[新版]钢筋混凝土梁的正截面承载力计算_图文

合集下载

-第四章:钢筋混凝土受弯构件正截面承载力计算 共72页PPT资料

-第四章:钢筋混凝土受弯构件正截面承载力计算 共72页PPT资料
等效原则: 保持混凝土压应力合力C的大小不变。(等效
矩形应力图形与抛物线应力图形的形心位置相同)。
保持混凝土压应力合力C的作用点位置不变。
(等效矩形应力图形抛物线应力图形的面积相等)。
27
单筋矩形截面受压区混凝土的等效矩形应力图
等效矩形应力图受压区高度 x 与按平截面假定确定的 受压区高度 x0 之间的关系:
截面破坏。
P
P
混凝土压坏
P
P
混凝土压坏
正截面破坏
斜截面破坏
受弯构件的破坏形式
9
P
P
P
P
A
BC
D
+
CD
AB
_
M
V
BC段称为纯弯段;AB、CD段称为剪弯段。
xy
x
x
x
x
xy
3
1 10
§4.2 受弯构件正截面的受力特性 4.2.1 配筋率对正截面破坏特征的影响
AS b
as hh0

fy
…4-3
s,max 0.01 …4-4
24
4.3.2 单筋矩形截面正截面承载力计算
单筋截面:仅在受拉区配置受力钢筋的截面。 双筋截面:同时在受拉区和受压区配置受力钢筋的截面。
架立钢筋
a
单筋
b
单筋
c
单筋
d
双筋
25
1. 计算简图
单筋矩形截面计算简图
26
为简化计算,采用等效矩形应力图代替混 凝土受压区应力图。
第4章 钢筋混凝土受弯构件正截面承载力
Strength of Reinforced Concrete Flexural Members

第三章 钢筋混凝土受弯构件正截面承载力计算

第三章 钢筋混凝土受弯构件正截面承载力计算

第三章钢筋混凝土受弯构件正截面承载力计算受弯构件(bendingmember)是指截面上通常有弯矩和剪力共同作用而轴力可以忽视不计的构件。

钢筋混凝土受弯构件的主要形式是板(Slab)和梁(beam),它们是组成工程结构的基本构件,在桥梁工程中应用很广。

在荷载作用下,受弯构件的截面将承受弯矩M和V的作用。

因此设计受弯构件时,一般应满意下列两方面的要求:(1)由于弯矩M的作用,构件可能沿弯矩最大的截面发生破坏,当受弯构件沿弯矩最大的截面发生破坏时,破坏截面与构件轴线垂直,称为正截面破坏。

故需进行正截面承载力计算。

(2)由于弯矩M和剪力V的共同作用,构件可能沿剪力最大或弯矩和努力都较大的截面破坏,破坏截面与构件的轴线斜交,称为沿斜截面破坏,故需进行斜截面承载力计算。

为了保证梁正截面具有足够的承载力,在设计时除了适当的选用材料和截面尺寸外,必需在梁的受拉区配置足够数量的纵向钢筋,以承受因弯矩作用而产生的拉力;为了防止梁的斜截面破坏,必需在梁中设置肯定数量的箍筋和弯起钢筋,以承受由于剪力作用而产生的拉力。

第一节受弯构件的截面形式与构造一、钢筋混凝土板的构造板是在两个方向上(长、宽)尺度很大,而在另一方向上(厚度)尺寸相对较小的构件。

钢筋混凝土板可分为整体现浇板和预制板。

在施工场地现场搭支架、立模板、配置钢筋,然后就地浇筑混凝土的板称为整体现浇板。

通常这种板的截面宽度较大,在计算中常取单位宽度的矩形截面进行计算。

预制板是在预制厂和施工场地现场预先制好的板,板宽度一般掌握在Inl左右,由于施工条件好,预制板不仅能采纳矩形实心板,还能采纳矩形空心板,以减轻板的自重。

板的厚度h由截面上的最大弯矩和板的刚度要求打算,但是为了保证施工质量及耐久性的要求,《大路桥规》规定了各种板的最小厚度;行车道板厚度不小于IOOmm人行道板厚度,就地浇注的混凝土板不宜小于80mm,预制不宜小于60mm。

