反比例函数的图像和性质的综合应用
反比例函数的图像与性质

汇报人:XXX 2024-01-22
目录
• 反比例函数基本概念 • 反比例函数图像特征 • 反比例函数性质分析 • 反比例函数在实际问题中应用举例 • 反比例函数与一次函数、二次函数比较 • 总结回顾与拓展延伸
01
反比例函数基本概念
定义与表达式
反比例函数定义
形如 $y = frac{k}{x}$($k$ 为常数,$k neq 0$)的函数称 为反比例函数。
通过直接观察反比例函数的图像,可以判断其单调性。当比例系数大于0时,函数图像在第一、三象限内单调递 减;当比例系数小于0时,函数图像在第二、四象限内单调递增。
导数法
对反比例函数求导,通过导数的正负判断函数的单调性。当导数大于0时,函数单调递增;当导数小于0时,函 数单调递减。
奇偶性判断方法
奇函数质
综合应用探讨
反比例函数与一次函数的 综合应用
在解决某些实际问题时,可以将反比例函数 与一次函数结合起来,例如分段函数中的一 部分为反比例函数,另一部分为一次函数。 通过比较和分析这两个函数的图像和性质, 可以更好地理解问题的本质和解决方案。
反比例函数与二次函数的 综合应用
在某些复杂的问题中,可能需要同时考虑反 比例函数和二次函数的性质。例如,在经济 学中研究成本、收益与产量之间的关系时, 可能会遇到同时包含反比例函数和二次函数 的模型。通过综合运用这两个函数的性质和
图像对称性
反比例函数的图像关于原点对称,即 如果点(x, y)在图像上,那么点(-x, y)也在图像上。
VS
反比例函数的图像也关于直线y = x 和y = -x对称。这意味着如果点(x, y) 在图像上,那么点(y, x)和(-y, -x)也在 图像上。
反比例函数的应用

反比例函数的应用一、反比例函数的定义及性质反比例函数是指一个函数y=k/x,其中k为常数,x≠0。
反比例函数的图像是一条经过原点的双曲线。
反比例函数具有以下性质:1. 定义域为x≠0,值域为y≠0。
2. 函数图像关于y轴对称。
3. 当x趋近于0时,y的值趋近于正无穷或负无穷。
4. 当x>0时,y>0;当x<0时,y<0。
5. 反比例函数是单调递减的,在定义域内任意两个正数之间,其对应的函数值满足大小关系:y1>y2。
二、反比例函数在实际生活中的应用1. 电阻与电流在电路中,电阻与电流之间存在着一种反比例关系。
根据欧姆定律可知:U=IR,其中U表示电压(单位为伏特),I表示电流(单位为安培),R表示电阻(单位为欧姆)。
将该式变形得到:I=U/R。
可以看出,在给定电压下,电流与电阻成反比例关系。
因此,在设计电路时需要考虑到这种关系。
2. 速度与时间在物理学中,速度与时间也存在着一种反比例关系。
根据物理学公式可知:v=s/t,其中v表示速度(单位为米/秒),s表示路程(单位为米),t表示时间(单位为秒)。
将该式变形得到:t=s/v。
可以看出,在给定路程下,速度与时间成反比例关系。
因此,在计算物体的运动时间时需要考虑到这种关系。
3. 人口密度与土地面积在城市规划中,人口密度与土地面积也存在着一种反比例关系。
根据城市规划原理可知:城市的人口密度应该与土地面积成反比例关系,以保证城市的空间利用率和居住质量。
因此,在进行城市规划时需要考虑到这种关系。
4. 光线强度与距离在光学中,光线强度与距离也存在着一种反比例关系。
根据光学原理可知:光线强度随着距离的增加而减弱,其强度与距离成反比例关系。
因此,在设计照明系统时需要考虑到这种关系。
三、反比例函数的解题方法1. 求解函数值对于给定的x值,可以通过代入函数公式求解对应的y值。
例如:已知y=3/x,求当x=2时,y的值为多少。
解:将x=2代入函数公式得到:y=3/2。
人教版九年级数学下册《反比例函数的图象和性质》教学设计

反比例函数的图象和性质(二)三维目标一、知识与技能进一步提高从函数图象中获取信息的能力,探索并掌握反比例函数的主要性质.二、过程与方法1.经历用反比例函数的图象和性质解决数学问题的过程.2.进一步体会分类讨论思想特别是数形结合思想的运用.三、情感态度与价值观1.积极参与数学活动、注意多与同伴交流看法.2.在参与数学活动的过程中,体会探索、创新的乐趣,养成乐于探索的习惯.教学重点用反比例函数的图象和性质解决数学中的简单问题.教学难点数形结合的思想在解题中的应用.教具准备多媒体课件.教学过程创设问题情境,引入新课活动11.•作反比例函数图象的基本步骤是:•(•1)•________;•(•2)•_________;•(•3)_________.2.反比例函数y=kx的图象是由_______组成的,通常称为_______,当k>0•时______位于________;当k<0时,_________位于________.3.反比例函数y=kx的图象,当k>0时,在每一个象限内,y的值随x值的增大而________;当k<0时,在每一个象限内,y的值随x的增大而________.4.反比例函数y=kx的图象上任取一点,过这一点分别作x轴、y轴的平行线,与坐标轴围成的矩形的面积是________.5.知识结构反比例函数的图象与性质(1)⎧⎪⎪⎪⎪⎪⎪⎨⎪⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩⎩反比例函数的图象是__________(1)当k>0时_________ (2)性质(2)当k<0时__________设计意图:帮助学生回忆节上节课研究过的反比例函数的图象和性质,进一步让学生体会数形结合的思想.师生行为:由学生回答,教师引导学生进一步归纳总结.此活动中,教师应重点关注:①学生能否顺利地完成填空;②学生是否能由反比例函数的图象和性质整合起来理解.二、讲授新课活动2问题:【例3】已知反比例函数的图象经过点A(2,6).