大学物理实验-误差理论与数据处理综述
物理实验 误差分析与数据处理讲解

目录实验误差分析与数据处理 (2)1 测量与误差 (2)2 误差的处理 (6)3 不确定度与测量结果的表示 (10)4 实验中的错误与错误数据的剔除 (13)5 有效数字及其运算规则 (15)6 实验数据的处理方法 (17)习题 (25)实验误差分析与数据处理1 测量与误差1.1 测量及测量的分类物理实验是以测量为基础的。
在实验中,研究物理现象、物质特性、验证物理原理都需要进行测量。
所谓测量,就是将待测的物理量与一个选来作为标准的同类量进行比较,得出..................................它们的倍数关系的过程..........。
选来作为标准的同类量称之为单位,倍数称为测量数值。
一个物理量的测量值等于测量数值与单位的乘积。
在人类的发展历史上,不同时期,不同的国家,乃至不同的地区,同一种物理量有着许多不同的计量单位。
如长度单位就分别有码、英尺、市尺和米等。
为了便于国际交流,国际计量大会于1990年确定了国际单位制(SI ),它规定了以米、千克、秒、安培、开尔文、摩尔、坎德拉作为基本单位,其他物理量(如力、能量、电压、磁感应强度等)均作为这些基本单位的导出单位。
1.直接测量与间接测量测量可分为两类。
一类是直接测量,是指直接将待测物理量与选定的同类物理量的标准单位相比较直接得到测量值的一种测量。
它无须进行任何函数关系的辅助运算。
如用尺测量长度、以秒表计时间、天平称质量、安培表测电流等。
另一类是间接测量,是指被测量与直接测量的量之间需要通过一定的函数关系的辅助运算,才能得到被测量物理量的量值的测量。
如单摆测量重力加速度时,需先直接测量单摆长l 和单摆的周期T ,再应用公式224Tl g π=,求得重力加速度g 。
物理量的测量中,绝大部分是间接测量。
但直接测量是一切测量的基础。
不论是直接测量,还是间接测量,都需要满足一定的实验条件,按照严格的方法及正确地使用仪器,才能得出应有的结果。
误差理论和测量数据处理

误差理论和测量数据处理一、引言误差理论和测量数据处理是科学研究和工程实践中不可或缺的重要部分。
准确的测量和数据处理是确保实验结果可靠性和可重复性的关键。
本文将详细介绍误差理论和测量数据处理的基本概念、方法和步骤。
二、误差理论1. 误差的定义和分类误差是指测量结果与真实值之间的差异。
根据产生误差的原因,可以将误差分为系统误差和随机误差。
系统误差是由于测量仪器的固有缺陷或操作者的主观因素导致的,它具有一定的可预测性;随机误差是由于测量过程中的各种偶然因素引起的,它是无法完全消除的。
2. 误差的表示和评估误差可以用绝对误差和相对误差来表示。
绝对误差是指测量结果与真实值之间的差异的绝对值;相对误差是指绝对误差与真实值之比。
为了评估误差的大小和可靠性,常用的指标有平均值、标准差、相对误差等。
3. 误差的传递和合成在实际测量中,往往需要通过多个测量量来求解某个物理量。
误差的传递和合成是指将各个测量量的误差通过一定的数学关系求解出最终物理量的误差。
常用的误差传递和合成方法有线性近似法、微分法和蒙特卡洛法等。
三、测量数据处理1. 数据收集和整理在进行实验测量时,需要采集一系列数据。
数据的收集和整理是指将实验数据按照一定的规则进行记录和整理,以便后续的数据处理和分析。
常见的数据整理方法有表格记录法、图表记录法等。
2. 数据的处理和分析数据的处理和分析是指对收集到的数据进行统计和推断。
常见的数据处理和分析方法有平均值计算、方差分析、回归分析等。
通过对数据的处理和分析,可以获得实验结果的可靠性和可信度。
3. 数据的可视化和展示数据的可视化和展示是将处理和分析后的数据以图表的形式展示出来,以便更直观地理解和传达实验结果。
