超静定次数的确定及基本结构的取法
常见一次超静定梁力法基本体系的选取

图 3 Mˉ1 图
图 4 MP图
系数项等于单位荷载弯矩图自身图乘。此时单位荷载弯矩
图在 l/2 处出现折点,用图乘法计算系数项时,需要分段进行图
乘,弯矩图左右两跨对称,算出一侧乘 2 即可,最终图乘结果如下:
δ11 =
1 EI
(
1 2
×
l 2
× 1×
2 3
)× 2 =
l 3EI
自由项等于单位荷载弯矩图和荷载弯矩图进行图乘。此时
力法基本体系的选取原则如下:
a. 只能解除原结构中的多余约束,不能解除必要约束。用
力法计算超静定结构的基本思路就是将超静定结构求解转化为
静定结构求解,如果解除了必要约束,此时体系就变为几何可
变,不再能使用力法求解。
b. 只能从原结构中解除约束,不能增加约束。新增约束的
出现会使基本体系与原结构的位移不能保持一致,满足不了基
Copyright©博看网 . All Rights Reserved.
工程设计
一个集中力 P 为例分别来计算这两种基本体系的系数项和自 由项。
第一种基本体系的单位荷载弯矩图(Mˉ1 图)是只考虑中部铰 结点处一组单位力偶所产生的弯矩(如图 3 所示),荷载弯矩图 (MP图)是只考虑基本结构上右跨跨中作用集中力 P 所产生的弯 矩(如图 4 所示)。
MP图只有右跨出现弯矩,用图乘法计算系数项时,只需将右跨的 单位荷载弯矩图和荷载弯矩图进行图乘。图乘时 MP图取 A,Mˉ1
图取 yc,图乘结果如下:
Δ1P =
1 EI
(
1 2
×
l 2
×
1 8
Pl
×
1 2
)× 2 =
Pl2 64EI
力法求解超静定结构的步骤:

第八章力法本章主要内容1)超静定结构的超静定次数2)力法的解题思路和力法典型方程(显然力法方程中所有的系数和自由项都是指静定基本结构的位移,可以由上一章的求位移方法求出(图乘或积分))3)力法的解题步骤以及用于求解超静定梁刚架桁架组合结构(排架)4)力法的对称性利用问题,对称结构的有关概念四点结论5)超静定结构的位移计算和最后内力图的校核6)§8-1超静定结构概述一、静力解答特征:静定结构:由平衡条件求出支反力及内力;超静定结构的静力特征是具有多余力,仅由静力平衡条件无法求出它的全部(有时部分可求)反力及内力,须借助位移条件(补充方程,解答的唯一性定理)。
二、几何组成特征:(结合例题说明)静定结构:无多余联系的几何不变体超静定结构:去掉其某一个或某几个联系(内或外),仍然可以是一个几何不变体系,如桁架。
即:超静定结构的组成特征是其具有多余联系,多余联系可以是外部的,也可能是内部的,去掉后不改变几何不变性。
多余联系(约束):并不是没有用的,在结构作用或调整结构的内力、位移时需要的,减小弯矩及位移,便于应力分布均匀。
多余求知力:多余联系中产生的力称为三、超静定结构的类型(五种)超静定梁、超静定刚刚架、超静定桁架、超静定拱、超静定组合结构四、超静定结构的解法综合考虑三个方面的条件:1、平衡条件:即结构的整体及任何一部分的受力状态都应满足平衡方程;2、几何条件:也称变形条件、位移条件、协调条件、相容条件等。
即结构的变形必须符合支承约束条件(边界条件)和各部分之间的变形连续条件。
3、物理条件:即变形或位移与内力之间的物理关系。
精确方法:力法(柔度法):以多余未知力为基本未知量位移法(刚度法):以位移为基本未知量。
力法与位移法的联合应用:力法与位移法的混合使用:混合法近似方法:力矩分配法、矩阵位移法、分层总和法、D值法、反弯点法等本章主要讲力法。
五、力法的解题思路(结合例子)把不会算的超静定结构通过会算的基本结构来计算。
关于材料力学中简单超静定问题怎么判断超静定次数求方法!谢谢!