(1)这个函数的图象分布在哪些象限?y随x的增大如何变化?(2)点B(3,4),C(-212,-445)和D(2,5)是否在这个函数的图象上?设计意图:根据已知条件确定反比例函数的解析式,并根据函数解析式判断点是否在函数图象上.师生行为:学生独立思考,自己解答.教师巡视解答过程并给予引导.在此活动中,教师应重点关注:①是否理解反比例函数解析式的确定就是k值的确定.②点是否在图象上,只需将点的横、纵坐标代入解析式,看是否符合解析式,即可判断. 生:解:(1)设这个反比例函数为y=k x ,因为它经过点A ,把点A 的坐标(2,6)代入函数式,得6=2k ,解得k=12. 这个反比例函数的表达式为y=12x. 因为k>0,所以这个函数的图象在第一、第三象限,在每个象限内,y 随x 的增大而减小.(2)把点B 、C 和D 的坐标代入y=12x,可知点B 、点C 的坐标满足函数关系式.点D•的坐标不满足函数关系式,所以点B 、点C 在函数y=12x 的图象上,点D 不在这个函数的图象上.活动3问题:【例4】如下图是反比例函数y=5m x的图象的一支,根据图象回答下列问题:(1)图象的另一支在哪个象限?常数m 的取值范围是什么?(2)如上图的图象上任取点A (a ,b )和点B (a ′,b ′)如果a>a ′,那么b 和b ′有怎样的大小关系?设计意图:熟练运用反比例函数的图象和性质解答数学问题,特别强调让学生注意数形结合思想的应用.师生行为:让学生先观察图象,然后结合反比例函数的性质完成此题.教师应给学生充分交流的时间和空间.在此活动中,教师应重点关注:①学生能否从图象的特点得到m-5的符号;②学生能否从图象的特点,结合函数的性质解决问题;③学生能否独立思考问题.生:解:(1)反比例函数的图象的分布只有两种可能,分布在第一、•第三象限,或者分布在第二、四象限,在这个函数的图象的一支在第一象限,则另一支必在第三象限.因此这个函数的图象分布在第一、三象限,所以m-5>0,解得m>5.(2)由函数的图象可知,在双曲线的一支上,y 随x 的增大而减小.所以当a>a ′时,b<b ′.三、巩固提高活动4练习:1.练习反比例函数的图象经过点A (3,-4).(1)这个函数的图象分布在哪些象限?在图象的每一支上,y 随x 的增大如何变化?(2)点B (-3,4),点C (-2,6)和点D (3,4)是否在这个函数的图象上?2.如下图是反比例函数y=7n x的图象的一支,根据图象回答下列问题:(1)图象的另一支在哪个象限?常数n 的取值范围是什么?(2)在图象上任取一点A (a ,b )和B (a ′,b ′),如果a<a ′,那么b 和b ′有怎样的大小关系?设计意图:进一步熟悉由数得到形的特点,由形得到数的特点,渗透数形结合的思想.师生行为:由学生独立思考完成,教师进一步根据学生的情况进行评析.在此活动中,教师应重点关注:①学生是否具有数形结合的意识.②学生能否有独立思考问题的习惯.生:解:1.(1)设这个反比例函数为y=k x ,因它经过点A (3,-4),把点A 的坐标代入函数式,得-4=3k .解得k=-12.这个反比例函数的表达式为y=-12x.因为k<0,所以这个函数的图象在第二、四象限,在每个象限内,y随x的增大而增大.(2)把点B、C、D的坐标代入y=-12x,可知点B、点C的坐标满足函数关系式,点D的坐标不满足函数关系式,所以点B,点C在函数y=-12x的图象上,点D不在这个函数图象上.2.(1)因为反比例函数的图象的分布只有两种可能,分布在第一、三象限,•或者分布在第二、四象限,这个函数的图象的一支在第二象限,则另一支必在第四象限.因此这个函数的图象分布在第二、第四象限,所以n+7<0,n<-7.(2)由函数的图象可知,在双曲线的一支上,y随x的增大而增大,所以当a<a′时,b<b′.活动5问题:如下图,点A、B在反比例函数y=kx的图象上,且点A、B的横坐标分别为a,2a(a>0),AC⊥x轴,垂足为点C,且△AOC的面积为2.(1)求该反比例函数的解析式.(2)若点(-a,y1),(-2a,y2)在该反比例函数的图象上,试比较y1与y2的大小.设计意图:综合函数与几何知识,提高学生综合运用知识的能力.师生行为:先由学生独立思考,寻找解题的途径.教师应给予适当的引导,特别对于“学困生”.在此活动中,教师应重点关注:①综合运用数学知识的能力;②学生面对困难,有无面对困难的勇气和克服困难的坚强意志;③学生能否借助于新旧知识的联系,转化迁移旧知识.师生共析:通过Rt△AOC的面积S=12OC·AC=2,可知x A·y A=4.又因为点A在双曲线上,所以x A·y A=k,•可求出函数的解析式,再根据反比例函数的性质,k>0,y随x的增大而减小知,•自变量x 越大,函数值反而小,通过比较-a与-2a的大小可知y1与y2的大小.生:(1)解:因为点A在反比例函数y=kx的图象上,设点A的坐标为(a,ka).∵a>0,k>0,∴AC=ka,OC=a,又∵S△AOC=12OC·AC=2.∴12·a·ka=2,k=4,y=4x.即此反比例函数的解析式为y=.(2)∵A点,B点横坐标分别为a;2a(a>0)∴2a>a,即-2a<-a<0.由于点(-2a,y1),(-a,y2)在双曲线上,根据反比例函数的性质k>0,y随x•增大而减小知y1<y2.四、课时小结活动6谈谈你本节课有什么新的收获?掌握反比例函数的性质;会利用待定系数法求函数解析式.设计意图:这种形式的小结,激发学生主动参与的意识,调动了学生的学习兴趣,为每一位学生都创造了在数学学习活动中获得成功体验的机会,并为程度不同的学生提供了充分展示自己的机会,尊重学生的个体差异,满足多样化的学习需要.师生行为:让学生小组讨论、交流本节课的收获.教师根据学生的情况汇总.