空心板桥的顶板和底板厚度,均不宜小于80mm。

(整理)钢筋混凝土受弯构件正截面承载力的计算

(整理)钢筋混凝土受弯构件正截面承载力的计算

第3章钢筋混凝土受弯构件正截面承载力的计算§1概述1、受弯构件(梁、板)的设计内容:图3-1①正截面受弯承载力计算:破坏截面垂直于梁的轴线,承受弯矩作用而破坏,叫做正截面受弯破坏。

②斜截面受剪承载力计算:破坏截面与梁截面斜交,承受弯剪作用而破坏,叫做斜截面受剪破坏。

③满足规范规定的构造要求:对受弯构件进行设计与校核时,应满足规范规定的要求。

比如最小配筋率、纵向2①板⑴板的形状与厚度:a.形状:有空心板、凹形板、扁矩形板等形式;它与梁的直观区别是高宽比不同,有时也将板叫成扁梁。

其计算与梁计算原理一样。

b.厚度:板的混凝土用量大,因此应注意其经济性;板的厚度通常不小于板跨度的1/35(简支)~1/40(弹性约束)或1/12(悬臂)左右;一般民用现浇板最小厚度60mm,并以10mm为模数(讲一下模数制);工业建筑现浇板最小厚度70mm。

⑵板的受力钢筋:单向板中一般仅有受力钢筋和分布钢筋,双向板中两个方向均为受力钢筋。

一般情况下互相垂直的两个方向钢筋应绑扎或焊接形成钢筋网。

当采用绑扎钢筋配筋时,其受力钢筋的间距:当板厚度h≤150mm时,不应大于200mm,当板厚度h﹥150mm时,不应大于1.5h,且不应大于250mm。

板中受力筋间距一般不小于70mm,由板中伸入支座的下部钢筋,其间距不应大于400mm,其截面面积不应小于跨中受力钢筋截面面积的1/3,其锚固长度l as不应小于5d。

板中弯起钢筋的弯起角不宜小于30°。

板的受力钢筋直径一般用6、8、10mm。

对于嵌固在砖墙内的现浇板,在板的上部应配置构造钢筋,并应符合下列规定:a. 钢筋间距不应大于200mm,直径不宜小于8mm(包括弯起钢筋在内),其伸出墙边的长度不应小于l1/7(l1为单向板的跨度或双向板的短边跨度)。

b. 对两边均嵌固在墙内的板角部分,应双向配置上部构造钢筋,其伸出墙边的长度不应小于l1/4。

c. 沿受力方向配置的上部构造钢筋,直径不宜小于6mm,且单位长度内的总截面面积不应小于跨中受力钢筋截面面积的1/3。

混凝土受弯构件正截面承载力计算

混凝土受弯构件正截面承载力计算
h0—有效高度。 1.最大配筋率及界限相对受压区高度
r As f y As a1 fcbx x a1 fc
bh0 bh0 f y bh0 f y h0 f y

x
h0

r
a1 fc
fy
令b为 = r max时的相对受压区高度,即
rmax
b
a1
f
fc
y
= r max时的破坏形态为受压区边缘混凝土达到极限压
c fc e0 e ecu
n
2
1 60
(
fcu,k
50)
2.0
各系数查表4-3
e0 0.002 0.5( fcu,k 50)105 0.002
ecu 0.0033 0.5( fcu,k 50)105 0.0033
4.钢筋应力—应变关系的假定(本构关系)
Ese e e y fy e ey
4.3钢筋混凝土受弯构件正截面试验研究
一、受弯构件正截面破坏过程
受弯构件正截面破坏分为三个阶段 • 第一阶段:裂缝开裂前 • 第二阶段:从开裂到钢筋屈服 • 第三阶段:从钢筋屈服到梁破坏
(1)第I阶段
当荷载比较小时,混凝土基本处 于弹性阶段,截面上应力分布为三 角形,荷载-挠度曲线或弯矩-曲率 曲线基本接近直线。截面抗弯刚度 较大,挠度和截面曲率很小,钢筋 的应力也很小,且都于弯矩近似成 正比。
My
Mu
Failure”,破坏前
可吸收较大的应变
能。
0
f
2.超筋梁(Over reinforced)破坏
钢筋配置过多,将发生这种破坏。 破坏特征:破坏时钢筋没有达到屈服强度,破坏是由 于压区混凝土被压碎引起,没有明显预兆,为脆性破 坏。