关于材料力学中简单超静定问题怎么判断超静定次数求方法!谢谢!关于材料力学中简单超静定问题怎么判断超静定次数求方法!谢谢!未知力数超过独立平衡方程的次数,就是列出平衡方程,然后数数里面有几个未知力,未知力数减去平衡方程数就是超静定次数。
我在学材力,可以的话,我们可以交流一下。
如何解决材料力学中超静定问题静定结构件的变形与荷载是成线形关系的,因为建立了经典的材料各向同性,受力各向均匀,与微小变形理论,而实际中的变形也差不多,是经过了工程实践的验证的理论。
如果是超静定的话,杆件变形肯定跟荷载不成线形关系;因为它的约束位置不是确定材料力学中,怎么判断超静定次数(1)一次超静定(2)一次超静定(3)三次超静定其实就是看你解除几个约束后变为静定结构,那么他就是几次超静定。
不懂请追问。
如何用matlab来解决材料力学超静定问题,求如何用matlab来解决材料力学超静定问题,求解思路利用有限元法原理,对超静定结构梁(桁架)分解成若干个有限单元,建立单元的力与位移之间的关系,然后再将各单元通过节点联结起来,单元间的力通过节点进行传递,建立整体结构的力与位移之间的关系,将问题简化成矩阵计算问题,然后利用数学软体matlab的程式设计进行求解。
具体求解步骤可按下列方法进行:1、根据单元剖分原则,把结构剖分成若干份;2、单元分析,写出单元的刚阵(以矩阵形式表示);3、综合各单元,按节点位移序号组成结构的总刚阵[K],总外力列阵{F}和总位移列阵{qr};根据边界条件,简化矩阵;4、由{qr}=inv([K]r)*{Fr},求解各节点的变形; %inv([K]r)为[K]r的逆矩阵5、由{F}=[Kz] {q},可解得各节点反力6、按上述要求,进行matlab程式设计,以解决力学超静定问题。
具体可以参照这篇文件,网页连结。
请问材料力学中怎么判断几次超静定未知量的个数—方程的个数举个例子:一个一端固支,一端简支的梁未知量5(固支3+简支2)-3(两个方向的力平衡方程+一个力矩平衡方程)=2材料力学超静定刚架力学是一门独立的基础学科,是有关力、运动和介质(固体、液体、气体是撒旦和等离子体),巨集、细、微观力学性质的学科,研究以机械运动为主,及其同物理、化学、生物运动耦合的现象。
结构力学课后答案-第6章--力法

习题6-1试确定图示结构的超静定次数。
(a)(b)(c)(d)(e)(f)(g)所有结点均为全铰结点2次超静定6次超静定4次超静定3次超静定II去掉复铰,可减去2(4-1)=6个约束,沿I-I截面断开,减去三个约束,故为9次超静定沿图示各截面断开,为21次超静定I II 刚片I与大地组成静定结构,刚片II只需通过一根链杆和一个铰与I连接即可,故为4次超静定(h)6-2试回答:结构的超静定次数与力法基本结构的选择是否有关?力法方程有何物理意义?6-3试用力法计算图示超静定梁,并绘出M 、F Q 图。
(a)解:上图=l1M pM 01111=∆+p X δ其中:EIl l l l l l l EI l l l l EI 8114232332623232333211311=⎪⎭⎫ ⎝⎛⨯⨯+⨯⨯+⨯⨯⨯+⎪⎭⎫ ⎝⎛⨯⨯⨯⨯=δEIl F l lF l lF EI l pp p p817332322263231-=⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯=∆0817*******=-EI l F X EI l p p F X 211=p M X M M +=11l F p 61l F p 61F PA2l 3l 3B2EIEIC题目有错误,为可变体系。
+pF p lF 32X 1=1M 图p Q X Q Q +=11p F 21⊕p F 21(b)解:基本结构为:l1M 3l l2M l F p 21pM l F p 31⎪⎩⎪⎨⎧=∆++=∆++0022221211212111p p X X X X δδδδp M X M X M M ++=2211pQ X Q X Q Q ++=22116-4试用力法计算图示结构,并绘其内力图。
(a)l2l 2l2lABCD EI =常数F Pl 2E FQ 图F PX 1X 2F P解:基本结构为:1M pM 01111=∆+p X δpM X M M +=11(b)解:基本结构为:EI=常数qACEDB4a 2a4a4a20kN/m3m6m6mAEI 1.75EIB CD 20kN/mX 1166810810计算1M ,由对称性知,可考虑半结构。
超静定结构的概述和超静定次数的确定

第5页
二. 超静定次数的确定
超静定结构中的多余约束数目称为超静定次数
从几何特征来看,从原结构中去掉n个约束,结构就成 为静定的,则原结构即为n次超静定,因此
超静定次数 = 多余约束的个数
(1)
即: 把原结构变成静定结构时所需撤除的约束个数。
结构力学电子教案
第八章 力法
第6页
从静力特征来看,超静定次数等于根据平衡方程计算未 知力时所缺少的方程的个数,因此
思考:
是否可将支座A处的水平链杆作为多余约束?