在活动中,教师应重点关注:①不同层次学生对本节知识的认识程度;②学生独立面对困难和克服困难的能力.板书设计17.1.2反比例函数的图象和性质(二)1.反比例函数①定义②图象③主要性质2.反比例函数的图象和性质的应用例3例43.练习4.小结活动与探究已知力F 所做的功是15焦,则力F 与物体在力的方向上通过的距离s 的图象大致是() 过程:在物理学中,功W=F ·s ,所以F=W s,又因为W=15为定值,所以F 是s 的反比例函数,因为W=15>0,s>0,所以其图象在第一象限.结果:应选B .习题详解习题17.11.(1)S=V h,此函数为反比例函数. (2)y=S x.此函数为反比例函数.2.B 是反比例函数,k=-3 3.(1)>,减小.(2)<,增大,(3)k=3,减小.4.如果y 是x 的反比例函数,那么x 也是y 的反比例函数.5.y 与x 具有正比例函数关系.6.y 与x 具有反比例函数关系.7.(1)设正比例函数y=x 的图象与反比例函数y=k x的图象的交点坐标为(a ,2),则 2,2,4.2;a a k k a =⎧=⎧⎪⎨⎨==⎩⎪⎩解得 所以反比例函数的解析式为y=4x . 当x=-3时,y=-43. (2)反比例函数y=4x 的图象在第三象限函数值y 随x 的增大而减小. 当x=-3时,y=-43;当x=-1时,y=-4. 所以-3<x<-1时,y 的取值范围是-4<y<-43. 8.BD9.(1)y=m x的图象的一支在第一象限,图象的另一支在第三象限,所以>0,得(2)的图象在第一、三象限,所以在每个象限y 随x 的增大而减小,所以b>b ′,•有a<a ′.备课资料参考练习1.如果k>0,那么函数y=k x的图象大致是下图中的( )2.已知y=(a-1)x a 是反比例函数,则它的图象在( )A .第一,三象限B .第二,四象限C .第一,二象限D .第三,四象限3.对于反比例函数y=-2x,下列结论错误的是( ) A .当x>0时,y 随x 的增大而增大B .当x<0时,y 随x 的增大而增大C .x=-1时的函数值小于x=1时的函数值D .在函数图象所在的每个象限内,y 随x 的增大而增大4.对于函数y=-12x,当x>0时,函数的这部分图象在第______象限. 5.若点(-2,-1)在反比例函数y=k x 的图象上,•则当x>•0•时,•y•值随x•值的增大而______.6.如果函数y=kx 222k k +-的图象是双曲线,且在第二、四象限内,那么k=_______.7.已知点P (1,a )在反比例函数y=k x (k ≠0)的图象上,其中a=m 2+2m+3(m 为实数),•则这个函数的图象在第________象限.8.设函数y=(m-2)x 255m m -+.当m 取何值时,它是反比例函数?它的图象位于哪些象限?•在每个象限内,y 随x 的增大而增大还是减小?画出其图象;并利用图象求当12≤x ≤2时,•y 的取值范围. 答案:1.C2.B3.C4.第四象限5.减小6.k=-17.第一、三象限8.m=3时,它是反比例函数,当m=3时,它的图象位于第一、三象限,在每一个象限y 随x•的增大而减小.图略,12≤y ≤2.。
反比例函数的图像和性质的综合应用

解析
根据题意,将点 A(-2 ,3)和点 B(3,-2 )分别代入两个函数中 ,得到关于 m、k、b 的方程组,解方程组求 得 m、k、b 的值,即 可得到两个函数的解析
式。
05
反比例函数在几何图形中应用
相似三角形判定定理推广
预备定理
平行于三角形的一边,并且和 其他两边相交的线段,所截得 的三角形的三边与原三角形三 边对应成比例。
反比例函数图像在平面直角坐标系中 ,沿y轴方向平移,函数表达式不变, 图像沿y轴平移。
伸缩变换规律
01
当k>0时,图像分别位于第一、三象限,每一个象限内,从 左往右,y随x的增大而减小;
02
当k<0时,图像分别位于第二、四象限,每一个象限内,从 左往右,y随x的增大而增大。
03
k>0时,函数在x<0上同为减函数、在x>0上同为减函数; k<0时,函数在x<0上为增函数、在x>0上同为增函数。
3
平行四边形面积问题
通过已知相邻两边及其夹角求解面积,或已知面 积和一边长度及夹角求解另一边长度,应用反比 例函数进行求解。
速度、时间、距离关系分析
匀速直线运动问题
通过已知速度和时间求解距离,或已 知距离和时间求解速度,利用反比例 关系建立方程。
变速直线运动问题
曲线运动问题
通过已知速度和方向的变化规律,求 解某时刻的速度或某段时间内的平均 速度及运动轨迹,结合反比例函数进 行综合分析。
解析
根据题意,将点(-2, -1)代入两个函数中, 得到关于 k、m、n 的 方程组,解方程组求得 k、m、n 的值,即可 得到两个函数的解析式 。再将 x = 3 代入两个 函数中,得到关于 k、 m、n 的另一个方程, 与前面的方程组联立求 解,即可得到最终的解
反比例函数与几何的综合应用及答案

专训1 反比例函数与几何的综合应用名师点金:解反比例函数与几何图形的综合题,一般先设出几何图形中的未知数,然后结合函数的图象用含未知数的式子表示出几何图形与图象的交点坐标,再由函数解析式及几何图形的性质写出含未知数及待求字母系数的方程组,解方程组即可得所求几何图形中的未知量或函数解析式中待定字母的值.反比例函数与三角形的综合1.如图,一次函数y =kx +b 与反比例函数y =x 6x>0的图象交于Am,6,B3,n 两点. 1求一次函数的解析式;2根据图象直接写出使kx +b<x 6成立的x 的取值范围; 3求△AOB 的面积.第1题2.如图,点A,B 分别在x 轴、y 轴上,点D 在第一象限内,DC ⊥x 轴于点C,AO =CD =2,AB =DA=,反比例函数y =x kk >0的图象过CD 的中点E.1求证:△AOB ≌△DCA ; 2求k 的值;3△BFG 和△DCA 关于某点成中心对称,其中点F 在y 轴上,试判断点G 是否在反比例函数的图象上,并说明理由.