三角函数计算题期末复习(含答案)
三角函数及解三角形测试题(含答案)

三角函数及解三角形测试题(含答案)三角函数及解三角形1.在锐角三角形ABC中,角A的对边为a,角B的对边为b,角C的对边为c。
根据正弦定理,$\frac{a}{\sinA}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R$,其中R为三角形外接圆的半径。
根据余弦定理,$c^2=a^2+b^2-2ab\cos C$。
根据正切的定义,$\tan A=\frac{a}{b}$。
根据余切的定义,$\cotA=\frac{b}{a}$。
根据正割的定义,$\sec A=\frac{c}{a}$。
根据余割的定义,$\csc A=\frac{c}{b}$。
2.选择题:1.设$\alpha$是锐角,$\tan(\frac{\pi}{4}+\alpha)=3+\sqrt{22}$,则$\cos\alpha=\frac{2\sqrt{22}}{36}$。
2.一艘船向XXX,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时5海里。
4.已知函数$f(x)=3\sin\omega x+\cos\omega x$,$y=f(x)$的图象与直线$y=2$的两个相邻交点的距离等于$\pi$,则$f(x)$的单调递增区间是$(\frac{k\pi}{2}-\frac{\pi}{12},\frac{k\pi}{2}+\frac{5\pi}{12})$,其中$k\in Z$。
5.圆的半径为4,$a,b,c$为该圆的内接三角形的三边,若$abc=162$,则三角形的面积为$22$。
6.已知$\cos\alpha=-\frac{4}{\pi}$,且$\alpha\in(\frac{\pi}{4},\frac{\pi}{2})$,则$\tan(\alpha+\frac{\pi}{4})=-\frac{7}{7}$。
三角函数计算题期末复习(含答案)

= (1)2 ( 3)2 3 3 223
=1+1 =2;
(2)原式=1 2 2 1 2
2
22
=0. 考点:特殊角的三角函数值. 15.2﹣2 . 【解析】 试题分析:原式前两项化为最简二次根式,第三项利用特殊角的三角函数值计算,最后一 项利用绝对值的代数意义化简,计算即可得到结果.
3
7.计算: 22 2cos30 tan60 3.140 .
8.计算: 2 1 2sin45 8 tan2 60 .
9.计算: 2sin30 ° 2cos45 ° 8 .
10.计算:
(1) sin2 60 cos2 60 ;
(2) 4cos45 tan60 8 12 .
33.计算 : 3 tan 60 sin2 45 3 tan 45 cos 60 .
34.计算: 27 -3sin60°-cos30°+2tan45°.
35.计算:
27 3 tan 30o
3
0
1 3
2
36.计算 20140+ 1 1 − 2 sin45°+tan60°. 2
=3﹣1﹣1 =1. 考点:特殊角的三角函数值. 18.-2. 【解析】 试题分析:分别计算特殊角三角函数值和算术平方根,然后再计算加减法.
试题解析:原式= 2 3 1 |1 3 | 2
= 3 1 3 1
=-2. 考点:实数的混合运算. 19.1. 【解析】 试题分析:按照实数的运算法则依次计算.
的关键是要熟练掌握实数相关运算法则.
3.﹣1.5.
【解析】试题分析:把 30°的正弦值、60°的余弦值、45°的正切值代入进行计算即可.
三角函数大题专项(含答案)

三角函数专项训练1.在△ABC中,角A、B、C对应边a、b、c,外接圆半径为1,已知2(sin2A﹣sin2C)=(a﹣b)sin B.(1)证明a2+b2﹣c2=ab;(2)求角C和边c.2.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b sin A=a cos(B﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.3.已知α,β为锐角,tanα=,cos(α+β)=﹣.(1)求cos2α的值;(2)求tan(α﹣β)的值.4.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.5.已知函数f(x)=sin2x+sin x cos x.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,求m的最小值.6.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a sin A=4b sin B,ac=(a2﹣b2﹣c2)(Ⅰ)求cos A的值;(Ⅱ)求sin(2B﹣A)的值7.设函数f(x)=sin(ωx﹣)+sin(ωx﹣),其中0<ω<3,已知f()=0.(Ⅰ)求ω;(Ⅱ)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在[﹣,]上的最小值.8.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a>b,a=5,c=6,sin B=.(Ⅰ)求b和sin A的值;(Ⅱ)求sin(2A+)的值.9.△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sin B sin C;(2)若6cos B cos C=1,a=3,求△ABC的周长.10.△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cos B;(2)若a+c=6,△ABC的面积为2,求b.11.已知函数f(x)=cos(2x﹣)﹣2sin x cos x.(I)求f(x)的最小正周期;(II)求证:当x∈[﹣,]时,f(x)≥﹣.12.已知向量=(cos x,sin x),=(3,﹣),x∈[0,π].(1)若,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.13.在△ABC中,∠A=60°,c=a.(1)求sin C的值;(2)若a=7,求△ABC的面积.14.已知函数f(x)=2sinωx cosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值;(2)求f(x)的单调递增区间.15.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2a cos B.(1)证明:A=2B;(2)若cos B=,求cos C的值.16.设f(x)=2sin(π﹣x)sin x﹣(sin x﹣cos x)2.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值.17.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a sin2B=b sin A.(1)求B;(2)已知cos A=,求sin C的值.18.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2a cos B.(Ⅰ)证明:A=2B;(Ⅱ)若△ABC的面积S=,求角A的大小.19.在△ABC中,角A,B,C所对的边分别是a,b,c,且+=.(Ⅰ)证明:sin A sin B=sin C;(Ⅱ)若b2+c2﹣a2=bc,求tan B.20.在△ABC中,AC=6,cos B=,C=.(1)求AB的长;(2)求cos(A﹣)的值.21.已知函数f(x)=4tan x sin(﹣x)cos(x﹣)﹣.(1)求f(x)的定义域与最小正周期;(2)讨论f(x)在区间[﹣,]上的单调性.22.△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.参考答案1.在△ABC中,角A、B、C对应边a、b、c,外接圆半径为1,已知2(sin2A﹣sin2C)=(a﹣b)sin B.(1)证明a2+b2﹣c2=ab;(2)求角C和边c.【解答】证明:(1)∵在△ABC中,角A、B、C对应边a、b、c,外接圆半径为1,∴由正弦定理得:=2R=2,∴sin A=,sin B=,sin C=,∵2(sin2A﹣sin2C)=(a﹣b)sin B,∴2()=(a﹣b)•,化简,得:a2+b2﹣c2=ab,故a2+b2﹣c2=ab.解:(2)∵a2+b2﹣c2=ab,∴cos C===,解得C=,∴c=2sin C=2•=.2.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b sin A=a cos(B﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.【解答】解:(Ⅰ)在△ABC中,由正弦定理得,得b sin A=a sin B,又b sin A=a cos(B﹣).∴a sin B=a cos(B﹣),即sin B=cos(B﹣)=cos B cos+sin B sin=cos B+,∴tan B=,又B∈(0,π),∴B=.(Ⅱ)在△ABC中,a=2,c=3,B=,由余弦定理得b==,由b sin A=a cos(B﹣),得sin A=,∵a<c,∴cos A=,∴sin2A=2sin A cos A=,cos2A=2cos2A﹣1=,∴sin(2A﹣B)=sin2A cos B﹣cos2A sin B==.3.已知α,β为锐角,tanα=,cos(α+β)=﹣.(1)求cos2α的值;(2)求tan(α﹣β)的值.【解答】解:(1)由,解得,∴cos2α=;(2)由(1)得,sin2,则tan2α=.∵α,β∈(0,),∴α+β∈(0,π),∴sin(α+β)==.则tan(α+β)=.∴tan(α﹣β)=tan[2α﹣(α+β)]==.4.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.【解答】解:(1)∵∠ADC=90°,∠A=45°,AB=2,BD=5.∴由正弦定理得:=,即=,∴sin∠ADB==,∵AB<BD,∴∠ADB<∠A,∴cos∠ADB==.(2)∵∠ADC=90°,∴cos∠BDC=sin∠ADB=,∵DC=2,∴BC===5.5.已知函数f(x)=sin2x+sin x cos x.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,求m的最小值.