多自由度系统的振动

合集下载

第六讲--多自由度系统振动-2

第六讲--多自由度系统振动-2

解: 1)求柔度系数
m
31
k/5
m
21
k/3
P=1
2m k
11
32 4
P=1
22 4 12
P=1
33 9
23 4 13
11 1/ k 21 31 11
22
1 k
1 k /3
4
22
1 k
1 k/3
1 9
k /5
3.3.1 柔度法
1 1 1
柔度矩阵: [ ] 1 4 4
1 4 9
2)求频率
2 0 0
质量矩阵: [M] m 0 1 0
0 0 1
由频率方程: M I 0
2 1 1 m 2 4 4 0 ,
2 4 9
展开式为: 3 15 2 42 30 0
1 m m2
方程三个根为: 1 11.601 2 2.246 3 1.151
三个频率为:
1 0.2936
k m
4Y
4 4
3.4.1 主振型矩阵与正则坐标
(2)正则坐标 任意一个质点的位移 y 都可按主振型来组合:
y1 1Y11 2Y12 3Y13 y2 1Y21 2Y22 3Y23
yi 1Yi1 2Yi2 3Yi3
yn 1Yn1 2Yn2 3Yn3
nY1n nY2n
y1
y2
Y1 Y121
Y YYY132111
Y2 1
Y2 2
Y32
Y3 1
Y3 2
Y33
Y14 Y4
2
Y34
Y41
Y2 4
Y3 4
Y44
主 振
型 矩 阵
第一振型
1

多自由度系统的振动

多自由度系统的振动
分别以两物体的平衡位置为坐标原点,取两物体离开其平衡 位置的距离x1、x2为广义坐标,两物体沿x方向的受力如图示, 它们的运动微分方程分别为
m1x1 2kx1 kx2 0 2mx2 kx1 2kx2 0
5.1 两自由度系统的模态
m
0
0 2m
xx12
2k k
k
2k
xx12
5.1 两自由度系统的模态
主振动 x(t) u cos(t )
代入运动微分方程 Mx Kx 0
化简可得代数齐次方程组 (K 2M )u 0
k1+k2
-k2
2
m1
-k2
k2+k3
2m2
uu12
0 0
上式存在非零解的充要条件:系数行列式为零,即:
K 2M 0
k1+k2 2m1
两自由度系统的振动
多自由度系统的特点:
各个自由度彼此相互联系,某一自由度的振动往 往导致整个系统的振动。
运动微分方程的变量之间通常相互耦合,需要求 解联立方程。
返回首页
两自由度系统的振动
多自由度系统是指具有两个以上自由度以上的动力学系 统,二自由度系统是最简单的多自由度系统。
汽车左右对称,化为平面系统
5.1 两自由度系统的模态
再将初始条件(2)代入式,得
A(1) 1
0,
1 0,
A(2) 1
1,
2 0
x1(t) cos2t cos 3
kt m
(cm)
x2 (t) cos2t cos 3
k t (cm)
m
这表明,由于初始位移之比等于该系统的第二振幅比,因 此,系统按第二主振型以频率ω2作谐振动。

汽车振动基础第4章-多自由度(定稿)

汽车振动基础第4章-多自由度(定稿)
j 1
k11 k1 x1 k2 x1 k1 k2
k21 k12 k2 x1 k2
k22 k2 x2 k3 x2 k2 k3
j2
k31 k13 0
k32 k23 k3 x2 k3
0 k1 k 2 k 2 K k 2 k 2 k3 k3 0 k3 k3
– 拉格朗日法
• 方程的形式
广义坐标
qi (i 1, 2,3,, n)
T:系统的总动能
d T T ( ) Qi 0 dt qi qi
i 1, 2,3, , n
对应于第i个广义 坐标的广义力
– 保守系统
» 系统作用的主动力仅为势力 Qi
d T T U ( ) 0 dt qi qi qi
m2 m22 m3 4
④柔度矩阵的影响系数法
F ij
柔度影响系数 ij 的意义是在第j个坐标上施加单位力作用时,在第i个坐 标上引起的位移。 例题4-8 用影响系数法求图示系统的柔度矩阵
11 F 21 31
12 22 32
13 23 33
也可写成 其中