常见的数据可视化和展示方法有柱状图、折线图、散点图等。
四、实例分析为了更好地理解误差理论和测量数据处理的应用,我们以某次实验测量某物理量为例进行分析。
在实验中,我们使用了仪器A进行测量,并记录了一系列数据。
误差理论及实验数据处理

可以设法减小或排除掉的,如对试验机和应变仪等定期校准和检验。又如单向拉伸时由于夹
具装置等原因而引起的偏心问题,可以用试样安装双表或者两对面贴电阻应变片来减少这种
误差。系统误差越小,表明测量的准确度越高,也就是接近真值的程度越好。
偶然误差是由一些偶然因素所引起的,它的出现常常包含很多未知因素在内。无论怎样
差出现的可能性小。
3)随着测量次数的增加,偶然误差的平均值趋向于零。
4)偶然误差的平均值不超过某一限度。
根据以上特性,可以假定偶然误差Δ 遵循母体平均值为零
的高斯正态分布,如图Ⅰ-1 所示。
f (Δ) =
1
− Δ2
e 2σ 2
σ 2π
图Ⅰ-1 偶然误差的正态频率曲线
·97·
材料力学实验指导与实验基本训练
Δ ≤ Δ1 + Δ2 [注]:上述法则对于两个相差甚大的数在相减时是正确的。但是对两个相互十分接近的 数,在相减时有效位数大大减少,上述结论就不适用。在建立运算步骤时要尽量避免两个接 近相等的数进行相减。 2)如果经过多次连乘除后要达到 n 个有效位数,则参加运算的数字的有效位数至少要 有 (n + 1) 个或 (n + 2) 个。例如,两个 4 位有效数的数字经过两次相乘或相除后,一般只能 保证 3 位有效数。 3)如果被测的量 N 是许多独立的可以直接测量的量 x1, x2,", xn 的函数,则一个普遍的 误差公式可表示为下列形式,即
控制实验条件的一致,也不可避免偶然误差的产生,如对同一试样的尺寸多次量测其结果的
分散性即起源于偶然误差。偶然误差小,表明测量的精度高,也就是数据再现性好。
实验表明,在反复多次的观测中,偶然误差具有以下特性:
误差理论与数据处理

服从正态分布的随机误差具有以下特征:
①单峰性。绝对值小的误差出现的概率比绝对值大的误差出现的概率大。
②对称性。绝对值相等的正、负误差出现的概率相等。
③有界性。绝对值很大的误差出现的概率很小,甚至趋近于零。
④抵偿性。随机误差的算术平均值随着测量次数的增加而越来越趋于零,即
1
lim n n
n
xi
i 1
计分布规律,可以用统计学方法估算随机误差。
3.异常数据的剔除
剔除测量列中异常数据的标准有 3 准则、肖维准则、格拉布斯准则等。
统计理论表明,测量值的偏差超过 3 的概率已小于 1%。因此,可以认为偏差超过 3
的测量值是由于其它因素(实验装置故障、测量条件的意外变化、较强的外界干扰)或过
失造成的异常数据,应当剔除。方法是用偏差 xi
Sx
(xi x)2 n 1
(7)
S x 的统计意义: S x 小,说明随机误差的分布范围窄,小误差占优势,各测量值的离 散性小,重复性好。反之, S x 大,各测量值的离散性大,重复性差。
一般情况下,在多次测量后,是以算术平均值表达测量结果的,而算术平均值本身也
是随机量,也有一定的分散性,可用平均值的标准偏差 S 来表征这一分散性: x
不确定度(Uncertainty)是指由于测量误差的存在而对被测量值不能肯定的程度,用
符号U 表示。通过不确定度可以对被测量的真值所处的量值范围做出评定,而被测量的真
值将以一定的概率(例对于标准不确定度 P=68.3%)落在这个范围内;同时不确定度大小 反映了测量结果可信程度的高低,不确定度越小,测量结果与被测量的真值越接近。
为了能更直观地反映测量结果的优劣,需要引入相对不确定度 E ,即
误差理论和测量数据处理

误差理论和测量数据处理误差理论和测量数据处理是在科学研究、工程设计和实验室测试中非常重要的一部分。
它们涉及到对测量数据的准确性和可靠性进行评估,以及对误差来源和处理方法的分析。