【解答】解:(I)函数f(x)=sin2x+sin x cos x=+sin2x=sin(2x﹣)+,f(x)的最小正周期为T==π;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,可得2x﹣∈[﹣,2m﹣],即有2m﹣≥,解得m≥,则m的最小值为.6.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a sin A=4b sin B,ac=(a2﹣b2﹣c2)(Ⅰ)求cos A的值;(Ⅱ)求sin(2B﹣A)的值【解答】(Ⅰ)解:由,得a sin B=b sin A,又a sin A=4b sin B,得4b sin B=a sin A,两式作比得:,∴a=2b.由,得,由余弦定理,得;(Ⅱ)解:由(Ⅰ),可得,代入a sin A=4b sin B,得.由(Ⅰ)知,A为钝角,则B为锐角,∴.于是,,故.7.设函数f(x)=sin(ωx﹣)+sin(ωx﹣),其中0<ω<3,已知f()=0.(Ⅰ)求ω;(Ⅱ)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在[﹣,]上的最小值.【解答】解:(Ⅰ)函数f(x)=sin(ωx﹣)+sin(ωx﹣)=sinωx cos﹣cosωx sin﹣sin(﹣ωx)=sinωx﹣cosωx=sin(ωx﹣),又f()=sin(ω﹣)=0,∴ω﹣=kπ,k∈Z,解得ω=6k+2,又0<ω<3,∴ω=2;(Ⅱ)由(Ⅰ)知,f(x)=sin(2x﹣),将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),得到函数y=sin(x﹣)的图象;再将得到的图象向左平移个单位,得到y=sin(x+﹣)的图象,∴函数y=g(x)=sin(x﹣);当x∈[﹣,]时,x﹣∈[﹣,],∴sin(x﹣)∈[﹣,1],∴当x=﹣时,g(x)取得最小值是﹣×=﹣.8.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a>b,a=5,c=6,sin B=.(Ⅰ)求b和sin A的值;(Ⅱ)求sin(2A+)的值.【解答】解:(Ⅰ)在△ABC中,∵a>b,故由sin B=,可得cos B=.由已知及余弦定理,有=13,∴b=.由正弦定理,得sin A=.∴b=,sin A=;(Ⅱ)由(Ⅰ)及a<c,得cos A=,∴sin2A=2sin A cos A=,cos2A=1﹣2sin2A=﹣.故sin(2A+)==.9.△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sin B sin C;(2)若6cos B cos C=1,a=3,求△ABC的周长.【解答】解:(1)由三角形的面积公式可得S△ABC=ac sin B=,∴3c sin B sin A=2a,由正弦定理可得3sin C sin B sin A=2sin A,∵sin A≠0,∴sin B sin C=;(2)∵6cos B cos C=1,∴cos B cos C=,∴cos B cos C﹣sin B sin C=﹣=﹣,∴cos(B+C)=﹣,∴cos A=,∵0<A<π,∴A=,∵===2R==2,∴sin B sin C=•===,∴bc=8,∵a2=b2+c2﹣2bc cos A,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c=∴周长a+b+c=3+.10.△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cos B;(2)若a+c=6,△ABC的面积为2,求b.【解答】解:(1)sin(A+C)=8sin2,∴sin B=4(1﹣cos B),∵sin2B+cos2B=1,∴16(1﹣cos B)2+cos2B=1,∴16(1﹣cos B)2+cos2B﹣1=0,∴16(cos B﹣1)2+(cos B﹣1)(cos B+1)=0,∴(17cos B﹣15)(cos B﹣1)=0,∴cos B=;(2)由(1)可知sin B=,∵S△ABC=ac•sin B=2,∴ac=,∴b2=a2+c2﹣2ac cos B=a2+c2﹣2××=a2+c2﹣15=(a+c)2﹣2ac﹣15=36﹣17﹣15=4,∴b=2.11.已知函数f(x)=cos(2x﹣)﹣2sin x cos x.(I)求f(x)的最小正周期;(II)求证:当x∈[﹣,]时,f(x)≥﹣.【解答】解:(Ⅰ)f(x)=cos(2x﹣)﹣2sin x cos x,=(co2x+sin2x)﹣sin2x,=cos2x+sin2x,=sin(2x+),∴T==π,∴f(x)的最小正周期为π,(Ⅱ)∵x∈[﹣,],∴2x+∈[﹣,],∴﹣≤sin(2x+)≤1,∴f(x)≥﹣12.已知向量=(cos x,sin x),=(3,﹣),x∈[0,π].(1)若,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.【解答】解:(1)∵=(cos x,sin x),=(3,﹣),∥,∴﹣cos x=3sin x,当cos x=0时,sin x=1,不合题意,当cos x≠0时,tan x=﹣,∵x∈[0,π],∴x=,(2)f(x)==3cos x﹣sin x=2(cos x﹣sin x)=2cos(x+),∵x∈[0,π],∴x+∈[,],∴﹣1≤cos(x+)≤,当x=0时,f(x)有最大值,最大值3,当x=时,f(x)有最小值,最小值﹣2.13.在△ABC中,∠A=60°,c=a.(1)求sin C的值;(2)若a=7,求△ABC的面积.【解答】解:(1)∠A=60°,c=a,由正弦定理可得sin C=sin A=×=,(2)a=7,则c=3,∴C<A,∵sin2C+cos2C=1,又由(1)可得cos C=,∴sin B=sin(A+C)=sin A cos C+cos A sin C=×+×=,∴S△ABC=ac sin B=×7×3×=6.14.已知函数f(x)=2sinωx cosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值;(2)求f(x)的单调递增区间.【解答】解:f(x)=2sinωx cosωx+cos2ωx,=sin2ωx+cos2ωx,=,由于函数的最小正周期为π,则:T=,解得:ω=1.(2)由(1)得:函数f(x)=,令(k∈Z),解得:(k∈Z),所以函数的单调递增区间为:[](k∈Z).15.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2a cos B.(1)证明:A=2B;(2)若cos B=,求cos C的值.【解答】(1)证明:∵b+c=2a cos B,∴sin B+sin C=2sin A cos B,∵sin C=sin(A+B)=sin A cos B+cos A sin B,∴sin B=sin A cos B﹣cos A sin B=sin(A﹣B),由A,B∈(0,π),∴0<A﹣B<π,∴B=A﹣B,或B=π﹣(A﹣B),化为A=2B,或A=π(舍去).∴A=2B.(II)解:cos B=,∴sin B==.cos A=cos2B=2cos2B﹣1=,sin A==.∴cos C=﹣cos(A+B)=﹣cos A cos B+sin A sin B=+×=.16.设f(x)=2sin(π﹣x)sin x﹣(sin x﹣cos x)2.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值.【解答】解:(Ⅰ)∵f(x)=2sin(π﹣x)sin x﹣(sin x﹣cos x)2 =2sin2x﹣1+sin2x =2•﹣1+sin2x=sin2x﹣cos2x+﹣1=2sin(2x﹣)+﹣1,令2kπ﹣≤2x﹣≤2kπ+,求得kπ﹣≤x≤kπ+,可得函数的增区间为[kπ﹣,kπ+],k∈Z.(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得y=2sin(x﹣)+﹣1的图象;再把得到的图象向左平移个单位,得到函数y=g(x)=2sin x+﹣1的图象,∴g()=2sin+﹣1=.17.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a sin2B=b sin A.(1)求B;(2)已知cos A=,求sin C的值.【解答】解:(1)∵a sin2B=b sin A,∴2sin A sin B cos B=sin B sin A,∴cos B=,∴B=.(2)∵cos A=,∴sin A=,∴sin C=sin(A+B)=sin A cos B+cos A sin B==.18.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2a cos B.(Ⅰ)证明:A=2B;(Ⅱ)若△ABC的面积S=,求角A的大小.【解答】(Ⅰ)证明:∵b+c=2a cos B,∴sin B+sin C=2sin A cos B,∴sin B+sin(A+B)=2sin A cos B∴sin B+sin A cos B+cos A sin B=2sin A cos B∴sin B=sin A cos B﹣cos A sin B=sin(A﹣B)∵A,B是三角形中的角,∴B=A﹣B,∴A=2B;(Ⅱ)解:∵△ABC的面积S=,∴bc sin A=,∴2bc sin A=a2,∴2sin B sin C=sin A=sin2B,∴sin C=cos B,∴B+C=90°,或C=B+90°,∴A=90°或A=45°.19.在△ABC中,角A,B,C所对的边分别是a,b,c,且+=.(Ⅰ)证明:sin A sin B=sin C;(Ⅱ)若b2+c2﹣a2=bc,求tan B.【解答】(Ⅰ)证明:在△ABC中,∵+=,∴由正弦定理得:,∴=,∵sin(A+B)=sin C.∴整理可得:sin A sin B=sin C,(Ⅱ)解:b2+c2﹣a2=bc,由余弦定理可得cos A=.sin A=,=+==1,=,tan B=4.20.在△ABC中,AC=6,cos B=,C=.(1)求AB的长;(2)求cos(A﹣)的值.【解答】解:(1)∵△ABC中,cos B=,B∈(0,π),∴sin B=,∵,∴AB==5;(2)cos A═﹣cos(π﹣A)=﹣cos(C+B)=sin B sin C﹣cos B cos C=﹣.∵A为三角形的内角,∴sin A=,∴cos(A﹣)=cos A+sin A=.21.已知函数f(x)=4tan x sin(﹣x)cos(x﹣)﹣.