等差数列前n项和公式说课稿
《等差数列的前n项和》教学设计(精选五篇)

《等差数列的前n项和》教学设计(精选五篇)第一篇:《等差数列的前n项和》教学设计:等差数列的前n项和是人教实验版必修5第二章第3节的内容,是学生学习了等差数列的定义、通项公式后,对数列知识的进一步学习。
学情分析:学生通过对等差数列基本概念和通项公式的学习,对等差数列有了一定的了解。
但是由于学生是第一次接触到数列的求和,缺乏相关经验,因此,需要借助几何直观学习和理解。
教学目标:1、情感态度与价值观(1)获得发现的成就感,逐步养成科学严谨的学习态度,提高代数推理的能力。
(2)注重在学习过程中师生情感交流,鼓励学生自主发现,激发学生的学习热情,培养学生的探索精神与创新意识。
2、过程与方法(1)通过公式的探索、发现,在知识发生、发展以及形成过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力;(2)利用以退求进的思维策略,遵循从特殊到一般的认知规律,让学生在实践中通过观察、尝试、分析、类比的方法导出等差数列的求和公式,培养学生类比思维能力。
3、情感态度与价值观(1)获得发现的成就感,逐步养成科学严谨的学习态度,提高代数推理的能力。
(2)注重在学习过程中师生情感交流,鼓励学生自主发现,激发学生的学习热情,培养学生的探索精神与创新意识。
教学重点、难点:1、等差数列前n项和公式是重点。
2、获得等差数列前n项和公式推导的思路是难点。
设计理念:在教学中通过生动具体的现实问题,激发学生探究的兴趣和欲望,由浅入深,层层深入,增强学生学好数学的心理体验,产生热爱数学的情感,体验在学习中获得成功。
教学资源:现代教育多媒体技术教学过程:(一)创设问题情境故事引入:德国伟大的数学家高斯“神述求和”的故事。
高斯在上小学四年级时,老师出了这样一道题“1+2+3……+99+100”高斯稍微想了想就得出了答案。
高斯到底用了什么巧妙的方法呢?下面给同学们一点时间来挑战高斯。
高斯的方法:首项与末项的和:1+100=101 第2项与倒数第2项的和:2+99=101 第3项与倒数第3项的和:3+98=101 ……第50项与倒数第50项的和:50+51=101 ∴前100个正整数的和为:101×50=50502.故事引入:泰姬陵坐落于印度古都阿格,是十七世纪莫卧儿帝国皇帝沙杰罕为纪念其爱妃所建,她宏伟壮观,纯白大理石砌建而成的主体建筑叫人心醉神迷,成为世界七大奇迹之一。
等差数列的前n项和说课稿

等差数列的前n项和说课稿一.教材剖析1.本节在教材中的地位和感化“等差数列的前n项和”是对前面所学的等差数列相干常识的巩固和应用,无论在常识照样才能上,都是进一步进修其他数列常识的基本.同时,在推导等差数列的前n项和公式的进程中所采取的“倒序相加法”是往后数列乞降的一种经常应用且重要的办法.是以,控制等差数列的前n项公式及推导为后面将要进修的等比数列的相干常识打下坚实的基本.同时起到了承上启下的重要感化.2.目标剖析依据上述教材构造与内容剖析,斟酌到学生已有的熟悉构造和新课程尺度,我从三个方面肯定了本节课的教授教养目标:(1)常识目标:(a)控制等差数列的前n项和公式及推导进程;(b)会用等差数列的前n项和公式解决一些简略的与前n项和有关的问题.(2)才能目标:(a)造就学生的逻辑推理才能;(b)造就学生剖析问题,解决问题的才能.(3)情绪目标:(a)造就学生的辩证唯物主义思惟.(b)进步学生的数学教养.3.教授教养重点与难点为了实现上述三个教授教养目标,我把本节课的重.难点肯定为:(1)教授教养重点:等差数列前n项和公式的推导,懂得及应用.(2)教授教养难点:等差数列前n项和公式的推导及应用.为了凸起重点.冲破难点,在教授教养中我采纳以下措施:从学生已有的常识动身,精心设计一个相符学生常识程度的具体问题,并经由过程相干的数学史,慢慢引诱学生不雅察,类比推导出等差数列的前n项公式,并能灵巧应用解决相干的问题.二.教法剖析为了更好的造就学生的自学才能,在遵守启示式教授教养原则的基本上,本节课我重要采取以引诱发明发为主,演习法为辅的教授教养办法,意在经由过程特别等差数列乞降问题动身引诱学生导出一般等差数列的乞降公式,从而调动学生的积极性,同时给学生供给一个辽阔的摸索空间,一个充分展示创新才能的机遇.三.学法剖析在学法指点上,依据新课程尺度理念,学生是进修的主体,教师只是进修的帮忙者.指点者.引诱者,是以,在本节课的教授教养中我主如果引诱学生经由过程不雅察.类比得到等差数列的前n 项和公式,从而激发学生的求知欲和进修积极性,从而把传授常识和造就才能有机地联合起来.四.教授教养进程1.温习常识,创始情景这一环节是全部教授教养进程的症结,它直接影响学生对本节课的进修立场.是以,我做了相当严密的安插,起首和学生一路温习前面所学等差数列的相干常识,即:等差数列的界说,通项公式及有关性质,目标是为推导等差数列的前n 项公式做预备.