MX KX 0
力方程 位移方程
K 1MX X 0
m x 0 或 x
称为柔度,而
FMX X 0
1 称为柔度矩阵
1 k
FK
②刚度矩阵的影响系数法
K kij
刚度影响系数 k 的意义是使系统的第j个坐标产生单位位移,而其它的 ij 坐标位移为零时,在第i个坐标上所施加的作用力的大小。
仅代表外部激励 广义力

第三章(多自由度系统的振动)

第三章(多自由度系统的振动)

x
x1 1
节点
x3 1
3 2
k m
x2 1
理解固有振型
理解固有振型
理解固有振型
返回
固有振型的正交性
1.固有振型的归一化
2 r 1 3 2 r 1 3
都是固有振型向量 ① 按某一自由度的幅值归一化
( K 2 M ) 0
1 1 1 2 1 1
有非零
det( K 2 M ) 0
1
k (1 2 )k , 2 m m
多自由度系统的固有振动
u1 k1 m1 k2 m2 u2 k3
固有振动:
k (1 2 ) k 1 1 u1 (t ) sin t 2 m t 1 , u2 (t ) 1 sin m 1
固有振型的正交性
加权正交性的简洁表示
T r M s 0, r s
M s M r , r s
T r
rT M s M r rs
rs
def
1, r s 0, r s
rT K s 0, r s
rT K s K r , r s
【问题】在已知固有频率求固有振型时,所得到的N个线性方程中有几个是独
立的?
( K r2 M ) r 0
结论: 当 r 不是特征方程的重根时,上述方程只有N-1个方程是独立的(见 <<振动力学>>刘延柱第74页).
多自由度系统的固有振动
【例】设图中二自由度系统的物理参为 m1 m2 m, k 1 k 3 k , k 2 k , 0 1 ,确定系统的固有振动.