X1
??
结构力学电子教案
第八章 力法
第4页
2. 静力特征: 只靠静力平衡方程无法求得全部的内力或 反力,欲求
得全部的内力或反力,还必须考虑变形协调条件。
内力是超静定的,约束有多余的,这就是超静定结构 区别于静定结构的基本特征。
结构力学电子教案
第八章 力法
结构力学电子教案
第八章 力法
第1页
§8-1 超静定结构的概述和超静定次数的确定 一.超静定结构的一般概念
超静定结构的两个特征: 1. 几何特征:
超静定结构是具有多余约束 的几何不变体系。
结构力学电子教案
第八章 力法
必要约束: 多余约束:
第2页
P
X1
多余约束力
X1
结构力学电子教案
第八章 力法
超静定结构受力分析及特性

第三讲超静定结构受力分析及特性【内容提要】超静定次数确定, 力法、位移法基本体系, 力法方程及其意义, 等截面直杆刚度方程, 位移法基本未知量确定, 位移法基本方程及其意义, 等截面直杆的转动刚度, 力矩分配系数与传递系数, 单结点的力矩分配, 对称性利用, 半结构法, 超静定结构位移计算, 超静定结构特性。
【重点、难点】力法及力法方程, 位移法及基本方程;力矩分配系数与传递系数, 单结点的力矩分配, 超静定结构位移计算。
一、超静定次数把超静定结构变为静定结构所需要解除的约束数称为超静定次数(或多余约束数)。
1. 撤去一个活动铰支座(即一根支杆), 或切断一根链杆各相当于解除一个约束。
2. 撤去一个固定铰支座(即两根支杆), 或拆开一个单铰结点, 各相当于解除两个约束。
3. 撤去一个固定支座, 或切断一根受弯杆件各相当于解除三个约束。
4. 将固定支座改为固定铰支座, 或将受弯杆件切断改成铰接各相当于解除一个(承受弯矩的)约束。
5. 边框周边安置一个单铰则其内部减少一个弯矩约束。
6. 一个外形封闭和周边无铰的闭合框或刚架其内部具有三个多余约束, 是三次超静定的。
k个周边无铰的闭合框的超静定次数等于3k。
二、力法(一)基本结构力法是解算超静定结构最古老的方法之一。
力法计算超静定结构是把超静定结构化为静定结构来计算, 所以力法基本未知量的个数就是结构多余约束数。
以超静定结构在外因作用下多余约束(又称多余联系)上相应的多余力作为基本未知量,计算时将结构上的多余约束去掉, 代之以多余力的作用, 将这样所得的静定结构作为求解基本未知量的基本结构(或称为基本体系)。
(二)解题思路根据基本结构在原有外力及多余力的共同作用下, 在去掉多余约束处沿多余力方向的位移应与原结构相应的位移相同的条件, 建立力法方程, 解方程即可求得各多余力。
将多余力视为基本结构的荷载, 则可作基本结构内力图, 也就是原结构的内力图。
原结构的位移计算亦可在基本结构上进行, 这样更为方便。
超静定结构的概念及超静定次数的确定(PPT)

04 超静定结构的实际应用
桥梁工程
桥梁工程中,超静定结构的应用可以增加结构的稳定性和安全性,提高桥梁的承 载能力。例如,连续梁桥采用超静定结构形式,可以减小梁体的振动和变形,提 高行车舒适性和安全性。
此外,超静定结构在桥梁工程中还可以用于抵抗风、地震等自然灾害的影响,提 高桥梁的抗震性能和抗风能力。
ቤተ መጻሕፍቲ ባይዱ
渐进法
总结词
通过逐步逼近的方法求解超静定结构的位移和内力的方法。
详细描述