然后,引入一个例子使学生发明原始盘算办法难度大并且精确性较低,现实对例子的引入就是思虑如何求等差数列的前100项的和.然后斟酌从求特别等差数列的乞降入学,并介绍德国有名数学家高斯的盘算,进一步引出一般等差数列的乞降问题,从而增长了学生的进修积极性.2.展示新知在引出等差数列的乞降问题后,我其实不是直接给出解决的办法,而是进一步把学生引诱到对问题的不雅察.剖析.归纳运动之中,不但让学生经由过程本身的测验测验运动解决了特别的等差数列的乞降问题,还经由过程师生互动协感化类比的办法,导出了一般等差数列的乞降公式.在采取对特别数列的乞降问题的求解得到了一般等差数列的乞降问题.把单纯逝世记常识转变成让学生积极介入,自动控制摸索的进程,表现了师生的互动性,在的得到了1()2n n n a a s +=公式后,我其实不是直接介绍推导前n 项和的第二个公式,而是经由过程一个特别等差数列的乞降问题动身,进而推导的公式1(1)2n n n s na d -=+.把单纯逝世记常识转变成让学生积极介入,自动控制摸索的进程,表现了师生的互动性,从而在此进程中不但获得了新常识,并且才能得到了造就,真正表现了“以造就学生才能为中间”的教授教养思惟.3.例题讲授常识重视应用.因而,当这部分常识讲授完后,我将经由过程讲授例题来强化学生对 常识的懂得.例1.在等差数列{}n a 中, 120a =,1548a =,求这个数列前15项的和?目标:使学生对所学常识的应用.因为这道题都比较基本,学生很轻易完成,如许 不单可以增长他们进修的兴致和自负念,还可以或许加深对公式的懂得和应用.例2.求等差数列2,4,6,前n 的和?目标:让学生巩固所学公式,能对公式进行简略应用. 例3.等差数列10,6,2,2,---前若干项的和为54? 目标:该标题主如果让学生来对标题标懂得和剖析,并能指出标题中的已知量和发明请求的未知量,使学生闇练控制公式,进一步进步学生的应用才能.4.教室演习依据夸美纽斯的教授教养巩固性原则,为了造就学生自力解决问题的才能,教师要让学生控制体系常识的构造,经由过程归纳总结来提见常识的内涵接洽,强化常识体系,从而形成稳固的常识构造.是以,剖析完例题后,为了加深学生对公式的懂得和控制,我将让学生们做书上的演习题.经由过程抽个体同窗上黑板演算,其余同窗在草底稿上完成演习的方法来懂得学生的进修情形,从而对讲授内容作恰当的填补.5.课时小结本节课讲到了这里,就接近了尾声,待对学生的演习指点完成后,先由学生来总结本节课所学的内容,并对学生的答复加以勉励.学生揭橥看法完毕后,由我对本节课的内容做一个较为周全的总结,使学生对本节常识构造有一个清楚而体系的熟悉.6.功课安插按照循序渐进的原则,我对功课安插分为三层,如许既让大部分学生对所学常识能加以巩固,同时又为学有余力的学生留有自由成长的空间,功课安插如下:1.功课题:教材P118 的习题3.3的1.2.3题;2.预习内容:教材P117的例3.例4;3.思虑题:先生在推导公式进程采取与书上不合的办法,下来请同窗们把书上的推导办法看一下.比较这两种办法有什么不合之处.目标:使学生进一步控制所学常识,进步学生的思维才能,摸索才能.五.板书设计板书设计的利害直接影响这节课的后果,是以它起着举足轻重的感化.为了使全部板面重点凸起,层次分明,我将黑板分为四版:第一和第二版是新课的讲授;第三版是用于书写例1和例2;第四版作副版应用,用于旧常识的温习和情景问题的提出,以及书写例3;再借助小黑板展示一部分小结,如许的排版使学生一目了然.总之,我这节课的设计充分表现了教师为主导,学生为主体,演习为主线,思维为焦点,才能为目标的教授教养思惟.。
等差数列的前n项和说课稿

等差数列的前n项和说课稿等差数列的前n项和说课稿作为一位兢兢业业的人民教师,可能需要进行说课稿编写工作,编写说课稿助于积累教学经验,不断提高教学质量。
那么什么样的说课稿才是好的呢?以下是小编收集整理的等差数列的前n项和说课稿,欢迎阅读与收藏。
等差数列的前n项和说课稿1以下是高中数学《等差数列前n项和的公式》说课稿,仅供参考。
教学目标A、知识目标:掌握等差数列前n项和公式的推导方法;掌握公式的运用。
B、能力目标:(1)通过公式的探索、发现,在知识发生、发展以及形成过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力。
(2)利用以退求进的思维策略,遵循从特殊到一般的认知规律,让学生在实践中通过观察、尝试、分析、类比的方法导出等差数列的求和公式,培养学生类比思维能力。
(3)通过对公式从不同角度、不同侧面的剖析,培养学生思维的灵活性,提高学生分析问题和解决问题的能力。
C、情感目标:(数学文化价值)(1)公式的发现反映了普遍性寓于特殊性之中,从而使学生受到辩证唯物主义思想的熏陶。