正截面承载力计算

正截面承载力计算

最小配筋率的确定原则:配筋率 为的钢筋混凝土受弯构件,按Ⅲa 阶段计算的正截面受弯承载力应等于同截面素混凝土梁所能承受的弯矩M cr (M cr 为按Ⅰa 阶段计算的开裂弯矩)。

对于受弯构件, 按下式计算:(2)基本公式及其适用条件 1)基本公式式中:M —弯矩设计值;f c —混凝土轴心抗压强度设计值; f y —钢筋抗拉强度设计值; x —混凝土受压区高度。

2)适用条件l 为防止发生超筋破坏,需满足ξ≤ξb 或x ≤ξb h 0; l 防止发生少筋破坏,应满足ρ≥ρmin 或 A s ≥A s ,min=ρmin bh 。

在式(3.2.3)中,取x =ξb h 0,即得到单筋矩形截面所能min t y max(0.45f /f ,0.2% )ρ= (3.2.1) sy c 1A f bx f =α(3.2.2)()20c 1x h bx f M -≤α(3.2.3) ()20y s x h f A M -≤(3.2.4)或承受的最大弯矩的表达式: (3)计算方法 1)截面设计己知:弯矩设计值M ,混凝土强度等级,钢筋级别,构件截面尺寸b 、h求:所需受拉钢筋截面面积A s 计算步骤:①确定截面有效高度h 0h 0=h -a s式中h —梁的截面高度;a s —受拉钢筋合力点到截面受拉边缘的距离。

承载力计算时,室内正常环境下的梁、板,a s 可近似按表3.2.4取用。

表 3.2.4 室内正常环境下的梁、板a s 的近似值(㎜)②计算混凝土受压区高度x ,并判断是否属超筋梁若x ≤ξb h 0,则不属超筋梁。

否则为超筋梁,应加大截面尺寸,或构件种类纵向受力 钢筋层数混凝土强度等级 ≤C20 ≥C25 梁一层 40 35 二层65 60 板一层2520提高混凝土强度等级,或改用双筋截面。

③计算钢筋截面面积A s ,并判断是否属少筋梁若A s ≥ρmin bh ,则不属少筋梁。

否则为少筋梁,应A s=ρmin bh 。

钢筋混凝土受弯构件正截面承载力简便计算

钢筋混凝土受弯构件正截面承载力简便计算

钢筋混凝土受弯构件正截面承载力简便计算摘要:一、引言二、钢筋混凝土受弯构件正截面承载力计算方法1.基本概念2.影响因素3.计算公式及步骤三、简便计算方法1.经验公式2.修正系数法3.截面分类法四、计算实例1.实例一2.实例二3.实例三五、结论与建议正文:一、引言钢筋混凝土受弯构件在我国建筑行业中有着广泛的应用,其正截面承载力计算一直是工程技术人员关注的问题。

为了简化计算过程,本文将介绍一种简便的计算方法,以提高工程实践中的工作效率。

二、钢筋混凝土受弯构件正截面承载力计算方法1.基本概念正截面承载力:指受弯构件在正截面上能承受的最大弯矩引起的内力。

影响因素:材料强度、截面尺寸、钢筋配置等。

2.影响因素(1)材料强度:包括混凝土抗压强度fc和钢筋抗拉强度fs。

(2)截面尺寸:截面宽度b、截面高度h。

(3)钢筋配置:包括钢筋直径d、钢筋间距s和钢筋数量n。

3.计算公式及步骤根据我国现行的设计规范,正截面承载力计算公式如下:c = fc * b * h * γcs = fs * d * (h - d / 2) * γs其中,Nc为混凝土截面承载力,Ns为钢筋截面承载力,γc和γs分别为混凝土和钢筋的截面折减系数。