第2题反比例函数与四边形的综合反比例函数与平行四边形的综合3.如图,过反比例函数y =x 6x >0的图象上一点A 作x 轴的平行线,交双曲线y =-x 3x <0于点B,过B 作BC ∥OA 交双曲线y =-x 3x <0于点D,交x 轴于点C,连接AD 交y 轴于点E,若OC =3,求OE 的长.第3题反比例函数与矩形的综合4.如图,矩形OABC 的顶点A,C 的坐标分别是4,0和0,2,反比例函数y =x kx>0的图象过对角线的交点P 并且与AB,第4题BC 分别交于D,E 两点,连接OD,OE,DE,则△ODE 的面积为________.5.如图,在平面直角坐标系中,矩形OABC 的对角线OB,AC 相交于点D,且BE ∥AC,AE ∥OB. 1求证:四边形AEBD 是菱形;2如果OA =3,OC =2,求出经过点E 的双曲线对应的函数解析式.第5题反比例函数与菱形的综合6.如图,在平面直角坐标系中,菱形ABCD 在第一象限内,边BC 与x 轴平行,A,B 两点的纵坐标分别为3,1,反比例函数y =x 3的图象第6题经过A,B 两点,则菱形ABCD 的面积为A .2B .4C .2D .47.如图,在平面直角坐标系中,菱形ABCD 的顶点C 与原点O 重合,点B 在y 轴的正半轴上,点A 在反比例函数y =x kk>0,x>0的图象上,点D 的坐标为4,3.1求k 的值;2若将菱形ABCD 沿x 轴正方向平移,当菱形的顶点D 落在反比例函数y =x kk>0,x>0的图象上时,求菱形ABCD 沿x 轴正方向平移的距离.第7题反比例函数与正方形的综合8.如图,在平面直角坐标系中,点O 为坐标原点,正方形OABC 的边OA,OC 分别在x 轴,y 轴上,点B 的坐标为2,2,反比例函数y =x kx >0,k ≠0的图象经过线段BC 的中点D1求k 的值;2若点Px,y 在该反比例函数的图象上运动不与点D 重合,过点P 作PR ⊥y 轴于点R,作PQ ⊥BC 所在直线于点Q,记四边形CQPR 的面积为S,求S 关于x 的函数解析式并写出x 的取值范围.第8题反比例函数与圆的综合第9题9.如图,双曲线y =x kk>0与⊙O 在第一象限内交于P,Q 两点,分别过P,Q 两点向x 轴和y 轴作垂线,已知点P 的坐标为1,3,则图中阴影部分的面积为________.10.如图,反比例函数y =x kk <0的图象与⊙O 相交.某同学在⊙O 内做随机扎针试验,求针头落在阴影区域内的概率.第10题专训2 全章热门考点整合应用名师点金:反比例函数及其图象、性质是历年来中考的热点,既有与本学科知识的综合,也有与其他学科知识的综合,题型既有选择、填空,也有解答类型.其热门考点可概括为:1个概念,2个方法,2个应用及1个技巧.1个概念:反比例函数的概念1.若y =m -1x |m|-2是反比例函数,则m 的取值为A .1B .-1C .±1D .任意实数2.某学校到县城的路程为 5 km ,一同学骑车从学校到县城的平均速度v km /h 与所用时间t h 之间的函数解析式是A .v =5tB .v =t +5C .v =t 5D .v =5t3.判断下面哪些式子表示y 是x 的反比例函数:①xy =-31;②y =5-x ;③y =5x -2;④y =x 2aa 为常数且a ≠0. 其中________是反比例函数.填序号 2个方法:画反比例函数图象的方法 4.已知y 与x 的部分取值如下表:1试猜想y 与x 的函数关系可能是你学过的哪类函数,并写出这个函数的解析式; 2画出这个函数的图象. 求反比例函数解析式的方法5.已知反比例函数y =x k的图象与一次函数y =x +b 的图象在第一象限内相交于点A1,-k +4.试确定这两个函数的解析式.6.如图,已知A -4,n,B2,-4是一次函数y =kx +b 的图象和反比例函数y =x m的图象的两个交点.求:1反比例函数和一次函数的解析式;2直线AB 与x 轴的交点C 的坐标及△AOB 的面积; 3方程kx +b -x m=0的解请直接写出答案;4不等式kx +b -x m <0的解集请直接写出答案.第6题2个应用反比例函数图象和性质的应用7.画出反比例函数y =x 6的图象,并根据图象回答问题: 1根据图象指出当y =-2时x 的值;2根据图象指出当-2<x<1且x ≠0时y 的取值范围; 3根据图象指出当-3<y<2且y ≠0时x 的取值范围. 反比例函数的实际应用8.某厂仓库储存了部分原料,按原计划每小时消耗2吨,可用60小时.由于技术革新,实际生产能力有所提高,即每小时消耗的原料量大于计划消耗的原料量.设现在每小时消耗原料x 单位:吨,库存的原料可使用的时间为y 单位:小时.1写出y 关于x 的函数解析式,并求出自变量的取值范围.2若恰好经过24小时才有新的原料进厂,为了使机器不停止运转,则x 应控制在什么范围内1个技巧:用k 的几何性质巧求图形的面积9.如图,A,B 是双曲线y =x k k ≠0上的两点,过A 点作AC ⊥x 轴,交OB 于D 点,垂足为C.若△ADO 的面积为1,D 为OB 的中点,则k 的值为A .34B .38C .3D .4第9题第10题10.如图,过x 轴正半轴上的任意一点P 作y 轴的平行线交反比例函数y =x 2和y =-x 4的图象于A,B 两点,C 是y 轴上任意一点,则△ABC 的面积为________.11.如图是函数y =x 3与函数y =x 6在第一象限内的图象,点P 是y =x 6的图象上一动点,PA ⊥x 轴于点A,交y =x 3的图象于点C,PB ⊥y 轴于点B,交y =x 3的图象于点D.1求证:D 是BP 的中点; 2求四边形ODPC 的面积.