(2)通过公式的运用,树立学生"大众教学"的思想意识。
(3)通过生动具体的现实问题,令人着迷的数学史,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感。
教学重点:等差数列前n项和的公式。
教学难点:等差数列前n项和的公式的灵活运用。
教学方法:启发、讨论、引导式。
教具:现代教育多媒体技术。
教学过程一、创设情景,导入新课。
师:上几节,我们已经掌握了等差数列的概念、通项公式及其有关性质,今天要进一步研究等差数列的前n项和公式。
提起数列求和,我们自然会想到德国伟大的数学家高斯"神速求和"的故事,小高斯上小学四年级时,一次教师布置了一道数学习题:"把从1到100的自然数加起来,和是多少?"年仅10岁的小高斯略一思索就得到答案5050,这使教师非常吃惊,那么高斯是采用了什么方法来巧妙地计算出来的呢?如果大家也懂得那样巧妙计算,那你们就是二十世纪末的新高斯。
等差数列前n项和公式说课稿

等差数列前n项和公式说课稿一、说教材(一)作用与地位《等差数列前n项和公式》是高中数学课程中的重要内容,位于数列章节的核心位置。
等差数列作为数列中的基础类型,其前n项和公式的推导和应用,不仅对理解数列的性质具有关键作用,而且对于后续学习等比数列、数列的极限等高级数学概念奠定了基础。
(二)主要内容本文主要围绕等差数列前n项和公式的推导和应用展开,首先通过具体实例引入等差数列的概念,进而引导学生发现并证明等差数列前n项和的公式。
内容涉及以下几个方面:1. 等差数列的定义及性质复习;2. 利用图形及实际案例推导等差数列前n项和公式;3. 通过例题讲解,让学生掌握等差数列前n项和公式的应用;4. 课后练习,巩固所学知识。
二、说教学目标(一)知识与技能1. 理解等差数列的概念,掌握等差数列的基本性质;2. 学会推导等差数列前n项和公式,并能熟练运用;3. 能够解决实际问题中与等差数列前n项和相关的计算问题。
(二)过程与方法1. 通过观察、分析、归纳等学习方法,培养学生发现问题和解决问题的能力;2. 通过小组合作、讨论等学习方式,提高学生的沟通能力和团队协作能力。
(三)情感态度价值观1. 培养学生对数学的兴趣,激发学生学习数学的热情;2. 培养学生严谨、踏实的科学态度,提高学生的逻辑思维能力。
三、说教学重难点(一)重点1. 等差数列前n项和公式的推导过程;2. 等差数列前n项和公式的应用。
(二)难点1. 等差数列前n项和公式的推导过程,特别是倒序相加法的理解;2. 在实际问题中灵活运用等差数列前n项和公式解决问题。
四、说教法(一)教学方法1. 启发法:通过设置问题情境,引导学生主动思考,发现等差数列前n项和的规律。
在教学过程中,我会设计一系列由浅入深的问题,让学生在解决问题的过程中,逐步推导出等差数列前n项和公式。
2. 问答法:在教学过程中,我将以提问的方式引导学生复习等差数列的基本概念和性质,为新知识的推导做好铺垫。
等差数列的前n项和公式说课稿

《等差数列的前n项和公式》说课稿尊敬的各位评委老师大家好:今天我说课的课题是《等差数列的前n项和公式》,属于新授课,接下来我将从教材分析、教法、学法分析、教学过程、板书设计和效果分析五个方面来展开本节的说课内容。
一、教材分析1、地位与作用《等差数列的前n项和公式》是中等职业教育国家规划教材《数学》(基础版)下册第六章第2节内容,是进一步学习其他数列知识的基础,这一节内容能体现解决数列问题的通性通法,并且在推导等差数列前n项和公式中运用的“例序相加法”是今后数列求和的一种常用的重要方法。
因此等差数列前n项和公式在《数列》一章具有极为重要的地位,也是高考命题的热点。
2、教学目标分析根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,我制定如下教学目标:(1)知识与技能掌握等差数列前n项和公式以及推导该公式的数学思想方法,并能运用公式解决简单的问题;(2)过程与方法通过公式的探索、发现,在知识发生、发展以及形成的过程中培养学生观察、联想、分析、归纳、综合和逻辑推理的能力。
(3)情感、态度与价值观通过数学史小故事,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感。
3、教学重点和难点本着新课程标准,在吃透教材的基础上,我确定了下面的教学重点和难点(1)教学重点:等差数列前n项和公式的推导、掌握及灵活运用(2)教学难点:诱导学生用“倒序相加法”推导等差数列前n项和公式二、说教法(1)采取“诱导启发、自主探究”的互动式教学。
在教师的引导下,创设情景,通过问题的设置来启发学生思考,在思考中体会所蕴涵的数学方法,获得成功的内心感受。
(2)利用“多媒体教学”结合“微课”视频,节省课堂时间,增强课堂趣味性,提高课堂效率。
三、说学法以“自主探索,小组合作”为主,有助于学生深刻地理解和掌握知识,有助于思维能力的培养和训练,有助于知识的迁移。