在本文中,我们将详细介绍误差理论和测量数据处理的基本概念、方法和应用。
一、误差理论的基本概念误差是指测量结果与真实值之间的差异。
在测量过程中,由于各种因素的影响,测量结果往往会存在一定的误差。
误差理论的目标是通过对误差进行分析和处理,提高测量结果的准确性和可靠性。
1. 系统误差和随机误差系统误差是由于测量仪器的固有缺陷、环境条件的变化等因素引起的,它们对测量结果产生恒定的偏差。
而随机误差是由于测量过程中不可避免的各种随机因素引起的,它们对测量结果产生不确定的影响。
2. 绝对误差和相对误差绝对误差是指测量结果与真实值之间的差异的绝对值,它可以用来评估测量结果的准确性。
相对误差是指绝对误差与测量结果的比值,它可以用来评估测量结果的相对准确性。
3. 精度和精确度精度是指测量结果的接近程度,它可以通过对多次测量结果的统计分析来评估。
精确度是指测量结果的稳定性和一致性,它可以通过对同一样本进行多次测量来评估。
二、测量数据处理的基本方法测量数据处理是指对测量数据进行分析、处理和解释的过程。
它包括数据的整理、数据的可视化、数据的统计分析等步骤。
1. 数据的整理数据的整理是指将原始数据进行清洗、筛选和整理,以便后续的分析和处理。
这包括去除异常值、填补缺失值、标准化数据等操作。
2. 数据的可视化数据的可视化是指将数据以图表或图像的形式展示出来,以便更直观地理解数据的分布、趋势和关系。
常用的可视化方法包括直方图、散点图、折线图等。
3. 数据的统计分析数据的统计分析是指对数据进行统计特征、相关性、回归分析等统计方法的应用。
通过统计分析,可以得到数据的均值、标准差、相关系数等指标,从而对数据进行更深入的理解。
4. 数据的模型建立数据的模型建立是指根据测量数据的特征和目标需求,建立数学模型来描述数据的变化规律。
大学物理实验报告数据处理及误差分析

大学物理实验报告数据处理及误差分析部门: xxx时间: xxx整理范文,仅供参考,可下载自行编辑力学习题误差及数据处理一、指出下列原因引起的误差属于哪种类型的误差?1.M尺的刻度有误差。
2.利用螺旋测微计测量时,未做初读数校正。
3.两个实验者对同一安培计所指示的值读数不同。
4.天平测量质量时,多次测量结果略有不同。
5.天平的两臂不完全相等。
6.用伏特表多次测量某一稳定电压时,各次读数略有不同。
7.在单摆法测量重力加速度实验中,摆角过大。
二、区分下列概念1.直接测量与间接测量。
2.系统误差与偶然误差。
3.绝对误差与相对误差。
4.真值与算术平均值。
5.测量列的标准误差与算术平均值的标准误差。
三、理解精密度、准确度和精确度这三个不同的概念;说明它们与系统误差和偶然误差的关系。
四、试说明在多次等精度测量中,把结果表示为 <单位)的物理意义。
五、推导下列函数表达式的误差传递公式和标准误差传递公式。
1.2.3.六、按有效数字要求,指出下列数据中,哪些有错误。
1.用M尺<最小分度为1mm)测量物体长度。
3.2cm50cm78.86cm6.00cm16.175cm2.用温度计<最小分度为0.5℃)测温度。
68.50℃31.4℃100℃14.73℃七、按有效数字运算规则计算下列各式的值。
1.99.3÷2.0003=?2.=?3.4.八、用最小分度为毫M的M尺测得某物体的长度为=12.10cm<单次测量),若估计M尺的极限误差为1mm,试把结果表示成的形式。
b5E2RGbCAP九、有n组测量值,的变化范围为2.13 ~ 3.25,的变化范围为0.1325 ~0.2105,采用毫M方格纸绘图,试问采用多大面积的方格纸合适;原点取在何处,比例取多少?p1EanqFDPw十、并排挂起一弹簧和M尺,测出弹簧下的负载和弹簧下端在M尺上的读数如下表:据处理。