第11题答案1.解:1∵Am,6,B3,n 两点在反比例函数y =x 6x>0的图象上, ∴m =1,n =2,即 A1,6,B3,2.又∵A1,6,B3,2在一次函数y =kx +b 的图象上,∴2=3k +b ,6=k +b ,解得b =8,k =-2,即一次函数解析式为y =-2x +8.第1题2根据图象可知使kx +b<x 6成立的x 的取值范围是0<x<1或x>3.3如图,分别过点A,B 作AE ⊥x 轴,BC ⊥x 轴,垂足分别为E,C,设直线AB 交x 轴于D 点.令-2x +8=0,得x =4,即D4,0.∵A1,6,B3,2,∴AE =6,BC =2.∴S △AOB =S △AOD -S △ODB =21×4×6-21×4×2=8.2.1证明:∵点A,B 分别在x 轴,y 轴上,点D 在第一象限内,DC ⊥x 轴于点C,∴∠AOB =∠DCA =90°.在Rt △AOB 和Rt △DCA 中,∵AB =DA ,AO =DC ,∴Rt △AOB ≌Rt △DCA. 2解:在Rt △ACD 中,∵CD =2,DA =,∴AC ==1.∴OC =OA +AC =2+1=3.∴D 点坐标为3,2.∵点E 为CD 的中点,∴点E 的坐标为3,1.∴k =3×1=3.3解:点G 在反比例函数的图象上.理由如下:∵△BFG 和△DCA 关于某点成中心对称,∴△BFG ≌△DCA.∴FG =CA =1,BF =DC =2,∠BFG =∠DCA =90°.∵OB =AC =1,∴OF =OB +BF =1+2=3.∴G 点坐标为1,3.∵1×3=3,∴点G1,3在反比例函数的图象上.3.解:∵BC ∥OA,AB ∥x 轴,∴四边形ABCO 为平行四边形.∴AB =OC =3.设A a 6,则B a 6,∴a -3·a 6=-3.∴a =2. ∴A2,3,B -1,3.∵OC =3,C 在x 轴负半轴上,∴C -3,0,设直线BC 对应的函数解析式为y =kx +b, 则-k +b =3,-3k +b =0,解得.9∴直线BC 对应的函数解析式为y =23x +29.解方程组,3得y1=3,x1=-1,.3∴D 23.设直线AD 对应的函数解析式为y =mx +n, 则,3解得.9∴直线AD 对应的函数解析式为y =83x +49. ∴E 49.∴OE =49.4.415点拨:因为C0,2,A4,0,由矩形的性质可得P2,1,把P 点坐标代入反比例函数解析式可得k =2,所以反比例函数解析式为y =x 2.因为D 点的横坐标为4,所以AD =42=21.因为点E 的纵坐标为2,所以2=CE 2,所以CE =1,则BE =3.所以S △ODE =S 矩形OABC -S △OCE -S △BED -S △OAD =8-1-49-1=415.5.1证明:∵BE ∥AC,AE ∥OB, ∴四边形AEBD 是平行四边形.∵四边形OABC 是矩形,∴DA =21AC,DB =21OB,AC =OB. ∴DA =DB.∴四边形AEBD 是菱形.2解:如图,连接DE,交AB 于F,∵四边形AEBD 是菱形,∴DF =EF =21OA =23,AF =21AB =1.∴E ,19.设所求反比例函数解析式为y =x k ,把点E ,19的坐标代入得1=29,解得k =29.∴所求反比例函数解析式为y =2x 9.第5题第7题6.D 7.解:1如图,过点D 作x 轴的垂线,垂足为F.∵点D 的坐标为4,3,∴OF =4,DF =3.∴OD =5.∴AD =5.∴点A 的坐标为4,8.∴k =xy =4×8=32.2将菱形ABCD 沿x 轴正方向平移,使得点D 落在函数y =x 32x>0的图象上点D ′处,过点D ′作x 轴的垂线,垂足为F ′.∵DF =3,∴D ′F ′=3.∴点D ′的纵坐标为3.∵点D ′在y =x 32的图象上,∴3=x 32,解得x =332,即OF ′=332.∴FF ′=332-4=320.∴菱形ABCD 沿x 轴正方向平移的距离为320.8.解:1∵正方形OABC 的边OA,OC 分别在x 轴,y 轴上,点B 的坐标为2,2,∴C0,2.∵D 是BC 的中点,∴D1,2.∵反比例函数y =x k x >0,k ≠0的图象经过点D,∴k =2.2当P 在直线BC 的上方,即0<x <1时,∵点Px,y 在该反比例函数的图象上运动,∴y =x 2.∴S 四边形CQPR =CQ ·PQ =x ·-22=2-2x ;当P 在直线BC 的下方,即x >1时,同理求出S 四边形CQPR =CQ ·PQ =x ·x 2=2x -2,综上,S =2-2x (0<x <1).2x -2(x >1),9.410.解:∵反比例函数的图象关于原点对称,圆也关于原点对称,故阴影部分的面积占⊙O 面积的41,则针头落在阴影区域内的概率为41.1.B 3.①③④4.解:1反比例函数:y =-x 6.2如图所示.第4题 5.解:∵反比例函数y =x k 的图象经过点A1,-k +4,∴-k +4=1k ,即-k +4=k,∴k =2,∴A1,2.∵一次函数y =x +b 的图象经过点A1,2,∴2=1+b,∴b =1.∴反比例函数的解析式为y =x 2,一次函数的解析式为y =x +1.6.解:1将B2,-4的坐标代入y =x m ,得-4=2m ,解得m =-8.∴反比例函数的解析式为y =x -8.∵点A -4,n 在双曲线y =x -8上,∴n =2.∴A -4,2.把A -4,2,B2,-4的坐标分别代入y =kx +b,得2k +b =-4,-4k +b =2,解得b =-2.k =-1,∴一次函数的解析式为y =-x -2.2令y =0,则-x -2=0,x =-2.∴C -2,0.∴OC =2.