(1)求f(x)的定义域与最小正周期;(2)讨论f(x)在区间[﹣,]上的单调性.【解答】解:(1)∵f(x)=4tan x sin(﹣x)cos(x﹣)﹣.∴x≠kπ+,即函数的定义域为{x|x≠kπ+,k∈Z},则f(x)=4tan x cos x•(cos x+sin x)﹣=4sin x(cos x+sin x)﹣=2sin x cos x+2sin2x﹣=sin2x+(1﹣cos2x)﹣=sin2x﹣cos2x=2sin(2x﹣),则函数的周期T=;(2)由2kπ﹣<2x﹣<2kπ+,k∈Z,得kπ﹣<x<kπ+,k∈Z,即函数的增区间为(kπ﹣,kπ+),k∈Z,当k=0时,增区间为(﹣,),k∈Z,∵x∈[﹣,],∴此时x∈(﹣,],由2kπ+<2x﹣<2kπ+,k∈Z,得kπ+<x<kπ+,k∈Z,即函数的减区间为(kπ+,kπ+),k∈Z,当k=﹣1时,减区间为(﹣,﹣),k∈Z,∵x∈[﹣,],∴此时x∈[﹣,﹣),即在区间[﹣,]上,函数的减区间为∈[﹣,﹣),增区间为(﹣,].22.△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.【解答】解:(Ⅰ)∵在△ABC中,0<C<π,∴sin C≠0已知等式利用正弦定理化简得:2cos C(sin A cos B+sin B cos A)=sin C,整理得:2cos C sin(A+B)=sin C,即2cos C sin(π﹣(A+B))=sin C2cos C sin C=sin C∴cos C=,∴C=;(Ⅱ)由余弦定理得7=a2+b2﹣2ab•,∴(a+b)2﹣3ab=7,∵S=ab sin C=ab=,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC的周长为5+.。
三角函数练习题(含答案)

三角函数练习题及答案(一)选择题1、在直角三角形中,各边都扩大2倍,则锐角A 的正弦值与余弦值都( )A 、缩小2倍B 、扩大2倍C 、不变D 、不能确定12、在Rt △ABC 中,∠C=900,BC=4,sinA=,则AC=( )A 、3B 、4C 、5D 、63、若∠A 是锐角,且sinA=,则( )A 、00<∠A<300B 、300<∠A<450C 、450<∠A<600D 、600<∠A<9004、若cosA=,则A A AA tan 2sin 4tan sin 3+-=( )A 、B 、C 、D 、05、在△ABC 中,∠A :∠B :∠C=1:1:2,则a :b :c=( )A 、1:1:2B 、1:1:C 、1:1:D 、1:1:6、在Rt △ABC 中,∠C=900,则下列式子成立的是( )A 、sinA=sinB B 、sinA=cosBC 、tanA=tanBD 、cosA=tanB7.已知Rt △ABC 中,∠C=90°,AC=2,BC=3,那么下列各式中,正确的是( )A .sinB= B .cosB= C .tanB= D .tanB=8.点(-sin60°,cos60°)关于y 轴对称的点的坐标是( )A .(32,12)B .(-32,12)C .(-32,-12)D .(-12,-32)9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,若这位同学的目高1.6米,则旗杆的高度约为( )A .6.9米B .8.5米C .10.3米D .12.0米10.王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( )(A )350m (B )100 m (C )150m (D )3100m11、如图1,在高楼前D 点测得楼顶的仰角为300,向高楼前进60米到C 点,又测得仰角为450,则该高楼的高度大约为( )A.82米B.163米C.52米D.70米12、一艘轮船由海平面上A 地出发向南偏西40º的方向行驶40海里到达B 地,再由B 地向北偏西10º的方向行驶40海里到达C 地,则A 、C 两地相距( ).(A )30海里 (B )40海里 (C )50海里 (D )60海里(二)填空题1.在Rt △ABC 中,∠C=90°,AB=5,AC=3,则sinB=_____.2.在△ABC 中,若BC=2,AB=7,AC=3,则cosA=________.3.在△ABC 中,AB=2,AC=2,∠B=30°,则∠BAC 的度数是______.4.如图,如果△APB 绕点B 按逆时针方向旋转30°后得到△A 'P 'B ,且BP=2,那么PP '的长为________. (不取近似值. 以下数据供解题使用:sin15°=,cos15°=624+)5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西___________度.6.如图,机器人从A 点,沿着西南方向,行了个42单位,到达B点后观察到原点O 在它的南偏东60°的方向上,则原来A 的坐标为___________结果保留根号).7.求值:sin 260°+cos 260°=___________.8.在直角三角形ABC 中,∠A=090,BC=13,AB=12,那么tan B =___________.9.根据图中所给的数据,求得避雷针CD 的长约为_______m (结果精确的到0.01m ).(可用计算器求,也可用下列参考数据求:sin43°≈0.6802,sin40°≈0.6428,cos43°≈0.7341,cos40°≈0.7660,tan43°≈0.9325,tan40°≈0.8391)10.如图,自动扶梯AB 段的长度为20米,倾斜角A 为α,高度BC 为___________米(结果用含α的三角比表示).11.如图2所示,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,这时测得大树在地面上的影子约为10米,则大树的高约为________米.(保留两个有效数字,2≈1.41,3≈1.73)三、简答题:1,计算:sin cos cot tan tan 3060456030︒+︒-︒-︒⋅︒分析:可利用特殊角的三角函数值代入直接计算;2计算:22459044211(cos sin )()()︒-︒+-︒+--π分析:利用特殊角的三角函数值和零指数及负整数次幂的知识求解。
三角函数题型汇总(附答案)

三角函数训练题(1)一、选择题(本大题共10小题,每小题3分,共30分)1.命题p :α是第二象限角,命题q:α是钝角,则p 是q 的( ) A.充分非必要条件 B.必要非充分条件 C.充要条件D.既非充分又非必要条件2.若角α满足sin αcos α<0,cos α-sin α<0,则α在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限3.集合M ={x |x =42ππ±k ,k ∈Z }与N ={x |x =4πk ,k ∈Z }之间的关系是( )A.M NB.N MC.M =ND.M ∩N=∅4.已知下列各角(1)787°,(2)-957°,(3)-289°,(4)1711°,其中在第一象限的角是( )A.(1)、(2)B.(2)、(3)C.(1)、(3)D.(2)、(4)5.设a <0,角α的终边经过点P (-3a ,4a ),那么sin α+2cos α的值等于( )A.52B.-52C.51D.-51 6.若cos(π+α)=-23,21π<α<2π,则sin(2π-α)等于( )A.-23B.23C.21D.±237.已知sin α>sin β,那么下列命题成立的是( )A.若α、β是第一象限角,则cos α>cos βB.若α、β是第二象限角,则tan α>tan βC.若α、β是第三象限角,则cos α>cos βD.若α、β是第四象限角,则tan α>tan β8.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是( )A.2B.1sin 2C.2sin1D.sin29.如果sin x +cos x =51,且0<x <π,那么cot x 的值是( )A.-34 B.-34或-43 C.-43 D.34或-43 10.已知①1+cos α-sin β+sin αsin β=0,②1-cos α-cos β+sin αcos β=0.则sin α的值为( )A.3101- B.351- C.212- D.221-二、填空题(本大题共4小题,每小题4分,共16分)11.tan300°+cot765°的值是_______.12.已知tan α=3,则sin 2α-3sin αcos α+4cos 2α的值是______.13.若扇形的中心角为3π,则扇形的内切圆的面积与扇形面积之比为______.14.若θ满足cos θ>-21,则角θ的取值集合是______.三、解答题(本题共5小题,共54分.解答应写出文字说明、证明过程或演算步骤)15.(本小题满分8分)设一扇形的周长为C (C >0),当扇形中心角为多大时,它有最大面积?最大面积是多少?16.(本小题满分10分)设90°<α<180°,角α的终边上一点为P (x ,5),且cos α=42x , 求sin α与tan α的值.17.(本小题满分12分)已知sin α是方程5x 2-7x -6=0的根,求)(cos )2cos()2cos()2(tan )23sin()23sin(22απαπαπαπαππα-⋅+⋅--⋅-⋅--的值.18.(本小题满分12分)已知sin α+cos α=-553,且|sin α|>|cos α|,求cos 3α-sin 3α的值.19.(本小题满分12分) 已知sin(5π-α)=2 cos(27π+β)和3cos(-α)=- 2cos(π+β),且0<α<π,0<β<π,求α和β的值.三角函数训练题(2)参考答案:1.解析:“钝角”用集合表示为{α|90°<α<180°},令集合为A ;“第二象限角”用集合表示为{α|k ²360°+90°<α<k ²360°+180°,k ∈Z },令集合为B .显然A B .答案:B2.解析:由sin αcos α<0知sin α与cos α异号;当cos α-sin α<0,知sin α>cos α.故sin α>0,cos α<0.∴α在第二象限.答案:B 3.解法一:通过对k 的取值,找出M 与N 中角x 的所有的终边进行判断.解法二:∵M ={x |x =4π²(2k ±1),k ∈Z },而2k ±1为奇数,∴M N .答案:A4.解析:787°=2³360°+67°,-957°=-3³360°+123°. -289°=-1³360°+71°,1711°=4³360°+271°. ∴在第一象限的角是(1)、(3). 答案:C5.