长度测量1、游标卡尺测量长度是如何读数?游标本身有没有估读数?2、千分尺以毫M为单位可估读到哪一位?初读数的正、负如何判断?待测长度如何确定?3、被测量分别为1mm,10mm,10cm时,欲使单次测量的百分误差小于0.5%,各应选取什么长度测量仪器最恰当?为什么?DXDiTa9E3d物理天平侧质量与密度1、在使用天平测量前应进行哪些调节?如何消除天平的不等臂误差?2、测定不规则固体的密度时,若被测物体进入水中时表面吸有气泡,则实验所得的密度是偏大还是偏小?为什么?RTCrpUDGiT用拉伸法测量金属丝的杨氏模量1、本实验的各个长度量为什么要用不同的测量仪器测量 ?2、料相同,但粗细、长度不同的两根金属丝,它们的杨氏模量是否相同?3、本实验为什么要求格外小心、防止有任何碰动现象?5PCzVD7HxA精密称衡—分析天平的使用1、如果被测物体的密度与砝码的密度不同,即使它们的质量相等,但体积不同,因而受到空气浮力也不同,便产生浮力误差。
大学物理实验—误差及数据处理

误差及数据处理物理实验离不开测量,数据测完后不进行处理,就难以判断实验效果,所以实验数据处理是物理实验非常重要的环节。
这节课我们学习误差及数据处理的知识。
数据处理及误差分析的内容很多,不可能在一两次学习中就完全掌握,因此希望大家首先对其基本内容做初步了解,然后在具体实验中通过实际运用加以掌握。
一、测量与误差1. 测量概念:将待测量与被选作为标准单位的物理量进行比较,其倍数即为物理量的测量值。
测量值:数值+单位。
分类:按方法可分为直接测量和间接测量;按条件可分为等精度测量和非等精度测量。
直接测量:可以用量具或仪表直接读出测量值的测量,如测量长度、时间等。
间接测量:利用直接测量的物理量与待测量之间的已知函数关系,通过计算而得到待测量的结果。
例如,要测量长方体的体积,可先直接测出长方体的长、宽和高的值,然后通过计算得出长方体的体积。
等精度测量:是指在测量条件完全相同(即同一观察者、同一仪器、同一方法和同一环境)情况下的重复测量。
非等精度测量:在测量条件不同(如观察者不同、或仪器改变、或方法改变,或环境变化)的情况下对同一物理量的重复测量。
2.误差真值A:我们把待测物理量的客观真实数值称为真值。
一般来说,真值仅是一个理想的概念。
实际测量中,一般只能根据测量值确定测量的最佳值,通常取多次重复测量的平均值作为最佳值。
误差ε:测量值与真值之间的差异。
误差可用绝对误差表示,也可用相对误差表示。
绝对误差=测量值-真值,反应了测量值偏离真值的大小和方向。
为了全面评价测量的优劣, 还需考虑被测量本身的大小。
绝对误差有时不能完全体现测量的优劣, 常用“相对误差”来表征测量优劣。
相对误差=绝对误差/测量的最佳值×100%分类:误差产生的原因是多方面的,根据误差的来源和性质的不同,可将其分为系统误差和随机误差两类。
(1)系统误差在相同条件下,多次测量同一物理量时,误差的大小和符号保持恒定,或按规律变化,这类误差称为系统误差。
误差理论与数据处理实验报告

误差理论与数据处理实验报告姓名:小叶9101学号:小叶9101班级:小叶9101指导老师:小叶目录实验一误差的基本概念实验二误差的基本性质与处理实验三误差的合成与分配实验四线性参数的最小二乘法处理实验五回归分析实验心得体会实验一误差的基本概念一、实验目的通过实验了解误差的定义及表示法、熟悉误差的来源、误差分类以及有效数字与数据运算。
二、实验原理1、误差的基本概念:所谓误差就是测量值与真实值之间的差,可以用下式表示误差=测得值-真值1、绝对误差:某量值的测得值和真值之差为绝对误差,通常简称为误差。
绝对误差=测得值-真值2、相对误差:绝对误差与被测量的真值之比称为相对误差,因测得值与真值接近,故也可以近似用绝对误差与测得值之比值作为相对误差。