∴S △AOB =S △AOC +S △BOC =21×2×2+21×2×4=6.3x 1=-4,x 2=2.4-4<x<0或x>2.7.解:如图,由观察可知:1当y =-2时,x =-3;2当-2<x<1且x ≠0时,y<-3或y>6;3当-3<y<2且y ≠0时,x<-2或x>3.第7题点拨:解决问题时,画出函数图象.由图象观察得知结果.由图象解决相关问题,一定要注意数形结合,学会看图.8.解:1库存原料为2×60=120吨,根据题意可知y 关于x 的函数解析式为y =x 120.由于生产能力提高,每小时消耗的原料量大于计划消耗的原料量,所以自变量的取值范围是x>2.2根据题意,得y ≥24,所以x 120≥24.解不等式,得x ≤5,即每小时消耗的原料量应控制在大于2吨且不大于5吨的范围内.点拨:1由“每小时消耗的原料量×可使用的时间=原料总量”可得y 关于x 的函数解析式.2要使机器不停止运转,需y ≥24,解不等式即可.第9题9.B 点拨:如图,过点B 作BE ⊥x 轴于点E,∵D 为OB 的中点,∴CD 是△OBE 的中位线,则CD =21BE.设A x k ,则B 2x k ,CD =4x k ,AD =x k -4x k .∵△ADO 的面积为1,∴21AD ·OC =1,即214x k ·x =1.解得k =38.10.311.1证明:∵点P 在双曲线y =x 6上,∴设P 点坐标为,m 6.∵点D 在双曲线y =x 3上,BP ∥x 轴,D 在BP 上,∴D 点坐标为,m 3.∴BD =m 3,BP =m 6,故D 是BP 的中点.2解:由题意可知S △BOD =23,S △AOC =23,S 四边形OBPA =6.∴S 四边形ODPC =S 四边形OBPA -S △BOD -S △AOC =6-23-23=3.。
专题九-反比例函数与几何的综合应用

在物理学中,一些物理量之间可能存在反比例关系,如电阻与电流、压力与面积等。通过运用反 比例函数的性质,可以更好地理解和解决这些物理问题。
反比例函数在经济学中的应用
在经济学中,一些经济指标之间可能存在反比例关系,如价格与需求量、成本与产量等。通过运 用反比例函数的性质,可以对这些经济指标进行更准确的预测和分析。
如长度、面积等。
利用反比例函数性质建立关系
02
根据反比例函数的性质,结合几何图形的特点,建立所求最值
与相关量之间的关系。
求解最值
03
通过求解反比例函数的最值,得到所求几何量的最值。
判定存在性问题
根据题意列出方程或不等式
01
根据题目条件,列出与几何图形相关的方程或不等式
。
利用反比例函数性质分析解的情况
反比例关系在圆中的应用
在圆中,当一个圆的半径增加时,其 面积会按平方比例增加,但其周长只 会按线性比例增加。这种关系虽然不 是严格的反比例关系,但也可以用于 解决一些与圆相关的问题。
解题技巧与实例分析
通过利用圆的性质和上述关系, 可以求解一些与圆相关的问题。 例如,已知一个圆的半径和另一 个圆的面积或周长,可以求解未 知圆的半径或面积等。
仔细阅读题目要求,明确题意 ,避免答非所问。
合理安排答题顺序
先做易做的题目,确保会做的 题目不丢分,再攻克难题。
控制答题时间
每道题目分配合理的时间,避 免时间不够用或浪费过多时间
。
检查答案
做完题目后要认真检查答案, 确保没有遗漏或错误。
THANKS FOR WATCHING
感谢您的观看
解题技巧与实例分析
对于其他几何图形中的反比例关系问题,可以通过设定未知数、利用几何图形的性质和反比例关系来求解。 需要注意的是,在解题过程中要仔细分析题目条件和数据特点,选择合适的解题方法和思路。
高中数学-反比例函数的图像与性质

02 在求解具体问题时,需要注意题目中给出的其他 条件,如函数的定义域限制等。
判断单调性和奇偶性问题
反比例函数在其定义域内没有单调性, 即在不同的区间内可能具有不同的单调
反比例函数是奇函数,即满足f(-x)=-f(x),图像关 于原点对称。
偶函数性质
反比例函数不是偶函数,即不满足f(-x)=f(x),图 像不关于y轴对称。
周期性探究
无周期性
反比例函数不具有周期性,即不 存在一个正数T,使得对于所有x ,都有f(x+T)=f(x)。
图像特征
反比例函数的图像是两条分别位 于第一、三象限和第二、四象限 的双曲线,且无限接近于坐标轴 但永不相交。
03
反比例函数性质分析
单调性判断方法
01 求导判断法
通过对反比例函数求导,根据导数的正负判断函 数的单调性。
02 图像观察法
通过观察反比例函数的图像,可以直接得出其在 不同区间上的单调性。
03 定义法
根据反比例函数的定义,结合不等式的性质,可 以推导出函数在不同区间上的单调性。
奇偶性讨论
奇函数性质
劳动力供给与工资率关系
劳动力供给量通常与工资率成反比。当工资率提高时,劳动力供给量减少;当 工资率降低时,劳动力供给量增加。这种关系也可以用反比例函数来表示。
工程学中应用场景
杠杆原理
在机械工程中,杠杆原理指出动力臂与阻力臂成反比。当动 力臂增长时,阻力臂缩短;反之亦然。这种关系可以用反比 例函数来描述。
性。
对于奇偶性的判断,可以根据函数的定 义进行判断。若$f(-x) = -f(x)$,则函 数为奇函数;若$f(-x) = f(x)$,则函数
反比例函数的应用与问题解决

反比例函数的应用与问题解决反比例函数是数学中常见的一种函数形式,其特点是自变量和因变量之间的关系满足倒数关系。
在实际应用中,反比例函数可以用来描述一些与数量和比例有关的问题,同时也可以帮助我们解决一些实际生活中的难题。
本文将介绍反比例函数的基本性质和常见应用,并通过实例来讨论一些与反比例函数相关的问题解决方法。
一、反比例函数的基本性质反比例函数的一般形式为y = k/x,其中k是常数,x和y分别表示自变量和因变量。