渐进法是一种基于迭代思想的求解方法,通过逐步逼近的方法求解超静定结构的位移和内力。该方法首先假设一 组初始解,然后逐步修正解的近似值,直到满足精度要求或达到预设的迭代次数为止。渐进法可以处理复杂的超 静定结构问题,具有较高的计算效率和精度。
建筑工程
在建筑工程中,超静定结构的应用可以提高结构的稳定性和 刚度,增强建筑物的承载能力和抗震性能。例如,高层建筑 采用超静定结构形式,可以减小风力、地震等外部荷载对建 筑物的影响,保证建筑物的安全性和稳定性。
此外,超静定结构在建筑工程中还可以用于优化建筑物的空 间布局和结构形式,提高建筑物的美观性和实用性。
超静定结构
在任何一组确定的平衡力系作用 下,需要用多余的约束条件才能 确定结构的平衡状态的体系。
超静定结构的特性
具有多余的约束
超静定结构有多余的约束,这些 多余的约束可以提供额外的稳定 性,使结构在受到外力作用时具
有更好的抵抗变形的能力。
存在内力
由于超静定结构的约束多余,当 受到外力作用时,会在结构内部 产生内力,这些内力有助于抵抗
判别准则二
如果一个结构的支座反力数目小于其约束数目, 则该结构为超静定结构。
判别准则三
如果一个结构的受力状态不能由静力平衡方程完 全确定,则该结构为超静定结构。
计算结构超静定次数的公式

计算结构超静定次数的公式
结构超静定次数(SDOF,即单自由度系统)是一种描述动力学特性的重要工程
物理指标,它是对结构特性的重要衡量指标,也是在设计结构时明确可能受到的外力的一种有用的参考。
由于结构超静定次数的重要性,因此非常重要的就是计算每个结构的SDOF,即计算结构超静定次数的公式。
一般情况下,结构超静定次数的公式可分为定位法和统计法。
定位法的公式是:SDOF= 1/k+1/c+1/m,这里K为模态弹性系数,C为模态阻尼系数,M为模态质量系数。
统计法的公式涉及谱强度概率计算等方法,是一种自动计算方式,该方法可以精确地表达自动除去局部谐振的自激阻尼的系统的超静定次数,从而得出结构超静定次数。
尽管定位法和统计法都具有计算精确、效率高的优势,但由于计算结构超静定
次数时涉及模态参数摸索和较为复杂的反向计算,所以在实施计算过程中往往需要考虑多个利益相关方的功能要求,以便在整个过程中取得最优折中结果。
因此,在实际应用中,一般更合理采用可靠的统计法,以得出满足实际要求的最优超静定次数。
总的来说,结构超静定次数的公式不仅对合理设计结构十分重要,也为了保证
在极端情况下结构的可靠性而设计有重要意义。
因此,在实施结构设计时应首先确定结构超静定次数,以保证结构稳定,安全可靠。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章力法
§6—1 超静定次数的确定及基本结构的取法
超静定结构:具有多余联系的几何不变体系。
超静定次数:多余联系的数目。
多余力:多余联系所发生的力。
超静定次数的判定:
1、去掉一个支链杆相当于去掉一个约束。
绝对需要的约束不能去掉
2、去掉一个铰相当于去掉两个约束。
⇒
⇒
⇒3、去掉一个固定端相当于去掉三个约束。
⇒4、切断一个梁式杆⇒去掉三个约束。
⇒5、刚结变铰接⇒去掉一个约束。
P M 解法三: P M 通过选择多种基本结构,加深理解力法方程的物理意义。
熟悉力法解题步骤,增加解题的灵活性。
例题:作M 图(提问:加深对脚标的印象及系数的特点) 基本结构
best
§6—3 荷载作用下,力法解超静定
一、超静定刚架、梁
例题: P M
M
M
N Q→
