,3].故答案为[1,3].20.答案:解:(1)∵9x −4⋅3x +3=0,∴(3x −1)(3x −3)=0,∴3x =1或3x =3,∴x =0或x =1,(2)log 3(x 2−10)=1+log 3x =log 33x ,∴{x 2−10=3x,x 2−10>0,x >0,解得x =5.解析:(1)由9x −4⋅3x +3=0,得到(3x −1)(3x −3)=0,解得即可,(2)由已知得到{x 2−10=3x,x 2−10>0,x >0,解得即可.本题考查指数方程、对数方程的求法,解题时要注意等价转化思想及运算法则的合理运用,属于中档题.21.答案:(1)解:∵f(x)=1−2x 1+2x∴f(1)=1−21+2=−13,f(a)=1−2a 2a +1; (2)证明:∵x ∈R ,∴函数f(x)=1−2x1+2x 的定义域关于原点对称,∵f(−x)=1−2−x 2−x +1=1−12x 12x +1=2x −11+2x =−f(x), ∴f(x)是奇函数.解析:本题考查函数值的计算,考查函数的奇偶性的证明,属于基础题.(1)将x =1和x =a 直接代入,即可求出f(1),f(a)的值;(2)利用奇偶性的定义,进行判断并证明.22.答案:解:(1)若下两单,耳机优惠后实际付款为250−5×4=230(元),音响优惠后实际付款为650−5×10−40×1=560(元),耳机和音响优惠后一共实际付款230+560=790(元),若下一单,耳机和音明优惠后一其实际付款(250+650)−5×15−40×2=745(元),∴下一单划算;(2)假设购买x(x ∈N ∗)件,平均价格为y 元/件,由于不能超过700元预算,最多贝能购买26件,且当1≤x ≤14时不能享受满400元减40元的优惠,当15≤x ≤26时能享受一次每满400元减40元的优惠,①当1≤x ≤14时不能享受每满400元满40元的优惠,则y =1x (30x −5×[30x 60])=30−5x ×[x 2] ={30−52n ×n ,x =2n 30−−52n +1×n ,x =2n +1,k ∈N,当x =2n 时,y =2712,当x =2n +1时,y =30−52+52(2k+1)>2712,∴当1≤x ≤14时,购买偶数件该生活日用品的平均价格最低.最低平均价格为27.5元/件, ②当15≤x ≤26时能享受一次每满400元减40元的优惠,则y =1x (30x −5×[30x 60]−40)=30−5x ×[x 2]−40x={30−52n ×n −402n ,x =2n 30−−52n +1×n −402n +1 ,x =2n +1,k ∈N 当x =2n 时,y =2712−20n ,当n =8,x =16时,y min =25,当x =2n +1时,y =30−5n+402n+1=30−52−752(2n+1),当n =7,x =15时, y min =25,综上,购买15件或16件该生活日用品的平均价格最低.最低平均价格为25元/件,解析:本题主要考查函数模型的应用,根据优惠条件分别进行判断比较,本题文字较多,读懂题意是解决本题的关键.(1) 若下两单,耳机优惠后实际付款为250−5×4=230(元),然后计算耳机和音响优惠后一共实际付款,再计算若下一单,耳机和音明优惠后一其实际付款,分别进行计算比较即可;(2)假设购买x(x ∈N ∗)件,平均价格为y 元/件,由于不能超过700元预算,最多贝能购买26件,且当1≤x ≤14时不能享受满400元减40元的优惠,当15≤x ≤26时能享受一次每满400元减40元的优惠,进而分类讨论,即可得出结论.23.答案:y =log 2(x −1)(1<x <2).解析:因为y =2x +1,x <0,所以x =log 2(y −1),y ∈(1,2),所以函数y =2x +1的反函数为y =log 2(x −1),x ∈(1,2).24.答案:[1,+∞)解析:本题考查函数的值域,函数的定义域及其求法,首先将函数写成分段函数的形式,然后结合函数的单调性和特殊点的函数值得到a 关于m 的函数,求解函数的值域即可确定实数a 的取值范围.解:函数的解析式即:f(x)={−x(x 2−12),0⩽x ⩽2√3x(x 2−12),x ⩾2√3, 对两段分别求导可得函数f(x)在区间[0,2]和[2√3,+∞]上单调递增,在区间(2,2√3)上单调递减, 且f(2)=f(4)=16,f(0)=f(2√3)=0,据此分类讨论:①当0<m ≤2时有:f(m)=−m(m 2−12)=am 2,解得:a =−m +12m , ∵函数g(m)=−m +12m 在区间(0,2]上单调递减,则此时a ≥4;②当2<m <4时有:am 2=16,解得:a =16m 2,∵函数ℎ(m)=16m 2在区间(2,4)上递减,则此时1<a <4;③当m ≥4时有:f(m)=m(m 2−12)=am 2,解得:a =m −12m , ∵函数t(m)=m −12m 在区间[4,+∞)上单调递增,则此时a ≥1;综上可得:实数a 的取值范围是[1,+∞).故答案为[1,+∞). 25.答案:解:(1)因为函数定义域为R ,所以ax 2+ax +3>0的解集为R .则①当a =0时,得3>0恒成立,满足题意.②当a ≠0时,满足{a >0Δ=a 2−12a <0⇒0<a <12, 综上:a ∈[0,12).(2)因为函数定义域为(3a ,1),所以{a <03a , 1为方程ax 2+ax +3=0的两根. 即{a <03a +1=−13a =3a⇒a =−32, 所以a =−32.解析:本题考查函数的定义域与值域问题,难度中等.(1)分别讨论当a =0时和当a ≠0时,满足的条件,即可得出实数a 的取值范围.(2)因为函数定义域为(3a ,1),所以{a <03a, 1为方程ax 2+ax +3=0的两根.,即{a<03a+1=−13a=3a⇒a=−32,可得a.。