反比例函数的基本性质如下:1. 定义域和值域:自变量x的取值范围为除0以外的实数集,当x趋近于0时,函数值趋于无穷大;因变量y的取值范围为除0以外的实数集,当x趋近于无穷大时,函数值趋近于0。
2. 奇偶性:反比例函数不具有奇偶性,即不满足f(-x) = f(x)或f(-x)= -f(x)。
3. 对称轴:反比例函数的图像关于原点对称。
二、反比例函数的应用反比例函数在实际应用中具有广泛的应用,常见的领域包括物理学、经济学和工程学等。
下面将介绍几个常见的反比例函数应用实例:1. 电阻与电流关系:根据欧姆定律,电阻R与通过其的电流I之间的关系为R = U/I,其中U为电压常数。
可以看出,当电流增大时,电阻减小,两者成反比关系。
2. 速度与时间关系:对于匀速直线运动,速度v与时间t之间的关系为v = s/t,其中s为位移常数。
可以看出,当时间增加时,速度减小,两者成反比关系。
3. 药物浓度与体积关系:在化学实验中,溶液的浓度C与溶质在溶剂中的体积V之间的关系为C = n/V,其中n为溶质的量。
可以看出,当体积增大时,浓度减小,两者成反比关系。
三、反比例函数问题的解决方法在实际问题中,与反比例函数相关的问题可能涉及到函数值的计算、变量之间的关系以及最值的求解等。
下面将针对几种常见问题提供解决方法。
1. 计算函数值:根据反比例函数的定义,要计算函数在某一点的值,只需将该点的自变量代入函数表达式中即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反比例函数的图像和性质的综合应用【基础知识精讲】1、反比例函数:一般地,如果两个变量x 、y 之间的关系可以表示成y=k x(k 为常数,k≠0)的形式,那么称y 是x 的反比例函数.反比例函数y=k x(k≠0)还可以写成:①1-=kx y (k≠0) ②k xy =(k≠0). 2、反比例函数的概念需注意以下几点:(1) k 为常数,k≠0; (2)kx中分母x 的指数为1;(3) 自变量x 的取值范围是x≠0的一切实数; (4) 因变量y 的取值范围是y≠0的一切实数.3、反比例函数的图象.4、反比例函数y=kx 具有如下的性质:性质1、反比例函数ky x=(0k ≠)(1)当0k >时,图象在一、三象限;在每个象限内,y 随x 增大而减小;(2)、当0k <时,图象在二、四象限;在每个象限内,y 随x 增大而增大;性质2、反比例函数ky x=(0k ≠)的图象是中心对称图形,也是轴对称图形; 因此, 当点P (a ,b )在图象上时,Q (-a ,-b )和R (b ,a )也在图象上。
5、反比例函数y=kx (k≠0)中k 的几何意义: 过函数 y=kx(k≠0)的图像上任一点),(y x p作PM ⊥x 轴,PN ⊥y 轴,所得矩形PMON 的面积S 矩形=∣xy ∣=∣k ∣, S △POM =21∣k ∣。
XY OP (x, y)MN一、【基础训练】1. 反比例函y=5m x-的图象的两个分支分别在第二、四象限内,那么m 的取值范围是( ) A.m<0 B.m>0 C.m<5 D.m>52. 设A(x 1,y 1)、B(x 2,y 2)是反比例函数y=-2x图象上的两点,若x 1<x 2<0,则y 1 与y 2之间的关系是( ) A.y 2<y 2<0 B.y 1<y 2<0 C.y 2>y 1>0 D.y 1>y 2>03. 函数y=(2m 2-7m-9)2919m m x -+是反比例函数,且图象在每个象限内y 随x 的 增大而减小,则m=_____.4. 如图,A 、B 是函数y=1x的图象上关于原点O 对称的任意两点, AC 平行于y 轴,BC 平行于x 轴,则△ABC 的面积为________.5. 如图,在平面直角坐标系xOy 中,已知点,A 、B 、C 在双曲线xy 6=上,BD ⊥x 轴于D , CE ⊥ y 轴于E ,点,F 在x 轴上,且AO =AF , 则图中阴影部分的面积之和为 .6.如图,已知矩形OABC 的面积为1003,它的对角线OB 与双曲线y=kx交于点D ,•且OB :OD=5:3,则k=________.7.如图,平行四边形AOBC 中,对角线交于点E ,双曲线ky x(k>0)经过A 、E 两点,若平行四边形AOBC 的面积为18,则k= . 8.如图,直线l 和双曲线(0)ky k x=>交于A 、B 亮点,P 是线段AB 上的点(不与A 、B 重合),过点A 、B 、P 分别向x 轴作垂线,垂足分别是C 、D 、E,连接OA 、OB 、OP,设△AOC 面积是S 1、△B OD 面积是S 2、△P OE 面积是S 3、则( )A. S 1<S 2<S 3B. S 1>S 2>S 3C. S 1=S 2>S 3D. S 1=S 2<S 3 9.如图,正方形A 1B 1P 1P 2的顶点P 1、P 2在反比例函数y =2x(x >0)的图像上,顶点A 1、B 1分别在x 轴和y 轴的正半轴上,再在其右侧作正方形P 2P 3A 2B 2,顶点P 3在反比例函数y =2x(x >0)的图象上,顶点A 3在x 轴的正半轴上,则点P 3的坐标为xy OCBADxyOC A B yF EE CB AxO10.如图,已知动点A 在函数4(0)y x x=>的图象上,AB x ⊥轴于点B ,AC y ⊥轴于点C ,延长CA 至点D ,使AD=AB ,延长BA 至点E ,使AE=AC 。
直线DE 分别交x 轴于点P ,Q 。
当49QE DP =::时,图中阴影部分的面积等于_______.11.如图所示,已知菱形OABC ,点C 在x 轴上,直线y =x 经过点A ,菱形OABC 的面积是2.若反比例函数的图象经过点B ,求此反比例函数表达式。