接下来,为更好的突出重点、突破难点,我再具体谈一谈这堂课的教学过程:四、说教学过程环节(一):复习回顾——为公式的推导作铺垫设计意图:1、检索学生头脑中的原有知识,起到巩固原有知识的目的。
等差数列前n项和公式的说课稿

等差数列前n项和公式的说课稿《等差数列前 n 项和公式的说课稿》尊敬的各位评委老师:大家好!今天我说课的内容是“等差数列前 n 项和公式”。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程、板书设计这几个方面来展开我的说课。
一、教材分析“等差数列前 n 项和公式”是高中数学必修 5 第二章数列的重要内容。
数列作为一种特殊的函数,是反映自然规律的基本数学模型。
等差数列前 n 项和公式的推导,不仅体现了从特殊到一般、从一般到特殊的数学思想,也为后续学习等比数列的前 n 项和公式以及数列求和的相关问题奠定了基础。
本节课在教材中的地位和作用十分重要,它既是等差数列知识的深化和拓展,也是数学思维方法和能力培养的重要载体。
二、学情分析在学习本节课之前,学生已经掌握了等差数列的通项公式及其基本性质,具备了一定的数列运算能力和逻辑推理能力。
但对于如何从等差数列的通项公式推导出前 n 项和公式,以及如何灵活运用公式解决实际问题,还需要进一步的引导和训练。
此外,学生在数学学习中往往更注重公式的记忆和应用,而忽视了公式的推导过程和数学思想的渗透。
因此,在教学过程中,要注重引导学生参与公式的推导,培养学生的创新思维和探究能力。
三、教学目标1、知识与技能目标(1)学生能够理解并掌握等差数列前 n 项和公式的推导过程。
(2)学生能够熟练运用等差数列前 n 项和公式解决相关问题。
2、过程与方法目标(1)通过公式的推导,培养学生从特殊到一般、从一般到特殊的思维方法。
(2)通过例题和练习,提高学生分析问题和解决问题的能力。
3、情感态度与价值观目标(1)让学生在探究过程中体验成功的喜悦,增强学习数学的自信心。
(2)培养学生勇于探索、敢于创新的精神。
四、教学重难点1、教学重点等差数列前 n 项和公式的推导和应用。
2、教学难点等差数列前 n 项和公式的推导过程中数学思想方法的渗透。
五、教法与学法1、教法根据本节课的教学内容和学生的实际情况,我将采用启发式教学法、讲授法和练习法相结合的教学方法。
(完整word版)《等差数列前n项和》说课稿全面版

《等差数列前n项和》说课稿一、课题介绍二、选自人教A版《普通高中课程标准实验教科书·数学·必修5》的第二章第三节,共有两个课时, 本节课为第一课时: 等差数列前n项和公式的推导及其简单应用.三、教材分析(一)教材的地位与作用等差数列前n项和是本章的重要内容, 它与前面学过的等差数列的通项公式﹑性质有着密切联系, 同时又为今后的等比数列的前n项和﹑数列求和等内容做好知识准备, 在整个章节中起着承上启下的作用. 同时它也是高考命题的重点和热点, 是以后继续高等数学学习的基础知识, 所以本节课在高中数学教学中占有重要地位.(二)学情分析根据皮亚杰的认知水平阶段, 高一学生处于形式运算阶段, 他们思维比较活跃, 具有了敏锐的观察能力以及归纳和类比能力, 所以本节课我将从分析高斯计算的小故事的算法入手, 启发引导学生由特殊到一般, 探究等差数列的前n项和公式.(三)教学目标根据教材特点、教学大纲、新课标标准, 从提高学生分析问题解决问题的能力出发, 我确定教学目标如下:1﹑知识目标掌握等差数列前n项和公式以及公式的推导方法, 并能灵活的运用公式解决问题.2﹑能力目标通过公式的探索、发现, 在知识发生、发展以及形成过程中培养学生观察、联想、归纳、类比和逻辑推理的能力.3﹑情感目标结合具体模型,将教材知识和实际生活联系起来,使学生感受数学的实用性,激发探究兴趣和欲望,树立学生求真的勇气和信心, 并通过对等差数列求和历史的了解,渗透数学史和数学文化.(四)教学重﹑难点1.由于等差数列前n项和公式在高中数学教学和高考中占有了重要地位, 所以我将本节课的重点设置为: 等差数列前n项和公式及其简单应用.2、由于等差数列前n项和公式是数列中学习的第一个求和公式, 也是高中数学中第一次处理无穷项式子中求和的问题, 采用了倒序相加法, 需要构建一个倒序的, 由于学生缺乏处理经验, 不容易发现, 具有一定的难度, 其次由于学生的认知水平, 对公式的逆用也具有一定难度.所以我将本节课的难点设置为:等差数列前n项和公式的推导及其灵活运用.二、教学方法分析(一)教法分析联系教材分析, 本节课采用“启发引导式”教学为主, “讲练结合法”为辅的教学方法, 让学生经历知识的产生、发生和发展的过程, 这样有利于突出重点, 突破难点.(二)学法分析达尔文说过: “最有价值的知识是关于方法的知识”. 老师不是教会学生知识, 而是教会学生如何学习知识. 