解析:∵r=a a a 5)4()3(22-=+-.α为第四象限. ∴53cos ,54sin ==-==r x r y αα.故sin α+2cos α=52. 答案:A6.解析:∵cos(π+α)=- 21,∴cos α=21,又∵23π<α<2π. ∴sin α=-23cos 12-=-α.故sin(2π-α)=-sin α=23. 答案:B 7.答案:D8.解析:∵圆的半径r =1sin 2,α=2 ∴弧度l=r ²α=1sin 2. 答案:B9.分析:若把sin x 、cos x 看成两个未知数,仅有sin x +cos x =51是不够的,还要利用sin 2x +cos 2x =1这一恒等式.解析:∵0<x <π,且2sin x cos x =(sin x +cos x )2-1=-2524. ∴cos x <0.故sin x -cos x =57cos sin 4)cos (sin 2=-+x x x x ,结合sin x +cos x =51,可得sin x =54,cos x =-53,故co t x =-43.答案:C10.分析:已知条件复杂,但所求很简单,由方程思想,只要由①、②中消去β即可.解析:由已知可得:sin β=ααsin 1cos 1-+,cos β=ααsin 1cos 1--.以上两式平方相加得:2(1+cos 2α)=1-2sin α+sin 2α.即:3sin 2α-2sin α-3=0.故sin α=3101-或sin α=3101+ (舍). 答案:A11.解析:原式=tan(360°-60°)+cot (2³360°+45°)=-tan60°+cot45°=1-3.答案:1-312.分析:将条件式化为含sin α和cos α的式子,或者将待求式化为仅含tan α的式子.解法一:由tan α=3得sin α=3cos α,∴1-cos 2α=9cos 2α.∴cos 2α=101.故原式=(1-cos 2α)-9cos 2α+4cos 2α=1-6cos 2α=52.解法二:∵sin 2α+cos 2α=1.∴原式=52194991tan 4tan 3tan cos sin cos 4cos sin 3sin 222222=++-=++-=++-ααααααααα 答案:5213.分析:扇形的内切圆是指与扇形的两条半径及弧均相切的圆.解析:设扇形的圆半径为R ,其内切圆的半径为r ,则由扇形中心角为3π知:2r +r =R ,即R =3r .∴S 扇=21αR 2=6πR 2,S 圆=9πR 2.故S 扇∶S 圆=23. 答案:23 14.分析:对于简单的三角不等式,用三角函数线写出它们的解集,是一种直观有效的方法.其过程是:一定终边,二定区域;三写表达式.解析:先作出余弦线OM =-21,过M 作垂直于x 轴的直线交单位圆于P 1、P 2两点,则OP 1、OP 2是cos θ=21时θ的终边.要cos θ>-21,M 点该沿x 轴向哪个方向移动?这是确定区域的关键.当M 点向右移动最后到达单位圆与x 轴正向的交点时,OP 1、OP 2也随之运动,它们扫过的区域就是角θ终边所在区域.从而可写出角θ的集合是{θ|2k π-32π<θ<2k π+32π,k ∈Z }.答案:{θ|2k π-32π<θ<2k π+32π,k ∈Z }15.解:设扇形的中心角为α,半径为r ,面积为S ,弧长为l,则:l+2r =C ,即l=C -2r .∴16)4()2(212122C C r r r C lr S +--=⋅-==.故当r =4C时,S max =162C ,此时:α=.2422=-=-=CCC rrC r l∴当α=2时,S max =162C .16.解:由三角函数的定义得:cos α=52+x x ,又cos α=42x , ∴34252±=⇒=+x x x x . 由已知可得:x <0,∴x =-3. 故cos α=-46,sin α=410,ta n α=-315. 17.解:∵sin α是方程5x 2-7x -6=0的根. ∴sin α=-53或sin α=2(舍).故sin 2α=259,cos 2α=⇒2516tan 2α=169. ∴原式=169tan cot )sin (sin tan )cos (cos 222==⋅-⋅⋅-⋅ααααααα.18.分析:对于sin α+cos α,sin α-cos α及sin αcos α三个式子,只要已知其中一个就可以求出另外两个,因此本题可先求出sin αcos α,进而求出sin α-cos α,最后得到所求值.解:∵sin α+cos α=-553, ∴两边平方得:1+2sin αcos α=⇒59sin αcos α=52. 故(cos α-sin α)2=1-2sin αcos α=51.由sin α+cos α<0及sin αcos α>0知sin α<0,cos α<0. 又∵|sin α|>|cos α|,∴-sin α>-cos α cos α-sin α>0.∴cos α-sin α=55. 因此,cos 3α-sin 3α=(cos α-sin α)(1+sin αcos α)=55³(1+52)=2557. 评注:本题也可将已知式与sin 2α+cos 2α=1联解,分别求出sin α与cos α的值,然后再代入计算.19.分析:运用诱导公式、同角三角函数的关系及消元法.在三角关系式中,一般都是利用平方关系进行消元.解:由已知得sin α=2sin β ①3cos α=2cos β ② 由①2+②2得sin 2α+3cos 2α=2. 即:sin 2α+3(1-sin 2α)=2. ∴sin 2α=⇒21sin α=±22,由于0<α<π,所以sin α=22. 故α=4π或43π. 当α=4π时,cos β=23,又0<β<π,∴β=6π, 当α=43π时,cos β=-23,又0<β<π,∴β=65π.综上可得:α=4π,β=6π或α=43π,β=65π.三角函数训练题(2)一、选择题(本大题共10小题,每小题3分,共30分) 1.cos24°cos36°-cos66°cos54°的值等于( ) A.0 B.21 C.23 D.-21 2.在△ABC 中,如果sin A =2sin C cos B .那么这个三角形是( )A.锐角三角形B.直角三角形C.等腰三角形D.等边三角形 3.︒-︒80sin 310sin 1的值是( ) A.1 B.2 C.4 D.41 4.tan20°+4sin20°的值是( )A.1B.2C.3D.336+ 5.tan θ和tan(4π-θ)是方程x 2+px +q =0的两根,则p 、q 之间的关系是( )A.p +q +1=0B.p -q -1=0C.p +q -1=0D.p -q +1=06.设sin x +sin y =22,则cos x +cos y 的取值范围是( ) A.[0,214] B.(- 214,0] C.[-214,214] D.[-21,27]7.M =sin α²tan 2α+cos α,N =tan 8(tan 8ππ+2),则M 与N 的关系是( )A.M >NB.M =NC.M <ND.大小与α有关8.已知sin α+sin β=3 (cos β-cos α),α,β∈(0,2π),那么sin3α+sin3β的值是( )A.1B.23C.21D.09.已知tan α、tan β是方程x 2+33x +4=0的两个根,且α、β∈(-2,2ππ),则α+β的值是( )A.3π B.-32πC. 3π或-32πD.- 3π或32π10.(1+tan21°)(1+tan22°)(1+tan23°)(1+tan24°)的值是( ) A.16 B.8 C.4 D.2二、填空题(本大题共4小题,每小题4分,共16分)11.已知tan x =34(π<x <2π).则cos(2x -3π)cos(3π-x )-sin(2x -3π)sin(3π-x )=______.12.sin(θ+75°)+cos(θ+45°)-3cos(θ+15°)的值等于______.13.log 4cos5π+log 4cos 52π的值等于______.14.已知tan(α+β)=52,tan(β-41)4=π,则sin(α+4π)²sin(4π-α)的值为___.三、解答题(本大题共5小题,共54分.解答应写出文字说明、证明过程或演算步骤)15.(本小题满分8分)求值:212cos 412csc )312tan 3(2-︒︒-︒.16.(本小题满分10分) 已知cot β=βαsin sin ,5=sin(α+β),求cot(α+β)的值.17.(本小题满分12分)已知tan2θ=-22,x <2θ<2π,求)4sin(21sin 2cos 22πθθθ+--的值.18.(本小题满分12分)是否存在锐角α和β,使得(1)α+β=32π;(2)tan 2αtan β=2-3同时成立?若存在,则求出α和β的值;若不存在,说明理由.19.(本小题满分12分)已知△ABC 的三内角A 、B 、C 成等差数列,且BC A cos 2cos 1cos 1-=+,求cos 2CA -的值.三角函数训练题(2)参考答案:1.解析:原式=cos24°cos36°-sin24°sin36°=cos(24°+36°)=cos60°=21.答案:B2.解析:∵A +B +C =π,∴A =π-(B +C ).由已知可得:sin(B +C )=2sin C cos B ⇒sin B cos C +cos B sin C =2sin C cos B ⇒sin B cos C -cos B sin C =0⇒sin(B -C )=0. ∴B =C ,故△ABC 为等腰三角形. 答案:C3.解析:原式=︒︒-︒=︒-︒20sin 2110sin 310cos 10cos 310sin 1420sin 70cos 420sin )1060cos(420sin )10sin 2310cos 21(4=︒︒=︒︒+︒=︒︒-︒=.答案:C4.分析:运用三角变形的通法:化弦法、异角化同角.解析:原式=︒︒︒+︒=︒+︒︒20cos 20cos 20sin 420sin 20sin 420cos 20sin.320cos )20sin 20cos 3(20sin 20cos )2060sin(220sin 20cos 40sin 220sin =︒︒-︒+︒=︒︒-︒+︒=︒︒+︒=答案:C5.解析:由根与系数关系得tan θ+tan(4π-θ)=-p ,tan θ²tan(4π-θ)=q .又4π=θ+(4π-θ) ∴tan4π=tan [θ+( tan-θ)]=qp--1 故p -q +1=0. 答案:D6.解析:设cos x +cos y =t ,又sin x +sin y =22. 两式平方相加得2+2cos(x -y )=t 2+21 即cos(x -y )=4322-t ,由于|cos(x -y )|≤1.