多自由度系统的振动模态分析

多自由度系统的振动模态分析

多自由度系统的振动模态分析振动是物体在受到外界作用力或受到初始扰动后产生的周期性运动。

在工程领域中,多自由度系统的振动模态分析是一项重要的研究内容。

本文将介绍多自由度系统的振动模态分析的基本原理和方法。

一、多自由度系统的定义多自由度系统是指由多个相互连接的质点组成的系统。

每个质点都可以在三个坐标方向上自由运动,因此系统的自由度就是质点的个数乘以每个质点的自由度。

多自由度系统的振动模态分析可以帮助我们了解系统的固有振动特性,为工程设计和结构优化提供依据。

二、振动模态的概念振动模态是指多自由度系统在固有频率下的振动形态。

每个固有频率对应一个振动模态,振动模态的数量等于系统的自由度。

振动模态分析可以帮助我们确定系统在不同频率下的振动特性,从而预测系统的响应和寻找可能的共振点。

三、振动模态分析的方法1. 模态分析方法模态分析是一种通过数学方法求解系统的固有频率和振动模态的方法。

常用的模态分析方法包括有限元法、模态超级位置法等。

有限元法是一种基于离散化的方法,将系统分割成有限个小单元,通过求解每个单元的振动特性,最终得到整个系统的振动模态。

模态超级位置法是一种基于物理原理的方法,通过测量系统在不同频率下的振动响应,推导出系统的振动模态。

2. 模态参数的计算模态参数是指描述振动模态特性的参数,包括固有频率、振型、振幅等。

模态参数的计算可以通过实验测量和数值模拟两种方法。

实验测量是通过激励系统,测量系统在不同频率下的振动响应,并通过信号处理和频谱分析等方法计算出模态参数。

数值模拟是通过建立系统的数学模型,利用计算机仿真软件求解系统的振动模态。

四、振动模态分析的应用振动模态分析在工程领域有广泛的应用。

首先,振动模态分析可以帮助工程师了解系统的固有振动特性,从而优化设计和改善结构。

其次,振动模态分析可以用于故障诊断和预测,通过对系统的振动模态进行监测和分析,可以判断系统是否存在异常或潜在故障。

此外,振动模态分析还可以应用于声学工程、航天工程、汽车工程等领域。

多自由度系统振动的研究

多自由度系统振动的研究

多自由度系统振动的研究1.建立系统的数学模型:多自由度系统的数学模型通常可以通过运动微分方程来描述,这些微分方程可以由拉格朗日方程或哈密顿方程获得。

建立系统的数学模型是研究多自由度系统的第一步,它能够定量描述系统的振动特性。

2.振动模态分析:振动模态是指各种独立振动模式对应的特征值及特征向量。

在多自由度系统中,有多个振动模态,每个振动模态都有对应的特征值和特征向量,它们描述了系统在不同振动模态下的振动特性。

振动模态分析可以帮助我们理解系统的振动特性、模式和共振现象,并为系统的设计和优化提供依据。

3.模态叠加方法:模态叠加方法是一种常用的分析多自由度系统振动响应的方法。

该方法将系统的初始条件和外力激励在模态基下展开,通过将各模态响应相加,得到系统的总体振动响应。

模态叠加方法可以简化计算,使得问题的求解更加方便,应用广泛。

4.模态分析与结构动力学:多自由度系统的模态分析与结构动力学密切相关。

结构动力学是研究结构体受外力激励下的振动响应的学科,它通常涉及到多自由度系统的模态分析、频率响应和时域分析等。

模态分析为结构动力学提供了基础,通过分析结构的振动模态,可以预测结构在不同激励下的振动响应。

5.数值模拟与实验验证:在研究多自由度系统的振动过程中,可以借助于数值模拟和实验验证相结合的方法。

数值模拟可以通过有限元、边界元或半经验法等方法,对系统的振动响应进行计算和预测。

实验验证可以通过振动台试验或实验模态分析等方式,对系统的振动特性进行实测,从而验证数值模拟的准确性。

总之,研究多自由度系统振动是一个复杂而又重要的课题。

通过建立数学模型、进行振动模态分析、应用模态叠加方法以及进行数值模拟和实验验证等手段,可以更深入地了解多自由度系统的振动特性,为实际工程问题的求解和优化提供科学依据。

结构动力学多自由度系统振动

结构动力学多自由度系统振动

运用功旳互等原理可知,刚度矩阵是对称阵,即有kij=kji, 于是上述刚度矩阵为:
k1 k2
k2
K 0
0
0
k2 k2 k3
k3 0
0
0 k3 k3 k4 k4
0
0 0 k4 k4 k5 k5
0
0
0
k5
k5
⒉ 柔度法 柔度系数aij定义为:
在第j个质量上作用单位力时在第i个质量上产生旳位移。
K12 k2 K22 k2 k3
K32 k3 K42 0 K52 0
K13 0 K23 k3 K33 k3 k4 K43 k4 K53 0
K14 0 K24 0 K34 k4 K44 k4 k5 K54 k5
K15 0 K25 0 K35 0 K45 k5 K55 k5
(a) m1 mi
mj mn
y1
yi yj yn
m1 y1
(b)
mi yi
1
i
j
m j y j
mn yn
ii
ji
1
(c)
ij
ij
jj
(a) m1
mi
mj mn
y1
yi yj yn
m1 y1
(b)
mi yi
1
i
j
m j y j
mn yn
ii
ji
1
(c)
ij
ij
jj
于是: 若在第j个质量上作用有力F,则在第i个质量上产
2
2
2
1 Mx 2 1 m[x 2 2Lx cos L2 2 ] 1 kx2 mgL(1 cos)
2
2
2
d dt

第三部分 多自由度系统的振动

第三部分 多自由度系统的振动

q t uη(t) u r t
r
r 1
n
u11 u12 u1n u u u 21 22 2n 1 (t ) 2 (t ) n (t ) un1 un 2 unn
(r )