所以我设置如下学法: “探究性学习法”和“主动学习法”.(三)教学手段为了强调、突出重点难点, 在教学过程中将使用彩色粉笔, 并应用小黑板、多媒体辅助教学, 使教学过程更直观、形象、生动.三、教学过程(一)复习回顾根据奥苏贝尔的“先行组织者”理念: 新知识是建立在旧知识的基础上. 所以在上课之前, 我会给同学复习等差数列的定义、通项公式、性质, 这样有利于构建共同基础, 提供发展平台, 为等差数列的前n项和公式的推导做好知识准备.(二)情境引入情景: 高斯上小学时,有一次他们的顽皮惹恼了他们的数学老师, 数学老师决定惩罚下他们出了一道题: 计算从1到100的自然数之和. 并且说, 要做完了这道题才能回家吃饭. 老师认为,这些孩子算这道题目需要很长时间,所以他一写完题目,就坐到一边看书去了,谁知他刚坐下,马上就有一个学生举手说: “老师,我做完了. ”老师大吃一惊,原来是班上年纪最小的高斯.通过提问: 通过提问:高斯是如何计算的?高斯的算法妙在那?高斯的算法这么妙, 能不能运用它解决我们一般的等差数列求和问题?以问题驱动的形式引入新课.设计意图:这样既能引起学生的兴趣, 让学生从高斯的故事中寻找求和思路, 为下一步学习营造轻松愉快的氛围.又能让学生通过对等差数列求和历史的了解,渗透数学史和数学文化.同时能让学生明白高斯能有今天的成就, 和他从小培养的善于观察, 敢于思考, 从一些简单的事物当中发现和寻找出某些规律性的东西的生活习惯是分不开的.(三)探究新知1.抽一名学生起来谈谈如何运用高斯的方法计算设计意图:通过一个特例, 让学生归纳出高斯的方法计算等差数列的前n项和需根据项数的奇偶性确定有多少项相同的首末两项的和, 有没有单独的项, 对于一般的等差数列比较麻烦.2.公式的推导3、让学生思考有没有新方法, 使得在结合时既能运用高斯的求和的首项加末项的思想, 又不需探讨的奇偶性. 然后引导学生给式子的右边, 加一个, 加一个, 可由等差数列的性质, 显然可知共有n项相等的 . 再引导学生将所加的数加起来, 发现是一个倒叙的 , 所以将两式加起来, 这样既能运用高斯的首相加末项思想, 又能不探讨n的奇偶性.4、 设计意图:在这一块, 我与教材处理不同, 我这样设计是为了让学生加强对等差数列的性质的印像和运用, 同时可以运用高斯的思想, 构建一个倒叙的 , 自然的引出倒叙相加法, 让学生经历公式推导过程, 发现数学中的对称美, 加深学生对公式的理解和印象, 培养学生思维活跃性和观察分析能力.设计意图: 通过和已有的梯形面积公式作比较, 让公式形象化, 符合奥苏贝尔的有意义学习理论, 既能方便公式的记忆又能强调和已有知识相联系.求: 这位运动员七天的运动训练总量为多少.设计意图: 借用弗莱登塔尔的基本观点: 所学知识需与实际相结合, 设计例1尝试对公式简单运用, 让学生及时对新知识进行巩固, 加深对公式印象. 这道题我主要通过师生对话的形式讲解, 并将详细解题过程板书在黑板上, 起一个示范作用. 同时让他们根据题意, 合理的选用有用的已知条件, 增强学生的数学应用意识, 渗透数学建模的思想.思考: 一般的, 等差数列都已知 和 , 若例1中已知的是运动员第一天的运动训练量为 千米, 此后每天增加 千米, 要求 , 应怎样计算?设计意图:通过一个思考题引导学生推导公式二, 体现公式二因需要出现.()()1111122n n a a n d n n S na d ++-⎡⎤-⎣⎦==+ (公式二)思考: 那么公式二是否也可以给它取个名字呢? 引导学生将公式二继续化简有:()2111222n n n d d S na d n a n -⎛⎫=+=+- ⎪⎝⎭设计意图:给出公式二和二次函数的关系, 为后面运用函数的思想求解前 项和的最值问题埋下伏笔.比较两公式可知, 公式一中是已知 , , 求 , 公式二中是已知 , , 求 , 所以在平时做题时, 需根据已知适当的选用公式.设计意图:分析两个公式, 让学生学会合理运用已知条件选用公式.练习既有对两个公式的正用, 也有逆用, 这道题我会让学生分成四组, 每组各做一道题, 再让他们派代表回答答案, 和解题思路.设计意图:通过变式训练, 合理达到知识的迁移.同时练习以表格的形式出现, 形象的展现出知三求二的思想. (六)总结提炼临近尾声, 抽一两个学生结合自己的体验, 说说本节课的内容和感受, 然后由老师归纳总结, 并将知识用表格的形式体现.n a +设计意图: 这样有利于培养学生的语言表达能力和归纳概括能力, 使学生自主构建知识体系, 养成良好的学习习惯. 同时小结以表格的形式体现, 将知识条理化, 有利于减轻学生的负担.(七)布置作业⑴根据艾滨浩斯的遗忘曲线规律, 学生对新知识的遗忘是先快后慢, 先多后少的, 所以我让学生复习本节课所学知识.⑵为让学生巩固所学知识, 熟练公式的运用, 我让同学将P46 A 组 2题, 4题做在作业本上, 第二题是对公式的运用, 第四题是一道运用题.⑶为了促进数学成绩优异的学生的房展, 培养学生独立思考, 自主学习能力, 我布置了一道思考题, 若已知等差数列前项和为, 如何求.⑷为了让学生养成良好的学习习惯, 让学生预习下节课的内容.设计意图:这样布置作业不但比较有层次, 还能“让不同的人在数学上得到不同的发展”,四﹑板书设计为使整个版面重难点突出, 层次分明, 自然美观, 将黑板分为四版: 第一版为公式的推导, 第二版为公式, 第三版为例题讲解和巩固练习, 第四版为复习知识和情景引入.五﹑教学评价这节课主要体现以学生为主体的思想, 教师只是学生学习的指导者, 知识是学生自主构建的原则设计的.。