故-1≤4322-t ≤1⇒t 2≤21427-⇒≤t ≤214.答案:C7.解析:12s i n212s in 2)2si n 21(2co s 2s i n 22cos2s i n 222=-+=-+⋅=αααααααM .14cos14sin 24cos 124cos 14sin 24cos18cos 4sin8sin )28cos 8sin(8cos8sin22=++-=++-=+=+=πππππππππππππN∴M =N . 答案:B8.分析:先从已知式中求出α与β的关系,然后代入求值. 解析:由已知得:sin α+3cos α=3cos β-sin β.即cos(α-6π)=cos(β+6π) 又α-6π∈(-6π,3π),β+6π∈(6π,32π)故α-6π=β+6π⇒α=β+3π,∴sin3α+sin3β=sin(3β+π)+sin3β=0. 答案:D 9.解析:由韦达定理得:tan α+tan β=-33,tan αtan β=4 ∴tan(α+β)=3tan tan 1tan tan =-+βαβα.又∵α、β∈(-2,2ππ),且tan α+tan β<0,tan αtan β>0. ∴tan α<0,tan β<0.故α、β∈(-2π,0)从而α+β∈(-π,0),∴α+β=-32π.答案:B 10.分析:本题中所涉及的角均为非特殊角,但两角之和为45°特殊角,为此,将因式重组来求.解析:∵tan45°=tan(21°+24°)=︒︒-︒+︒24tan 21tan 124tan 21tan∴1-tan21°tan24°=tan21°+tan24° 即1+tan21°+tan24°+tan21°tan24°=2 即(1+tan21°)(1+tan24°)=2.(同理,由tan45°+tan(22°+23°)可得 (1+tan22°)(1+tan23°)=2.故(1+tan21°)(1+tan22°)(1+tan23°)(1+tan24°)=4. 答案:C11.解析:原式=cos [(2x -3π)+(3π-x )]=cos x .∵tan x =34>0且π<x <2π,∴π<x <23π.故cos x <0,从而得cos x =-52.答案:-5312.分析:观察所给角易得θ+75°=(θ+15°)+60°,θ+45°=(θ+15°)+30°.考查两角和的正弦余弦公式及换元法的运用.解析:令θ+15°=α,则原式=sin(α+60°)+cos(α+30°)-3cos α=21sin α+23cos α+23cos α-21sin α-3cos α=0.答案:013.解析:∵5sin252cos 5cos 5sin252cos 5cos ππππππ=415sin454sin 5sin 252cos 52sin ===πππππ ∴原式=log 4141log )52cos 5(cos 4-==ππ答案:-114.解析:∵tan(α+4π)=tan [(α+β)-(β-4π)=223,∴原式=sin(α+4π)cos(α+4π)=)4(sin )4(cos )4cos()4sin(22παπαπαπα+++++49366)4(tan 1)4tan(2=+++=παπα. 答案:4936615.分析:本题中函数种类较多,在变换过程中,常用“切割化弦”的基本方法,考查公式的灵活运用.解:原式=)112cos 2(24sin 12cos 312sin 3)112cos 2(212sin 1)312cos 12sin 3(22-︒⋅︒︒-︒=-︒︒⋅-︒︒ ︒⋅︒︒-︒=24cos 24sin )12cos 2312sin 21(323448sin 21)6012sin(32-=︒︒-︒=16.分析:条件式中出现α、β及α+β角,要得到所求三角式的α+β角,显然就需对角α进行变换.即α=(α+β)-β.解:∵βαsin sin =sin(α+β). ∴sin [(α+β)-β]=sin β²sin(α+β).即sin(α+β)cos β-cos(α+β)sin β=sin βsin(α+β). ∴sin(α+β)cos β=sin β[sin(α+β)+cos(α+β)] ∴)sin()cos()sin(sin cos βαβαβαββ++++=即cot β=1+cot(α+β) ∴cot(α+β)=cot β-1=5-1.评注:三角变换的基本原则是化异为同,可以从角及函数名称、式子结构等方面分析思考,逐步实行由异向同的转化.17.分析:求三角函数的值,一般先要进行化简,至于化成哪一种函数,可由已知条件来确定.本题中由已知可求得tan θ的值,所以应将所求的式子化成正切函数式.解:原式=)4sin(2)4sin(2)4sin(2sin cos θπθππθθθ+-=+- ∵2)4()4(πθπθπ=++-∴原式=θθθπθπθπtan 1tan 1)4tan()4cos()4sin(+-=-=--.由已知tan2θ=-22得22tan 1tan 22-=-θθ解得tan θ=-22或tan θ=2. ∴π<2θ<2π,∴2π<θ<π,故tan θ=-22.故原式=223221221+=-+. 评注:以上所给解法,似乎有点复杂,但对于提高学生的三角变换能力大有好处.本题也可将所求式化成θθθθsin cos sin cos +-,注意到此时分子、分母均是关于si n θ、cos θ的齐次式.通过同时除以cos θ,即可化成θθtan 1tan 1+-.18.分析:这是一道探索性问题的题目,要求根据(1)、(2)联解,若能求出锐角α和β,则说明存在,否则,不存在.由于条件(2)涉及到2α与β的正切,所以需将条件(1)变成2α+β=3π,然后取正切,再与(2)联立求解.解:由(1)得:2α+β=3π,∴3tan 2tan 1tan 2tan)2tan(=-+=+βαβαβα将(2)代入上式得tan 2α+tan β=3-3. 因此,tan2α与tan β是一元二次方程x 2-(3-3)x +2-3=0的两根,解之得x 1=1,x 2=2-3.若tan2α=1,由于0<2α<4π.所以这样的α不存在; 故只能是tan 2α=2-3,tan β=1.由于α、β均为锐角,所以α=6π,β=4π故存在锐角α=6π,β=4π使(1)、(2)同时成立.19.解法一:依题意得B =3π,设A =3π+α,C =3π-α,则2CA -=α.同时有:3cos2)3cos(1)3cos(1παπαπ-=-++即22sin 3cos 2sin 3cos 2-=++-αααα023cos 2cos 242sin 3cos cos 2222=-+⇒-=-⇒ααααα ∴cos α=22或cos α=-423 (舍去)即cos222=-C A . 解法二:依题意得C C A C C A C A B -=--=-=+=32,232,32,3ππππ,不妨设cos(C -3π)=x .由已知得CC C C CC CA cos )32cos(cos )32cos(cos 1)32cos(1cos 1cos 1-+-=+-=+πππ∵cos(π32-C )+cos C=cos 32πcos C +sin 32πsin C +cos C=21cos C +23sin C =cos(3π-C ). cos(32π-C )cos C =cos 32πcos 2C+sin 32πsin C cos C)3(cos 43]1)3(cos 2[2141)232cos(21412sin 43)2cos 1(4122C C C C C -+-=--+-=-+-=++-=πππ∴22432-=+-x x 即0232242=-+x x∴x =22或x =-423 (舍去).故222cos=-C A . 解法三:依题意得B =3π,由已知得22cos 1cos 1-=+C A即cos A +cos C =-22cos A cos C利用积化和差及和差化积公式,并注意到A +C =32π,可得2cos22cos 2-=-+CA C A [cos(A +C )+cos(A -C )] 即22cos 22222cos2+--=-CA C A . 即0232cos 22cos 242=--+-CA C A ∴222cos=-C A 或4232cos -=-C A (舍去). 故222cos=-C A . 评注:解法三运用了和差化积及积化和差公式,这组公式虽不要求记忆,但在给出公式的情况下会运用.(3)1.在半经为2米的圆中,120°的圆心角所对的弧长为_____(34π)米。
三角函数计算题 期末复习(含答案)

一、解答题1.sin30°+tan60°−cos45°+tan30°.2.计算:-12016-2tan 60°+(-)0-.3.计算:2sin30°+3cos60°﹣4tan45°.4.计算: ()222sin30-°()0π33--+-. 5.计算: 2sin30tan60cos60tan45︒-︒+︒-︒.6.计算:|﹣3|+(π﹣2017)0﹣2sin30°+(13)﹣1. 7.计算: ()0222cos30tan60 3.14π--︒+︒+-.8.计算: 2212sin458tan 60-+︒-+︒.9.计算: 2sin30°2cos45-°8+.10.计算:(1)22sin 60cos 60︒+︒; (2)()24cos45tan6081︒+︒---. 11.计算: ()()103sin4513cos30tan6012-+-+⋅--. 12.求值:+2sin30°-tan60°- tan 45° 13.计算:(sin30°﹣1)2﹣×sin45°+tan60°×cos30°. 14.(1)sin 230°+cos 230°+tan30°tan60° (2)o o o o 45cos 30sin 245sin 45tan -15.计算:﹣4﹣tan60°+|﹣2|.16.计算:﹣2sin30°+(﹣)﹣1﹣3tan60°+(1﹣)0+.17.(2015秋•合肥期末)计算:tan 260°﹣2sin30°﹣cos45°.18.计算:2cos30°-tan45°-()21tan 60+︒. 19.(本题满分6分) 计算:121292cos603-⎛⎫-+-+ ⎪⎝⎭ 20.(本题5分)计算:3-12+2sin60°+11()321.计算: ()1013tan3023122-⎛⎫︒+--+- ⎪⎝⎭. 22.计算:∣–5∣+3sin30°–(–6)2+(tan45°)–123.(6分)计算: ()()2122sin303tan45--+︒--+︒. 24.计算:()1021cos 603sin 60tan 302π-⎛⎫-︒+--︒︒ ⎪⎝⎭(6分)25.计算:2sin45°-tan60°·cos30°.26.计算:()1012sin 60320152-⎛⎫-+︒---- ⎪⎝⎭. 