相对误差=绝对误差/真值≈绝对误差/测得值2、精度反映测量结果与真值接近程度的量,称为精度,它与误差大小相对应,因此可以用误差大小来表示精度的高低,误差小则精度高,误差大则精度低。
3、有效数字与数据运算含有误差的任何近似数,如果其绝对误差界是最末位数的半个单位,那么从这个近似数左方起的第一个非零的数字,称为第一位有效数字。
从第一位有效数字起到最末一位数字止的所有数字,不论是零或非零的数字,都叫有效数字。
数字舍入规则如下:①若舍入部分的数值,大于保留部分的末位的半个单位,则末位加1。
②若舍去部分的数值,小于保留部分的末位的半个单位,则末位加1。
③若舍去部分的数值,等于保留部分的末位的半个单位,则末位凑成偶数。
即当末位为偶数时则末位不变,当末位为奇数时则末位加1。
三、实验内容1、用自己熟悉的语言编程实现对绝对误差和相对误差的求解。
2、按照数字舍入规则,用自己熟悉的语言编程实现对下面数据保留四位有四、实验数据整理(一)用自己熟悉的语言编程实现对绝对误差和相对误差的求解。
1、分析:绝对误差:绝对误差=测得值-真值相对误差:相对误差=绝对误差/真值≈绝对误差/测得值2、程序%绝对误差和相对误差的求解x=1897.64 %已知数据真值x1=1897.57 %已知测量值d=x1-x %绝对误差l=(d/x)%相对误差3、在matlab中的编译及运行结果(二)按照数字舍入规则,用自己熟悉的语言编程实现对下面数据保留四位有效数字进行凑整。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
误差理论与数据处理
②依据测量的条件进行分类
※等精度测量:
就是在一定的条件下,由同一测量者,操作同 一测量工具,采用同一方法,测量同一对象, 这样的测量称为等精度测量.即测量的一切条 件都是不变的,变化的因素很小时也可认为是 等精度测量.
不等精度测量 :
③依据测量可重复性进行分类
单次测量: ※多次测量:
误差理论与数据处理
①误差的绝对值有界 有界性 ②小误差出现的概率大于大误差出现 单峰性 的概率 对称性 ③n很大时,绝对值相等、符号相反的 误差,概率相等 ④n很大时,由于正负误差相互抵消, 抵偿性 各误差的代数和趋于零。 通过数学推导,可以得到随机误差的概率密度 分布函数
误差理论与数据处理
或者
一般难以控制,往往不可抗拒。
如:电磁场等的微扰,测量者的心理等。
误差理论与数据处理
•服从的规律: 服从数理统计规律。 •处理方法:
多次测量取平均值,也就是用最佳 估计的办法得近似真值。
③过失误差
由于实验者粗心大意或环境突发干扰而造成的, 该测量值不属于正常测量范围,在处理数据时 应予以剔除。
误差理论与数据处理
误差理论与数据处理
误差理论与数据处理
《大学物理实验》课程安排
本学期(8次课16学时)
(1)误差理论与数据处理 (2)实验项目7个 14学时 2学时
误差理论与数据处理
本次课程内容:
一、基本概念 二、随机误差的正态分布率 三、数据处理 *(重点)
四、实验常用的数据处理 方法 *(重点) 五、物理实验课的基本程 序和要求
准确度高 精密度低
准确度高 精密度高
精 确 度 高
误差理论与数据处理
4)误差的表示方法:
①绝对误差: 反映测量结果的可靠范围,一般 所说的误差常指绝对误差。
(
绝对误差 为真值, 为测量值)
②相对误差: 是绝对误差与测量真值的比值的 百分数。
用 表示相对误差,则
相对误差是反映测量误差在测量结果中的比重。
3)研究误差的目的:
①减小误差 ②提高精度 4)精度: 它反映测量值的准确程度,与误差大 小相对应,误差大精度低,误差小精 度高。主要有三个指标: ①精密度 ②准确度 ③精确度 反映随机误差的影响程度。 反映系统误差的影响程度。 反映两者综合的影响程度。
误差理论与数据处理
举例:打耙实验
精密度高 准确度低
误差理论与数据处理