等差数列的前n项和说课稿精编版

⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新料介绍⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯等差数列的前n 项和讲课稿一、教材剖析1、本节在教材中的地位和作用“等差数列的前n 项和”是对前方所学的等差数列有关知识的稳固和应用,不论在知识仍是能力上,都是进一步学习其余数列知识的基础.同时,在推导等差数列的前 n 项和公式的过程中所采纳的“倒序相加法”是此后数列乞降的一种常用且重要的方法.所以,掌握等差数列的前 n 项公式及推导为后边将要学习的等比数列的有关知识打下坚固的基础.同时起到了承前启后的重要作用.2、目标剖析依据上述教材构造与内容剖析,考虑到学生已有的认识构造和新课程标准,我从三个方面确立了本节课的教课目的:(1)知识目标:(a)掌握等差数列的前 n 项和公式及推导过程;(b)会用等差数列的前 n 项和公式解决一些简单的与前 n 项和有关的问题.(2)能力目标:(a)培育学生的逻辑推理能力;(b)培育学生剖析问题,解决问题的能力.(3)感情目标:(a)培育学生的辩证唯心主义思想.(b)提升学生的数学涵养.3、教课要点与难点为了实现上述三个教课目的,我把本节课的重、难点确立为:(1)教课要点:等差数列前 n 项和公式的推导,理解及应用.(2)教课难点:等差数列前 n 项和公式的推导及应用.为了突出要点、打破难点,在教课中我采纳以下举措:从学生已有的知识出发,精心设计一个切合学生知识水平的详细问题,并经过有关的数学史,逐渐指引学生察看,类比推导出等差数列的前 n 项公式,并能灵巧应用解决有关的问题.二、教法剖析为了更好的培育学生的自学能力,在依据启迪式教课原则的基础上,本节课我主要采纳以指引发现发为主,练习法为辅的教课方法,意在经过特别等差数列乞降问题出发指引学生导出一般等差数列的乞降公式,从而调换学生的踊跃性,同时给学生供给一个广阔的探究空间,一个充足显现创新能力的时机.三、学法剖析在学法指导上,依据新课程标准理念,学生是学习的主体,教师不过学习的帮助者、指导者、指引者,所以,在本节课的教课中我主假如指引学生经过察看、类比得⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新料介绍⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯到等差数列的前 n 项和公式,从而激发学生的求知欲和学习踊跃性,从而把教授知识和培育能力有机地联合起来.四、教课过程1、复习知识,首创情形这一环节是整个教课过程的要点,它直接影响学生对本节课的学习态度.所以,我做了相当周祥的安排,第一和学生一同复习前方所学等差数列的有关知识,即:等差数列的定义,通项公式及有关性质,目的是为推导等差数列的前 n 项公式做准备.而后,引入一个例子使学生发现原始计算方法难度大并且正确性较低,实质对例子的引入就是思虑如何求等差数列的前100项的和.而后考虑从求特别等差数列的乞降入学,并介绍德国有名数学家高斯的计算,进一步引出一般等差数列的乞降问题,从而增添了学生的学习踊跃性.2、显现新知在引出等差数列的乞降问题后,我其实不是直接给出解决的方法,而是进一步把学生指引到对问题的察看、剖析、概括活动之中,不单让学生经过自己的试试活动解决了特别的等差数列的乞降问题,还经过师生互动协作用类比的方法,导出了一般等差数列的乞降公式.在采纳对特别数列的乞降问题的求解获取了一般等差数列的乞降问题.把纯真死记知识改变成让学生踊跃参加,主动掌握探究的过程,表现了师生的互动性,在的获取了 s n n(a1an)公式后 , 我其实不是直接介绍推导前n项和的第二个公2式, 而是经过一个特别等差数列的乞降问题出发, 从而推导的公式s n na1 n(n 1)2d .把纯真死记知识改变成让学生踊跃参加,主动掌握探究的过程,表现了师生的互动性,从而在此过程中不单获取了新知识,并且能力获取了培育,真正表现了“以培育学生能力为中心”的教课思想.3、例题解说知识着重应用.