27.计算:︒+︒⋅︒-45sin 260cos 30tan 8.28.计算: ()()12015011sin30 3.142π-⎛⎫-+--+ ⎪⎝⎭. 29.计算:.30.计算:32sin 453cos602︒︒+︒+-.31.计算:2sin603tan302tan60cos45︒+︒-︒⋅︒32.计算:cos30sin602sin 45tan 45︒︒+︒•︒- .33.计算 :23tan 60sin 453tan 45cos 60︒-︒-︒+︒. 34.计算:27-3sin60°-cos30°+2tan45°.35.计算:()201273tan 3033π-⎛⎫-+-+ ⎪⎝⎭ 36.计算20140+121-⎪⎭⎫ ⎝⎛−2sin45°+tan60°. 37.计算:tan30°cos30°+sin 260°- sin 245°tan45°38.计算:(π﹣3)0+﹣(﹣1)2017﹣2sin30°39.计算:﹣12016﹣(π﹣3)0+2cos30°﹣2tan45°•tan60°.40.计算:(1)+|sin60°﹣1|+tan45°(2)tan 260°+4sin30°cos45°41.计算:(1)(﹣1)2017﹣2﹣1+sin30°+(π﹣314)0;(2)cos 245°+sin60°tan45°+sin 230.42.计算:.43..44.计算:2sin 30°-3tan 45°·sin 45°+4cos 60°. 45.计算: ()103116220073tan6033π-⎛⎫⎛⎫+÷-+-- ⎪ ⎪⎝⎭⎝⎭ 46.计算:(-1)2 019-()-3+(cos 68°)0+|3-8sin 60°|47.计算:(1);(2).48.计算:(1)sin45°·cos45°+tan60°·sin60°;(2)sin30°-tan245°+tan230°-cos60°. 49.计算:二、填空题5012﹣tan30°+(π﹣4)0112-⎛⎫- ⎪⎝⎭=_____.参考答案1.【解析】【分析】分别代入各特殊角的三角函数值,然后进行计算即可得.【详解】sin30°+tan60°−cos45°+tan30°==×+-+=.【点睛】本题考查了特殊角的三角函数值的混合运算,熟练掌握各特殊角的三角函数值是解题的关键.2.-4.【解析】分析:先根据乘方运算法则,特殊三角函数值,零指数幂,二次根式乘法法则逆用进行计算,然后再进行实数加减运算.详解: -12016-2tan60°+(-)0-,原式=-1-2×+1-2,=-4.点睛:本题主要考查乘方运算法则,特殊三角函数值,零指数幂,二次根式乘法法则,解决本题的关键是要熟练掌握实数相关运算法则.3.﹣1.5.【解析】试题分析:把30°的正弦值、60°的余弦值、45°的正切值代入进行计算即可. 试题解析:2sin30°+3cos60°﹣4tan45° =11234122⨯+⨯-⨯ =1.5.4【解析】试题分析:分别根据二次根式的性质,特殊角的三角函数值,0指数幂及绝对值的性质计算出各数,再根据实数混合运算的法则进行计算即可.试题解析:解:原式=12212-⨯-点睛:本题考查的是二次根式的性质,特殊角的三角函数值,0指数幂及绝对值的性质,熟知以上运算法则是解答此题的关键.5.12【解析】试题分析:将特殊角的三角函数值代入求解即可.试题解析:解:原式= 112122⨯- 12=. 6.6【解析】试题分析:按顺序依次先进行绝对值化简、0次幂计算、特殊角三角函数值、负指数幂计算,然后再按运算顺序进行计算即可.试题解析:原式=3+1-212⨯+3=3+1﹣1+3=6. 7.54【解析】试题分析:原式利用特殊角的三角函数值,以及零指数幂法则计算即可得到结果. 试题解析:2-2-2cos30°+tan60°+(π-3.14)01214=- =548.2【解析】试题分析:先进行绝对值、二次根式的化简,特殊角的三角函数值,然后再按运算顺序进行计算即可.试题解析:原式123132+-==.9. 1+【解析】试题分析:代入30°角的正弦函数值、45°角的余弦函数值,再按二次根式的相关运算法则计算即可. 试题解析:原式 = 12222⨯-⨯+= 1= 1.10.(1)1;(2).【解析】试题分析:(1)直接利用特殊角的三角函数值代入化简求出答案;(2)直接利用特殊角的三角函数值代入化简求出答案.试题解析:(1)原式=22312+()()=1; (2)原式=24322131⨯+--=-. 11.1.【解析】试题分析:利用三角函数,分母有理化,绝对值性质计算.试题解析:()()103sin4513cos30tan6012-+-+⋅-- =1+13-+3331⨯+-=1+13++32+31-=1. 12.【解析】先得出式子中的特殊角的三角函数值,再按实数溶合运算顺序进行计算即可.解:原式=13.【解析】试题分析:此题涉及有理数的乘方、特殊角的三角函数值的求法,在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果即可.解:(sin30°﹣1)2﹣×sin45°+tan60°×cos30°=1﹣×+× =1﹣1+ =【点评】此题主要考查了实数的综合运算能力,解决此类题目的关键是熟练掌握有理数的乘方、特殊角的三角函数值的运算.14.(1)2;(2)0.【解析】试题分析:根据特殊角三角函数值,可得实数的运算,根据实数的运算,可得答案. 试题解析:(1)sin 230°+cos 230°+tan30°tan60° =22133()(3223++ =1+1=2;(2)原式=212 122⨯-⨯⨯=0.考点:特殊角的三角函数值.15.2﹣2.【解析】试题分析:原式前两项化为最简二次根式,第三项利用特殊角的三角函数值计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.解:原式=2﹣4×﹣+2﹣=2﹣2.考点:实数的运算;特殊角的三角函数值.16.﹣3﹣.【解析】试题分析:直接利用特殊角的三角函数值以及负指数幂的性质以及零指数幂的性质、二次根式的性质化简进而求出答案.解:原式=﹣2×﹣3﹣3+1+2=﹣3﹣.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.17.1【解析】试题分析:将特殊角的三角函数值代入求解.解:原式=()2﹣2×﹣×=3﹣1﹣1=1.考点:特殊角的三角函数值.18.-2.【解析】试题分析:分别计算特殊角三角函数值和算术平方根,然后再计算加减法.试题解析:原式=21|1-+11=-2.考点:实数的混合运算.19.1.【解析】试题分析:按照实数的运算法则依次计算.试题解析:原式=1432311312-+-⨯+=--+=.考点:1.特殊角的三角函数值;2.有理数的乘方;3.零指数幂;4.负指数幂.20.3.【解析】试题分析:本题首先将各式分别进行计算,然后根据实数的计算法则进行计算.试题解析:原式×2-考点:实数、三角函数的计算21.331- 【解析】试题分析:先计算三角函数值,零指数,负指数,开方再按照实数的运算计算即可. 试题解析:原式=331223⨯+-+=3123-+=331-. 考点:三角函数值,零指数,负指数,开方.视频22.32 【解析】试题分析:分别求值再进行加减运算试题解析:原式=5+32-6+1=32考点:1.特殊角的三角函数2.实数的运算233【解析】试题分析:先计算绝对值,三角函数,零指数,负指数,平方再按照实数的运算计算即可.试题解析: (()2122sin303tan45--+︒-+︒ 33考点:三角函数,实数的运算.24.214. 【解析】试题分析:任何不是零的数的零次幂都是1,1p pa a .试题解析:原式=2-21()2+13=2-14+1-12=214. 考点:实数的计算、三角函数的计算.25.21- 【解析】试题分析:sin45°=2;tan60°cos30°. 试题解析:原式=233222⨯-⨯=123-=21-. 考点:二次根式的计算、锐角三角函数的计算.26.-3.【解析】试题分析:sin60°=2;任何非零的数的零次幂为1,33;11()2=-2.试题解析:原式=--1=-3.考点:实数的计算.27.6323-. 【解析】 试题分析:原式=222213322⨯+⨯-=6323-. 考点:实数的运算.28.12. 【解析】试题分析:原式11122=-+-+ 12=. 考点:实数的运算.视频29.2.【解析】试题分析:原式==2.考点:实数的运算.3021.【解析】 试题分析:原式=23132322++21.考点:实数的运算.31.236【解析】试题分析:此题主要考查了特殊角的三角函数值得代入求值问题,因此把相应的特殊角的三角函数值代入即可.试题解析:解:原式=2322+= 考点:特殊角的三角函数32.【解析】试题分析:原式21== 考点:实数的运算.33.0.【解析】 试题分析:原式211322332+⨯-⎪⎪⎭⎫ ⎝⎛-⨯=213213+--=0=. 考点:实数的运算. 34.1.【解析】试题分析:将tan45°=1,代入,然后化简合并即可得出答案.试题解析:原式=2×32﹣1+2×32=3﹣1+3=23﹣1. 考点:特殊角的三角函数值.35.2310+【解析】试题分析:根据二次根式、特殊角三角函数值、零次幂、负整数指数幂的意义进行计算即可. 试题解析:21273tan 30(3)()3π--︒+-︒+ 333319=-⨯++ 2310=+考点: 实数的混合运算.36.23+.【解析】试题分析:根据零次幂、负整数指数幂、特殊三角函数值的意义进行计算即可. 试题解析:0112014()2sin 45tan 602-+-︒+︒ 21223=+-⨯+ 23=+考点: 1.零次幂,2.负整数指数幂,3特殊三角函数值.37.【解析】【分析】根据特殊三角函数值即可求解.【详解】原式==【点睛】本题考查了特殊的三角函数值,属于简单题,熟记特殊三角函数值是解题关键.38.3【解析】【分析】本题涉及零指数幂、特殊角的三角函数值、二次根式化简等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【详解】解:(π﹣3)0+﹣(﹣1)2017﹣2sin30°=1+2﹣(﹣1)﹣2×=3+1﹣1=3【点睛】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解题关键是熟练掌握零指数幂、负整数指数幂、特殊角的三角函数值、二次根式化简、绝对值等考点的运算.39.﹣2﹣.【解析】【分析】原式利用乘方的意义,特殊角的三角函数值,以及零指数幂法则计算即可得到结果.【详解】原式=﹣1﹣1+﹣2=﹣2﹣.【点睛】本题考查了实数的运算法则,负指数的性质,特殊角是三角函数,熟练特殊角是三角函数是解题的关键.40.