12.如图,一次函数3y kx =+的图象与反比例函数my x=(x>0)的图象交于点P ,PA ⊥x 轴于点A ,PB ⊥y 轴于点B ,一次函数的图象分别交x 轴、y 轴于点C 、点D ,且S △DBP =27,12OC CA =。
(1)求点D 的坐标; (2)求一次函数与反比例函数的表达式; (3)根据图象写出当x 取何值时,一次函数的值小于反比例函数的值?OA B Cxyy =x xy A O PBC D13. 如图,已知反比例函数)0(≠=k xky 的图象经过 点(21,8),直线b x y +-=经过该反比例函数图象上的点Q(4,m ). (1)求上述反比例函数和直线的函数表达式;(2)设该直线与x 轴、y 轴分别相交于A 、B 两点,与反比例函数图象的另一个交点为P ,连结0P 、OQ ,求△OPQ 的面积.14.如图,正比例函数12y x =的图象与反比例函数ky x=(0)k ≠在第一象限的图象交于A 点,过A 点作x 轴的垂线,垂足为M ,已知OAM ∆的面积为1. (1)求反比例函数的解析式;(2)如果B 为反比例函数在第一象限图象上的点(点B 与点A 不重合),且B 点的横坐标为1,在x 轴上求一点P ,使PA PB +最小.OMxyA(第14题)二、【精讲精炼】考点一: 与几何图形有关的问题 例1如图,已知点()1,3在函数()0ky x x=>的图象上,矩形ABCD 的边BC 在x 轴上,E 是对角线BD 的中点,且该函数图象也经过A 、E 两点,E 点横坐标为m . ⑴求k 的值;⑵求点C 的横坐标; ⑶当45ABD ∠=︒时,求m 的值.[实战演练]:(1)如图所示,矩形AOCB 的两边OC 、OA 分别位于x 轴、y 轴上,点B 的坐标为⎪⎭⎫ ⎝⎛-5,320B ,D 是AB 边上的一点,将ADO ∆沿直线OD 翻折,使A 点恰好落在对角线OB 上的点E 处,若点E 在一反比例函数图象上,求该函数解析式.考点二、两图像的交点问题例2.如图,A 、B 分别是x 、y 轴上的一点,且OA=OB=1,P 是函数y=12x (x>0)图象上的一动点,过P 作PM ⊥x 轴,PN ⊥y 轴,M 、N 分别为垂足,PM 、PN 分别交AB 于E 、F .(1)证明AF ·BE=1.(2) 若平行于AB 的直线与双曲线只有一个公共点, 求公共点的坐标.x[实战演练]:1.如图,已知反比例函数y=kx(k<0)的图象经过点A (,m ),过点A 作AB⊥x 轴于点B ,且△AOB (1)求k 和m 的值; (2)若一次函数y=ax+1的图象经过点A ,并且与x 轴相交于点C ,求∠ACO•的度数和│AO │:│AC │的值.考点3:相似在反比例函数中的应用 例3、如图,已知反比例函数xk y 1=的图象与一次函数b x k y +=2的图象交于A 、B 两 点,)2,1(),,2(--B n A .(1)求反比例函数和一次函数的关系式;(2)在直线AB 上是否存在一点P ,使APO ∆∽AOB ∆,若存在,求P 点坐标;若不存在,请说明理由.如图,直线l 经过点A (1,0),且与双曲线y =mx(x >0)交于点B (2,1),过点P (p ,p -1) (p >1)作x 轴的平行线分别交曲线y =m x (x >0)和y =-mx(x <0)于M ,N 两点. (1)求m 的值及直线l 的解析式;(2)若点P 在直线y =2上,求证:△PMB ∽△PNA ; (3)是否存在实数p ,使得S △AMN =4S △APM ?若存在, 请求出所有满足条件的p 的值;若不存在,请说明理由.考点四:反比例函数与方程和不等式例4.如图,已知()n A ,4-,()4,2-B 是一次函数b kx y +=的图象和反比例函数xmy =的图象的两个交点.(1)求反比例函数和一次函数的解析式.(2)求直线AB 与x 轴的交点C 的坐标及AOB △的面积.(3)求方程0=-+x mb kx 的解(请直接写出答案); (4)求不等式0<xmb kx -+的解集(请直接写出答案).1.如图,直线b x k y +=1与反比例函数xk y 2=的图象交于A )6,1(,B )3,(a 两点. (1)求1k 、2k 的值; (2)直接写出021>-+xk b x k 时x 的取值范围; (3)如图,等腰梯形OBCD 中,BC //OD ,OB =CD ,OD 边在x 轴上,过点C 作CE ⊥OD 于点E ,CE 和反比例函数的图象交于点P ,当梯形OBCD 的面积为12时,请判断PC 和PE 的大小关系,并说明理由.培优训练1. 若M(11,2y -),N 21(,)4y -,P 31(,)2y 三点都在(0)ky k x=<的图象上,则1y ,2y ,3y 的大小关系为 ( )A. 2y >3y >1yB. 2y >1y >3yC. 3y >1y >2yD. 3y >2y >1y 2、如图,已知动点A 在函数4(0)y x x=>的 图象上,AB x ⊥轴于点B ,AC y ⊥轴于点C ,延长CA 至 点D ,使AD =AB ,延长BA 至点E ,使AE =AC 。
直线DE 分 别交x 轴于点P ,Q 。
当:4:9QE DP =时,图中阴影部分的 面积等于_______A B D yE C xO P3.如图,ABCD 的顶点A ,B 的坐标分别是A (-1,0),B (0,-2),顶点C ,D 在双曲线ky x=上,边AD 交y 轴于点E ,且四边 形BCDE 的面积是△ABE 面积的5倍,则k =4.如图,一次函数y=ax+b 的图象与反比例函数y=k/x 的图象交于A 、B 、两点,与x 轴交于点C ,与y 轴交于点D ,已知A(a,b),且a ∶b=3∶1,OA= 10,点B 的坐标为(m ,-2)。
(1)求反比例函数的解析式 (2)求一次函数的解析式(3)在y 轴上存在一点P ,是的△PD C 与△ODC 相似, 请你求出P 点的坐标。