因此,当这部分知识解说完后,我将经过解说例题来加强学生对知识的理解.例 1.在等差数列a n中,a120 , a1548 ,求这个数列前15项的和?目的 : 使学生对所学知识的应用.由于这道题都比较基础,学生很简单达成,这样不只能够增添他们学习的兴趣和自信心,还可以够加深对公式的理解和应用.例 2.求等差数列2,4,6,前n的和?目的:让学生稳固所学公式,能对公式进行简单运用.例 3.等差数列10, 6, 2,2,前多少项的和为54 ?目的 : 该题目主假如让学生来对题目的理解和剖析, 并能指出题目中的已知量和发现要求的未知量 , 使学生娴熟掌握公式,进一步提升学生的应用能力.2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新料介绍⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4、讲堂练习依据夸美纽斯的教课稳固性原则,为了培育学生独立解决问题的能力,教师要让学生掌握系统知识的构造,经过概括总结来提告知识的内在联系,加强知识系统,从而形成坚固的知识构造.所以,剖析完例题后,为了加深学生对公式的理解和掌握,我将让学生们做书上的练习题.经过抽个别同学上黑板演算,其余同学在底底稿上完成练习的方式来认识学生的学习状况,从而对解说内容作适合的增补.5、课时小结本节课讲到了这里,就靠近了结尾,待对学生的练习指导达成后,先由学生来总结本节课所学的内容,并对学生的回答加以鼓舞.学生发布建议完成后,由我对本节课的内容做一个较为全面的总结,使学生对本节知识构造有一个清楚而系统的认识.6、作业部署依据顺序渐进的原则,我对作业部署分为三层,这样既让大多数学生对所学知识能加以稳固,同时又为学有余力的学生留有自由发展的空间,作业部署以下:1、作业题:教材P118 的习题 3.3 的 1、2、 3 题;2、预习内容:教材P117的例3、例 4;3、思虑题:老师在推导公式过程采纳与书上不一样的方法, 下来请同学们把书上的推导方法看一下.比较这两种方法有什么不一样之处.目的:使学生进一步掌握所学知识,提升学生的思想能力,探究能力.五、板书设计板书设计的利害直接影响这节课的成效,所以它起着举足轻重的作用.为了使整个板面要点突出,有条有理,我将黑板分为四版:第一和第二版是新课的解说;第三版是用于书写例 1 和例 2;第四版作副版使用,用于旧知识的复习和情形问题的提出,以及书写例 3;再借助小黑板显现一部分小结,这样的排版使学生了如指掌.§3.3等差数列的前n项和1、等差数列的前n2、等差数列的前n 项例1:复习引入项和公式一的推导和公式二的推导过程过程例 3:3、等差数列的前n 项例2:和的两个公式总之,我这节课的设计充足表现了教师为主导,学生为主体,练习为主线,思想为中心,能力为目标的教课思想.3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《等差数列前n项和公式》说课稿
一、设计思想
本堂课以个性化的教学思想为指导进行设计。
采用探究活动为主的教学方法,借助教材或教师提供的相关资料让学生亲自去探索得出结论或规律性的知识,培养学生的探究思维能力。
因此,我在此堂课的教学中借助图形拼接演示等差数列的前n项和公式,帮助理解,启迪思路,更加形象地揭示研究对象的性质和关系,也在教学中展示了数学的对称美。
二、教材分析
1、教学内容:《等差数列前n项和》主要内容是等差数列前n项和的推导过程和简单应用。
2、地位与作用:
数列是刻画离散现象的函数,是一种重要的数学模型。
高中数列研究的主要对象是等差、等比两个基本数列。
本节课的教学内容是等差数列的前n项和公式及其简单应用。
它与前面学过的等差数列的定义、通项公式、性质有着密切的联系;同时,又为后面学习等比数列前n项和、数列求和等内容作好准备。
因此,本节课既是本章的重点也是教材的重点。
与几何、函数等其他数学领域知识结合性强,是方程思想等诸多数学思想的学习载体,具有丰富的现实背景
3.教学目标
知识与技能目标:掌握等差数列的前n项和公式,并能运用公式解决简单的问题。
过程与方法目标:经历公式的推导过程,体会数形结合的数学思想,体验从特殊到一般的研究方法,掌握倒序相加法。
情感与态度价值观:使学生获得发现的成就感,优化思维品质,提高代数的推理能力。
4.教学重点、难点
重点:等差数列的前n项和公式。
用等差数列前项和公式解决简单实际问题。
难点:等差数列的前n项和公式的推导。
关键通过具体的例子发现一般规律。
三、学情分析
1、认知基础:学生已经学习了等差数列的定义及通项公式,掌握了等差数列的基本性质,有了一定的知识准备。
2、思维特点:正从经验性的逻辑思维向抽象思维发展,仍依赖一定的具体形象的经验材料来理解抽象的逻辑关系。
思维的严密性需要进一步的加强。