一、基本概念 1、测量 1) 含义:
以确定被测对象量值为目的的一组操作,即用实 验的方法,将物理量与作为单位量的某量值相比 较,得到其比值的过程。测量是物理实验的基础。
2) 测量结果: 由测量得到的赋予被测对象的量值。 测量 结果由比值和测量单位两部分组成。
例如:测量结果 L=25.26cm. L—物理量名称、
式中:
为真值
由于真值我们往往是得不到的,此时我们以 作为真值 的最佳估计值,引入残差的概念
残差
误差理论与数据处理
由真差 与残差 、 之间的关系可以推得
贝塞尔公式
( 非常大但有限)
称为测量列的标准偏差,它是 的最佳 估计值。
cm—测量单位、25.26—比值(单位的数目)
误差理论与数据处理
3)测量的分类:
①按照测量量获得的方式、途径进行分类
直接测量:
可以用测量仪器或仪表直接读出测量值的测量。 例如:米尺测长度、秒表测时间、温度
※间接测量:
计测温度、毫安表量电流等。
通过测量与被测量有关系的其他物理量,这些 量可直接测得,依据它们之间的函数关系,求 得被测量。 例如:体积、密度、粘度等。
误差理论与数据处理
任 2)误差的分类: 何 测 根据误差性质和产生原因可将误差分为以 量 下几类: 结 ①系统误差 果 都 ②随机误差 有 误 ③过失误差 差!
误差理论与数据处理
①系统误差
• 定义:
在一定的条件下(指仪器、方法、环境和观测者一 定),多次测量同一量时,测量误差的绝对值和正 负符号都保持不变,或按一定规律变化,这种误差 称为系统误差。
误差理论与数据处理
2、随机误差的两个数字特征
①算术平均值
在不考虑系统误差的情况下,对某一物理量 进行 次等精度重复测量,假定真值为 ,所得到的 测量值(测量列 ) ,
则算术平均值为
误差理论与数据处理
误差:
当
时
∴
※算术平均值是真值的最佳估计值
误差理论与数据处理
②标准偏差
它是描述测量数据分散性指标的特征量
※定值系统误差 变值系统误差
• 来源:
a、仪器本身 d、操作者 b、理论推导 e、环境等。 c、实验方法
பைடு நூலகம்
误差理论与数据处理
②随机误差
• 定义: 在同一条件下,对同一量进行多次测量时,
如果没有系统误差,测量结果仍会出现一些 无规律的起伏,测量误差以不可预知的方式 变化,这种误差叫做随机误差。 主要是不确定的随机因素,这些因素 • 产生原因:
误差理论与数据处理
举例:精度大小比较 测量结果有以下两种情况: 绝对误差相等
如何得知,两种测量结果精度的高低?
求相对误差:
误差理论与数据处理
可知:
∴
的精度高于
。
误差理论与数据处理
二、随机误差的正态分布率(等精度测量) 1、正态分布的特征
对某一物理量进行多次重复测量,不考虑系统 误差,假定的对象为 ,真值为 ,由于随机误差 的存在,得到的测量列 ,各数据存 在一定的差异。根据误差的定义,发现各次测量的 误差 具有以下特征:
误差理论与数据处理
4)测量的目的:
真值:在一定客观条件下,物理量的真实大小,
它是客观存在的,是一个比较绝对的概 念,一般不可知,我们的测量结果只能 逼近。
2、测量误差
1)定义: 测量值和真值之差。
将测量值记为 即误差 。 ,真值记为 ,误差记为 ,
误差是客观存在的,有测量就有误差,它将存 在于测量过程的始终。
1 f ( x) e 2 ( x a )2 2 2
a 式中:
x
1
n
i
n
n
2 2
称为理论均值
2 1
2 n
n
n
称为标准差
作图分析 作出概率密度分布函数曲线
误差理论与数据处理
图(a)
图(b)
图 (a) 曲线可知:在 或 处的领域内具 图 (b) 曲线可知:标准差 愈小,分布曲线愈陡峭,即 有最大的概率,同时也说明了 作为测量列的测 测量列的分散性越小,也就是测量列的精度愈高;反 量结果是最可信赖的。 之 愈大,分散性愈大,测量列的精度愈低。