与教材所造基本结构难易程度对比, 说明利用对称性的重要性。
二、桁架
三、组合结构
讲清概念,看书上例题
四、排架计算
力法解排架:将横梁看成多余联系,柱两端的相对位移等于零。
§6—4 对称性的利用
对称结构:对称荷载作用 对称轴截面上 对称内力位移存在
反对称内力位移等于零 反对称荷载作用 对称轴截面上 反对称内力位移存在 对称内力位移等于零 M 、N :对称内力 Q :反对称内力
利用对称性质去半边结构画弯矩。
对称荷载:
反对称荷载: 二、两跨结构 反对称荷载:
根据以上分析,对称性利用时,可分为奇数跨,偶数跨两种,其中奇数跨按单跨考虑,偶数跨按两跨考虑。
习题:(1)
§6—5 两铰拱的计算
自学看书,然后提问
§6—6 支座位移、制造误差作用下超静定结构计算
一、支座位移 结论:对于超静定结构,支座位移引起的内力几支反力与刚度成正比。
对于静定结构,支座位移不产生内力。
M
例2:
⎪
⎩
⎪
⎨
⎧
=
=
=
⇒
⎪
⎩
⎪
⎨
⎧
-
=
+
+
=
+
+
=
+
+
6
24
3
1
2
3
2
1
3
33
2
32
1
31
3
23
2
22
1
21
3
13
2
12
1
11
x
x
x
x
x
x
x
x
x
x
x
x
δ
δ
δ
δ
δ
δ
δ
δ
δ
尽量将有支座位移的多余约束去掉,可减少计算自由项的工作量。
练习或作业:kN EA 51068.7⨯=,CD 杆短了cm e 2=,求各杆内力。
§6—7 温度改变时超静定结构计算
例1、已知:EI =常数,h =600m ,kPa E 7
102⨯=,温度膨胀系数00001.0=α。
求:M 、
N
例:已知:t2﹥t1﹥0;(h=l/10);求:M、N
§6—8超静定结构位移计算及内力图校核
一、位移计算;
1、荷载作用;
例1:已知:M、EI、l、q;求
CV
∆。
任取一个基本结构加单位力,然后计算位移。
例2:桁架(加一桁架例题),也可加一个组合结构的例题。
(2)
练习1:
内力图校核: 1、 平衡条件的校核只能检验由N Q M x x ,,,21→; 2、 不能检验321,,x x x ,多余力求的对不对; 3、 只有既满足位移条件,有满足平衡条件的内力图才是唯一正确的。
例题:看书,一起看,一起讲。
已知:条件如图所示
§6—9超静定结构与静定结构的比较
1、静定结构除荷载外,其他任何因素都不能引起内力(如温度改变、支座位移、制造误差、材
料收缩等),而超静定结构任何因素都可能引起内力。
2、静定结构只需用静力平衡条件就可确定全部内力,与材料特性无关,而超静定结构需要同时
用静离平衡和位移协调方程来求解内力,与材料性质有关。
3、静定结构在一个联系破坏后,变成可变体系而失去承载能力,超静定结构在多余约束力去掉
以后,仍能维持几何不变性。
承受荷载,从抵抗突然破坏的观点来说,超静定结构比静定结构具有较强的防御能力。
4、超静定结构内力分布均匀,充分发挥材料性能。
5、
⇒
力法总结 一、基本未知数:多余约束力;
个数:超静定次数; 力法方程(位移协调方程):在多余约束力及各种因素作用下(荷载、温度改变、支座位移、制造误差等)基本结构在去掉约束处的位移与原结构实际位移相等。
二、力法举例: 1、 荷载作用下:0111=∆+P δ 2、 支座位移作用下:
∆-=111x δ 01111=∆∆+x δ 3、温度变化:01111=∆+t x δ 4、桁架:。