3、学生的认知规律角度:本节课采取了循序渐进、层层深入的教学方式,以问题解答的形式,通过探索、讨论、分析、归纳而获得知识,为学生积极思考、自主探究搭建了理想的平台,让学生去感悟倒序相加法的和谐对称以及使用范围。
四、教法分析
数学是一门培养和发展思维的重要学科,因此在教学中要以学生为本,遵循学生的认知规律,展现获取知识和方法的思维过程。
在教学中采用以问题驱动,层层铺垫,由特殊到一般的方法启发学生获得公式的推导思路,并采用变式题组的形式加强公式的掌握运用。
整个教学过程分成问题呈现、探索与发现、应用公式三个阶段。
五、学法分析
建构主义学习理论认为,学习是学生积极主动建构知识的过程,学习应该与学生熟悉的背景相联系。
在教学中,让学生在问题情境中,经历知识的形成和发展,通过观察、探索、交流、反思参与学习,认识和理解数学知识,学会学习,发展能力。
六、教学流程
七、教学过程设计
(一)上节回顾,铺垫思维
(1)等差数列的定义
(2)通项公式
(2)重要性质: 二)创设情景,提出问题
(二)探究等差数列前n 项和公式
教师活动:指出此数列的求和方法在1787年已被高斯解决,征求高斯故事。
问题2:高斯是采用了什么方法来巧妙地计算出答案的呢?
高斯算法:1+100=101,2+99=101,……,50+51=101,所以原式=50×(1+101)=5050 问题3:图案中,第1层到第21层一共有多少颗宝石?即1+2+3+····+21=?
借助几何图形的直观性,引导学生使用熟悉的几何方法:
把“全等三角形”倒置,与原图补成平行四边形
获得算法: 说明:这是求奇数个项求和的问题,不能简单模仿偶数个项求和的方法,需要启发学生观察中间项11与首、尾两项1和21的和它们之间的关系。
通过前后比较得出认识:高斯“首尾配对” 的算法还得分奇数个项、偶个项两种情况求和。
【设计意图】高斯算法首尾组合的思想揭示了等差数列“角标和相等,对应的项和相等”的特征,为等差数列前n 项和公式的推导的“倒序相加法”做好铺垫,开启了更深入、更细致的研究大门。
问题4:求1到n 的正整数之和,即1+2+3+····+n=?
说明:从求确定的前n 个正整数之和到求一般项数的前n 个正整数之和,目的在于让学生体验“倒序相加”这一算法的合理性,从心理上完成对“首尾配对”算法的改进。
21(121)21
S 2
+⨯=123(1)(1)(2)212(1)(1)(1)(1)
2
n n n n n s n n s n n n s n n n n n s =++++-+=+-+-+++∴=+++++++==(,,,0)
m n p q m n p q a a a a m n p q +=+⇒++≥
设计意图:引导学生实现由图形倒置拼补迁移到数式求和的倒序相加,从而突破本节课的难点。
采用由特殊到一般的研究方法.从学生熟悉的知识背景出发,让学生在具体的问题情
境中,经历知识的形成和发展,充分体现了新课标“以人为本”,强调“以学生发展为
核心”的原则。
(三)类比联想,解决问题
方法2
(四)总结公式,进行记忆 方法1: 123 n n S a a a a ++++=121
n n n n S a a a a --++++=12132112()()()() ()n n n n n n S a a a a a a a a n a a --∴=++++++
++=+1()2
n n n a a S +∴={}123n S n n n n n a S S a a a a ++设等差数列的前项和为,即=++, 如何求? 1()2n n n a a S +∴=[]1111()(2)(1)n S a a d a d a n d =+++++++-[]
()(2)(1)n n n n n S a a d a d a n d =+-+-++--11112()()() ()n n n n n n S a a a a a a n a a ∴=++++++=+个1()2n n n a a S +∴=1()
2
n n n a a S +∴=
d n a an )1(1-+=1(1)2n n n d S na -+=
(五)公式应用 例:等差数列{}n a 中,已知: 184,18,8a a n =-=-=,求前n 项和n S 及公差d.(教师引导,师生共同完成)
选用公式:根据已知条件选用适当的公式 2
)(1n n a a n S += 求出 n S 变用公式:要求公差d ,需将公式2()
112
n n n S na d -=+变形运用,求d 知三求二 等差数列的五个基本量知三可求另外两个
(六)课堂小结,布置作业
小结:回顾从特殊到一般的研究方法
倒序相加法求和及数形结合,函数与方程的数学思想 掌握等差数列的前n 项和公式及简单应用 课后作业:
● 说课小结:问题---探究的教学模式
● 由特殊到一般的研究方法
● 体现了数形结合的数学思想
1(1)2
n n n d S na -+=。