1
r
u
(r )
r u
( r )T
Mu( r )
正则振型
主振型 正则化因子
组成正则振型矩阵
u u
(1)
u
(2)
u
(n )
第三部分 多自由度系统的振动 4 对多自由度系统振动求响应 求解的基本步骤: (4)用正则振型矩阵进行坐标变换(方程组解耦)
q t uη t 令 代入无阻尼自由振动系统,并用uT左乘方程
2 r t 2 rrr t r r t Nr (t )
r 1,2,, n
(5)按单自由度相关方法求各正则坐标下的响应 各正则坐标下单自由度自由振动系统,对初始条件的 响应 1)原坐标下的初始条件变换为正则坐标下的初始条件
η0 u q0 T η0 u Mq0 ,
u( s )T Ku(r ) 0
(r s )
u( r )T Ku(r ) r2
M r u Mu
T
K r uT Ku 12 2 2 Λ 2 n
1 1 I 1
第三部分 多自由度系统的振动 4 对多自由度系统振动求响应 求解的类型: 无阻尼振动系统对初始条件的响应 无阻尼振动系统对任意激励的响应 有阻尼振动系统对各种激励的响应 (简谐激励、周期激励、任意激励)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2章多自由度系统的振动
基本要点:
①建立系统微分方程的几种方法;
②固有频率、固有振型的概念以及固有振型关于质量和刚度矩阵的加权正交性;
③多自由度系统运动的解耦—模态坐标变换及运用模态叠加法求解振动系统的响应。

引言
多自由度振动系统的几个工程实例;多自由度系统振动分析的特点;多自由度系统振动分析与单自由度系统的区别与联系。

§2.1多自由度系统的振动方程
●方程的一般形式:质量矩阵、阻尼矩阵、刚度矩阵和激振力
§2.2建立系统微分方程的方法
●影响系数:刚度影响系数、柔度影响系数
●刚度矩阵法、柔度矩阵法及这两种方法的特点;Lagrange方程法
§2.3无阻尼系统的自由振动
●二自由度系统的固有振动:固有频率、固有振型。

●二自由度系统的自由振动
●二自由度系统的运动耦合与解耦
弹性耦合,惯性耦合;
振动系统的耦合取决于坐标系的选择;
●多自由度系统的固有振动
固有振动的形式及条件:特征值、特征向量、模态质量、模态刚度;
固有振型的性质:关于质量矩阵和刚度矩阵的加权正交性;
刚体模态;
●运动的解耦:模态坐标变换(主坐标变换)。

●多自由度系统的自由振动
§2.4无阻尼系统的受迫振动
●频域分析:动刚度矩阵和频响函数矩阵,频响函数矩阵的振型展开式,系统反
共振问题。

●时域分析:单位脉冲响应矩阵,任意激励下的响应,模态截断问题,模态加速
度法。

§2.5比例阻尼系统的振动
●多自由度系统的阻尼:Rayleigh比例阻尼。

●自由振动
●受迫振动:频响函数矩阵,单位脉冲响应矩阵,任意激励下的响应。

§2.6一般粘性阻尼系统的振动
●自由振动:物理空间描述,状态空间描述。

●受迫振动:脉冲响应矩阵,频响函数矩阵,任意激励下的响应。

思考题:
①刚度矩阵和柔度矩阵在什么条件下是互逆的两个矩阵?从物理上和数学两方面加以解
释?
②为什么说模态质量、模态刚度的数值大小没有直接意义?
③证明固有振型关于质量矩阵和刚度矩阵的加权正交性,并讨论其物理意义。

④在实际的多自由度系统振动分析中,为什么要进行模态截断?
参考书目
1.胡海岩,机械振动与冲击,航空工业出版社,2002
2.故海岩,机械振动基础,北京航空航天大学出版社,2005
3.季文美,机械振动,科学出版社,1985。

(图书馆索引号:TH113.1/1010)
4.郑兆昌主编, 机械振动上册,机械工业出版社,1980。

(图书馆索引号:
TH113.1/1003-A)
5.Singiresu S R, Mechanical vibrations,Longman Prentice Hall, 2004(图书馆索引
号:TH113.1/WR32)。

相关文档
最新文档