(1)4-;(2)3+【解析】【分析】(1)原式利用绝对值的代数意义,以及特殊角的三角函数值计算即可求出值;(2)原式利用特殊角的三角函数值计算即可求出值.【详解】(1)原式=2+1﹣+1=4﹣;(2)原式=3+4××=3+.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.41.(1)0;(2).【解析】【分析】(1)直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案;(2)直接利用特殊角的三角函数值化简得出答案.【详解】(1)(﹣1)2017﹣2﹣1+sin30°+(π﹣314)0;=﹣1﹣++1=0;(2)cos245°+sin60°tan45°+sin230=()2+×1+()2=++=.【点睛】本题考查了实数运算,掌握实数运算是解题的关键.42..【解析】分析:代入45°角的正弦函数值,结合“零指数幂的意义”和“负整数指数幂的意义”进行计算即可.详解:原式===.点睛:熟记45°角的正弦函数值、及(为正整数)是正确解答本题的关键.43.【解析】【分析】根据:分别代入计算.【详解】原式.【点睛】考查了特殊角的三角函数值,解答此类题目的关键是熟记特殊角是三角函数值.44.3-【分析】把60°,30°,45°的正弦,余弦,正切的值代入计算即可.【详解】解:原式=2×-3×1×+4×=1-+2=3-【点睛】 本题主要考查特殊角的三角函数值和零指数幂的知识点,牢记特殊角的三角函数值是解答的关键.45.-1.【解析】分析:代入60°角的正切函数值,结合“负指数幂的意义”、“零指数幂的意义”和实数的相关运算法则计算即可.详解:原式=()3168133+÷-+-⨯=3213-+-=1-。
三角函数10道大题(带答案)

三角函数10道大题(带答案)三角函数1.已知函数$f(x)=4\cos x\sin(x+\frac{\pi}{6})+\sin(2x-\frac{\pi}{4})+2\cos2x-1,x\in R$。
Ⅰ)求$f(x)$的最小正周期;Ⅱ)求$f(x)$在区间$[-\frac{\pi}{4},\frac{\pi}{4}]$上的最大值和最小值。
2.已知函数$f(x)=\tan(2x+\frac{\pi}{4}),x\in R$。
Ⅰ)求$f(x)$的定义域与最小正周期;II)设$\alpha\in(\frac{\pi}{4},\frac{\pi}{2})$,若$f(\alpha+\frac{\pi}{4})=2\cos2\alpha$,求$\alpha$的大小。
3.已知函数$f(x)=\frac{(sinx-cosx)\sin2x}{\sin x}$。
1)求$f(x)$的定义域及最小正周期;2)求$f(x)$的单调递减区间。
4.设函数$f(x)=\frac{2\pi\cos(2x+\frac{\pi}{4})+\sin2x}{24}$。
Ⅰ)求函数$f(x)$的最小正周期;II)设函数$g(x)$对任意$x\in R$,有$g(x+\pi)=g(x)$,且当$x\in[0,\frac{\pi}{2}]$时,$2\pi g(x)=1-f(x)$,求函数$g(x)$在$[-\pi,0]$上的解析式。
5.函数$f(x)=A\sin(\omega x-\frac{\pi}{6})+1(A>0,\omega>\frac{\pi}{6})$的最大值为3,其图像相邻两条对称轴之间的距离为$\frac{\pi}{2}$。
1)求函数$f(x)$的解析式;2)设$\alpha\in(0,\frac{\pi}{2})$,则$f(\alpha)=2$,求$\alpha$的值。
6.设$f(x)=4\cos(\omega x-\frac{\pi}{6})\sin\omegax+\cos2\omega x$,其中$\omega>0$。
三角函数复习题(含答案)

三角函数复习题1.若tan α>0,则( )A .sin α>0B .cos α>0C .sin 2α>0D .cos 2α>0 [解析] C 因为sin 2α=2sin αcos αsin 2α+cos 2α=2tan α1+tan 2α>0,所以选C.2. 已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos 2θ=( )A .-45B .-35 C.35 D.45[解析] B 方法一:在角θ终边上任取一点P (a ,2a )(a ≠0),则r 2=||OP 2=a 2+(2a )2=5a 2,∴cos 2θ=a 25a 2=15,∴cos 2θ=2cos 2θ-1=25-1=-35. 方法二:tan θ=2a a =2,cos 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=-35.3.若sin α=-513,且α为第四象限角,则tan α的值等于( )A.125 B .-125 C.512 D .-512[解析] D 因为α为第四象限角,所以cos α=1-sin 2α=1213,tan α=sin αcos α=-512.4.已知f (x )=⎩⎪⎨⎪⎧cos πx ,x ≤0,f (x -1)+1,x >0,则f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43的值为( ) A .-2 B .-1 C .1 D .2 [解析] C 因为f ⎝⎛⎭⎫43=f ⎝⎛⎭⎫13+1=f ⎝⎛⎭⎫-23+2= cos ⎝⎛⎭⎫-23π+2=cos 23π+2=-cos π3+2=32, ⎝⎛⎭⎫-43=cos ⎝⎛⎭⎫-4π3=cos ⎝⎛⎭⎫π+π3=-cos π3=-12,所以f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43=1.5.在函数①y =cos|2x |,②y =|cos x |,③y =cos ⎝⎛⎭⎫2x +π6,④y =tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③[解析] A 函数y =cos|2x |=cos 2x ,其最小正周期为π,①正确;函数y =cos x 位于x 轴上方的图像不变,将位于x 轴下方的图像对称地翻转至x 轴上方,即可得到y =|cos x |的图像,所以其最小正周期也为π,②正确;函数y =cos ⎝ ⎛⎭⎪⎫2x +π6的最小正周期为π,③正确;函数y=tan ⎝ ⎛⎭⎪⎫2x -π4的最小正周期为π2,④不正确.6.已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图像的两条相邻的对称轴,则φ=( )A.π4B.π3C.π2D.3π4[解析] A 由题意,函数f (x )=sin(ωx +φ)的最小正周期T =2⎝⎛⎭⎪⎫5π4-π4=2π,又ω>0,所以ω=2πT =1.故f (x )=sin ()x +φ.故⎩⎪⎨⎪⎧f ⎝ ⎛⎭⎪⎫π4=sin ⎝ ⎛⎭⎪⎫π4+φ=1,f ⎝ ⎛⎭⎪⎫5π4=sin ⎝ ⎛⎭⎪⎫5π4+φ=-1, ①或⎩⎪⎨⎪⎧f ⎝ ⎛⎭⎪⎫π4=sin ⎝ ⎛⎭⎪⎫π4+φ=-1,f ⎝ ⎛⎭⎪⎫5π4=sin ⎝ ⎛⎭⎪⎫5π4+φ=1, ②由①得φ=2k π+π4()k ∈Z ;由②得φ=2k π-3π4()k ∈Z . 又已知0<φ<π,所以由①得φ=π4;②无解.综上,φ=π4.故选A.7.设函数f (x )=sin ⎝⎛⎭⎫2x +π4+cos ⎝⎛⎭⎫2x +π4,则( )A .y =f (x )在⎝⎛⎭⎫0,π2上单调递增,其图像关于直线x =π4对称B .y =f (x )在⎝⎛⎭⎫0,π2上单调递增,其图像关于直线x =π2对称C .y =f (x )在⎝⎛⎭⎫0,π2上单调递减,其图像关于直线x =π4对称D .y =f (x )在⎝⎛⎭⎫0,π2上单调递减,其图像关于直线x =π2对称[解析] D f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π4+π4=2sin ⎝⎛⎭⎪⎫2x +π2=2cos 2x ,所以y =f (x )在⎝ ⎛⎭⎪⎫0,π2内单调递减,又f ⎝ ⎛⎭⎪⎫π2=2cos π=-2是最小值.所以函数y =f (x )的图像关于直线x =π2对称.8.函数y =sin x 2的图像是( )[解析] D 设y =f (x )=sin x 2,则f (-x )=sin(-x )2=sin x 2=f (x ),故f (x )为偶函数,A ,C 不符合.f π2=sin π22=sin π24<1,则B 不符合,故选D.9.下列函数中,最小正周期为π的奇函数是( )A .y =sin2x +π2B .y =cos2x +π2 C .y =sin 2x +cos 2x D .y =sin x +cos x[解析] B 选项A ,B ,C 中的函数的最小正周期都是π,选项D 中,y =sin x +cos x =2sin ⎝ ⎛⎭⎪⎫x +π4的最小正周期是2π,故排除D.选项A 中,y =cos 2x 是偶函数;选项B 中,y =-sin 2x 为奇函数;选项C 中,y =2sin2x +π4是非奇非偶函数.10.定义在区间[0,3π]上的函数y =sin 2x 的图像与y =cos x 的图像的交点个数是________. [解析] 方法一:令sin 2x =cos x ,即2sin x cos x = cos x ,解得cos x =0或sin x =12,即x =k π+π2或x =2k π+π6或x =2k π+56π(k ∈Z ),又x ∈[0,3π],故x =π2,3π2,5π2或x =π6,5π6,13π6,17π6,共7个解,故两个函数的图像有7个交点. 11.若函数f (x )=cos 2x +a sin x 在区间⎝⎛⎭⎫π6,π2上是减函数,则a 的取值范围是 ( )A .(2,4)B .(-∞,2]C .(-∞,4]D .[4,+∞) [解析] B f (x )=cos 2x +a sin x =1-2sin 2x +a sin x ,令t =sin x ,由x ∈⎝⎛⎭⎫π6,π2得t ∈⎝⎛⎭⎫12,1,依题意有g (t )=-2t 2+at +1在⎝⎛⎭⎫12,1上是减函数,所以a 4≤12,即a ≤2.故选B. 12. 若tan θ=-13,则cos 2θ=( )A .-45B .-15 C.15 D.45D [解析] cos 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=1-191+19=45.13.将函数y =2sin(2x +π6)的图像向右平移14个周期后,所得图像对应的函数为( )A .y =2sin(2x +π4)B .y =2sin(2x +π3)C .y =2sin(2x -π4)D .y =2sin(2x -π3)D [解析] 函数y =2sin(2x +π6)的周期为2π2=π,将函数 y =2sin(2x +π6)的图像向右平移14个周期,即平移π4个单位,所得图像对应的函数为y =2sin[2(x -π4)+π6]=2sin(2x -π3). 14. 函数y =sin x -3cos x 的图像可由函数y =2sin x 的图像至少向右平移________个单位长度得到. 14.π3 [解析] 函数y =sin x -3cos x =2sin (x -π3)的图像可由函数y =2sin x 的图像至少向右平移π3个单位长度得到.15. 已知2cos 2x +sin 2x =A sin(ωx +φ)+b (A >0),则A =________,b =________.15.2 1 [解析] 2cos 2x +sin 2x =sin 2x +cos 2x +1=2sin (2x +π4)+1,故A =2,b=1.16.若函数f (x )=4sin x +a cos x 的最大值为5,则常数a =________.±3 [解析] 根据题意得f (x )=16+a 2sin(x +φ),其中tan φ=a4,故函数f (x )的最大值为16+a 2,则16+a 2=5,解得a =±3.17.为了得到函数y =sin(x +π3)的图像,只需把函数y =sin x 的图像上所有的点( )A .向左平行移动π3个单位长度B .向右平行移动π3个单位长度C .向上平行移动π3个单位长度D .向下平行移动π3个单位长度A [解析] 根据“左加右减”的原则,要得到y =sin ⎝⎛⎭⎫x +π3的图像,只需把y =sin x 的图像向左平移π3个单位长度.18要得到函数f (x )=cos ⎝⎛⎭⎫2x +π3的图像,只需将函数g (x )=sin ⎝⎛⎭⎫2x +π3的图像( )A. 向左平移π2个单位长度B. 向右平移π2个单位长度C. 向左平移π4个单位长度D. 向右平移π4个单位长度C [解析] 易知f (x )=cos ⎝⎛⎭⎫2x +π3=sin ⎝⎛⎭⎫2x +5π6, 故把g (x )=sin ⎝⎛⎭⎫2x +π3的图像向左平移π4个单位长度,就可得到f (x )=sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π4+π3=cos ⎝⎛⎭⎫2x +π3的图像.19. 设f (x )=23sin(π-x )sin x -(sin x -cos x )2.(1)求f (x )的单调递增区间;(2)把y =f (x )的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图像向左平移π3个单位,得到函数y =g (x )的图像,求g (π6)的值.解:(1)f (x )=23sin(π-x )sin x -(sin x -cos x )2=23sin 2x -(1-2sin x cos x )=3(1-cos2x )+sin 2x -1=sin 2x -3cos 2x +3-1=2sin (2x -π3)+3-1.由2k π-π2≤2x -π3≤2k π+π2(k ∈Z ),得k π-π12≤x ≤k π+5π12(k ∈Z ),所以f (x )的单调递增区间是[k π-π12,k π+5π12](k ∈Z )或(k π-π12,k π+5π12)(k ∈Z ).(2)由(1)知f (x )=2sin (2x -π3)+3-1,把y =f (x )的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y =2sin (x -π3)+3-1的图像,再把得到的图像向左平移π3个单位,得到y =2sin x +3-1的图像, 即g (x )=2sin x +3-1,所以g (π6)=2sin π6+3-1= 3.20.已知函数f (x )=2sin ωx cos ωx +cos 2ωx (ω>0)的最小正周期为π. (1)求ω的值;(2)求f (x )的单调递增区间.解:(1)因为f (x )=2sin ωx cos ωx +cos 2ωx =sin 2ωx +cos 2ωx=2sin(2ωx +π4),所以f (x )的最小正周期T =2π2ω=πω.依题意,πω=π,解得ω=1.(2)由(1)知f (x )=2sin(2x +π4).函数y =sin x 的单调递增区间为[2k π-π2,2k π+π2](k ∈Z ),由2k π-π2≤2x +π4≤2k π+π2(k ∈Z ),得k π-3π8≤x ≤k π+π8(k ∈Z ),所以f (x )的单调递增区间为[k π-3π8,k π+π8](k ∈Z ).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
40.计算:
(1) +|sin60°﹣1|+tan45° (2)tan260°+4sin30°cos45°
41.计算: (1)(﹣1)2017﹣2﹣1+sin30°+(π﹣314)0; (2)cos245°+sin60°tan45°+sin230.
42.计算:
.
43.
.
44.计算:2sin 30°-3tan 45°·sin 45°+4cos 60°.
= 2 1 3 1 41 22
=1.5.
4. 3
【解析】试题分析:分别根据二次根式的性质,特殊角的三角函数值,0 指数幂及绝对值的 性质计算出各数,再根据实数混合运算的法则进行计算即可.
试题解析:
解:原式= 2 2 1 1+ 3 , 2
= 3.
点睛:本题考查的是二次根式的性质,特殊角的三角函数值,0 指数幂及绝对值的性质,熟
一、解答题 1. sin30°+tan60°−cos45°+tan30°. 2.计算:-12016-2tan60°+( - )0- . 3.计算:2sin30°+3cos60°﹣4tan45°.
4.计算: 2 2 2sin30 ° π 30 3 .
5.计算: 2sin30 tan60 cos60 tan45. 6.计算:|﹣3|+(π﹣2017)0﹣2sin30°+( 1 )﹣1.
3.140
1 2
1
.
29.计算:
.
2sin 45 3 tan 30 cos60 3
30.计算:
2.
31.计算: 2sin60 3tan30 2tan60cos45 32.计算: cos30-sin60 2sin 45• tan 45 . 33.计算 : 3 tan 60 sin2 45 3 tan 45 cos 60.
3
7.计算: 22 2cos30 tan60 3.140 .
8.计算: 2 1 2sin45 8 tan260 .
9.计算: 2sin30 ° 2cos45° 8 .
10.计算:
(1) sin2 60 cos2 60 ;
(2) 4cos45 tan60 8 12 .
11.计算:
15.计算: ﹣4 ﹣tan60°+| ﹣2|.
16.计算:﹣2sin30°+(﹣ )﹣1﹣3tan60°+(1﹣ )0+ .
17.(2015 秋•合肥期末)计算:tan260°﹣2sin30°﹣ cos45°.
18.计算:2cos30°-tan45°- 1 tan 602 .
19.(本题满分 6 分)
0
1
sin45 1 3 cos30 tan60
3 1 .
2
12.求值:
+2sin30°-tan60°- tan 45°
13.计算:(sin30°﹣1)2﹣ ×sin45°+tan60°×cos30°.
14.(1)sin230°+cos230°+tan30°tan60° (2) tan 45o sin 45o 2sin 30o cos45o
45.计算:
1 3
1
16
23
2007
3
0
3tan60
46.计算:(-1)2 019-( )-3+(cos68°)0+|3 -8sin60°| 47.计算:
(1)
;
(2)
.
48.计算:
(1)sin45°·cos45°+tan60°·sin60°;
(2)sin30°-tan245°+ tan230°-cos60°. 49.计算:
24.计算:
1 2
1
cos
2
60
0
3 sin 60 tan 30 (6 分)
25.计算: 2 sin45°-tan60°·cos30°.
26.计算:
1 2
1
2sin 60
3 20150 .
27.计算: 8 tan 30 cos 60 2sin 45 .
28.计算:
1 2015 sin30
计算: 22
9 2cos 60
1 3
1
20.(本题 5 分)计算: 3 - 12 +2sin60°+ (1) 1 3
21.计算: 3tan30 2
3
0
1 2
1
12
.
22.计算:∣–5∣+3sin30°–(– 6 )2sin30 3 2 tan451.
试题解析:原式=3+1-2 1 +3=3+1﹣1+3=6. 2
34.计算: 27 -3sin60°-cos30°+2tan45°.
35.计算:
27 3tan 30
3
0
1 3
2
36.计算 20140+ 1 1 − 2 sin45°+tan60°. 2
37.计算:tan30°cos30°+sin260°- sin245°tan45°
38.计算:(π﹣3)0+ ﹣(﹣1)2017﹣2sin30° 39.计算:﹣12016﹣(π﹣3)0+2cos30°﹣2tan45°•tan60°.
知以上运算法则是解答此题的关键.
5. 3 1 2
【解析】试题分析:将特殊角的三角函数值代入求解即可.
试题解析:解:原式 2 1 3 1 1 3 1 .
2
2
2
6.6
【解析】试题分析:按顺序依次先进行绝对值化简、0 次幂计算、特殊角三角函数值、负指
数幂计算,然后再按运算顺序进行计算即可.
二、填空题
50.
12
﹣tan30°+(π﹣4)0
1 2
1
=_____.
参考答案
1. 【解析】 【分析】 分别代入各特殊角的三角函数值,然后进行计算即可得. 【详解】
sin30°+tan60°−cos45°+tan30°
== × + - +
=. 【点睛】 本题考查了特殊角的三角函数值的混合运算,熟练掌握各特殊角的三角函数值是解题的关 键. 2.-4 . 【解析】分析:先根据乘方运算法则,特殊三角函数值,零指数幂,二次根式乘法法则逆用进行 计算,然后再进行实数加减运算. 详解: -12016-2tan60°+( - )0- , 原式=-1-2× +1-2 , =-4 . 点睛:本题主要考查乘方运算法则,特殊三角函数值,零指数幂,二次根式乘法法则,解决本题 的关键是要熟练掌握实数相关运算法则. 3.﹣1.5. 【解析】试题分析:把 30°的正弦值、60°的余弦值、45°的正切值代入进行计算即可. 试题解析:2sin30°+3cos60°﹣4tan45°