三、简便计算方法1.经验公式根据工程实践经验,可得以下经验公式:c = 0.85 * fc * b * hs = 0.85 * fs * d * (h - d / 2)2.修正系数法针对不同钢筋直径和截面尺寸,采用修正系数进行计算。

3.截面分类法根据截面尺寸和钢筋配置,将受弯构件分为若干类别,各类别计算公式如下:(1)类别一:h / d ≤ 25c = 0.75 * fc * b * hs = 0.75 * fs * d * (h - d / 2)(2)类别二:25 < h / d ≤ 50c = 0.85 * fc * b * hs = 0.85 * fs * d * (h - d / 2)(3)类别三:h / d > 50c = 1.0 * fc * b * hs = 1.0 * fs * d * (h - d / 2)四、计算实例1.实例一某受弯构件,混凝土抗压强度fc = 20MPa,截面宽度b = 200mm,截面高度h = 300mm,钢筋直径d = 16mm,钢筋间距s = 200mm,钢筋数量n = 4。

第五章1 钢筋混凝土受压构件正截面承载力计算w

第五章1 钢筋混凝土受压构件正截面承载力计算w
柱的破坏形态
5-6弯曲变形
5-7轴心受压长柱的破坏形态
试验结果表明长柱的承载力低于相同条件短柱的承载 试验结果表明长柱的承载力低于相同条件短柱的承载 力,目前采用引入稳定系数Ψ的方法来考虑长柱纵向 挠曲的不利影响, 挠曲的不利影响,Ψ值小于1.0,且随着长细比的增大 而减小。 而减小。
表5-1 钢筋混凝土轴心受压构件的稳定系数面承载力计
5.2.1 受力过程及破坏特征 轴心受拉构件从开始加载到破坏, 轴心受拉构件从开始加载到破坏,其受力过程可 分为三个不同的阶段: 分为三个不同的阶段: 1.第I阶段 开始加载到混凝土开裂前, 属于第I 阶段。 从 开始加载到混凝土开裂前 , 属于第 I 阶段 。 此 纵向钢筋和混凝土共同承受拉力, 时 纵向钢筋和混凝土共同承受拉力,应力与应变大致 成正比,拉力 N与截面平均拉应变 ε 之间基本上是线 成正比, 性关系, 性关系,如图5-2a中的OA段。
当现浇钢筋混凝土轴心受压构件截面长边或直径 小于300㎜时 ,式中混凝土强度设计值应乘以系数0.8 (构件质量确有保障时不受此限)。 4. 构造要求 (1)材料 混凝土强度对受压构件的承载力影响较大, 混凝土强度对受压构件的承载力影响较大,故宜 采用强度等级较高的混凝土 强度等级较高的混凝土, 采用强度等级较高的混凝土,如C25,C30,C40等。 在高层建筑和重要结构中, 在高层建筑和重要结构中,尚应选择强度等级更高的 混凝土。 混凝土。 钢筋与混凝土共同受压时, 钢筋与混凝土共同受压时 , 若钢筋强度过高 ( 如 则不能充分发挥其作用, 高于 0.002Es) , 则不能充分发挥其作用 , 故 不宜用高 强度钢筋作为受压钢筋。同时, 强度钢筋作为受压钢筋。同时,也不得用冷拉钢筋作 为受压钢筋。 为受压钢筋。

钢筋混凝土受弯构件—T形截面梁正承载力计算

钢筋混凝土受弯构件—T形截面梁正承载力计算

现浇肋梁楼盖(梁跨中截面) (a)
槽型板 (b)
(a)
(b)
空(c心) 板
(c)
单元4 T形截面梁正截面承载力计算
T形梁有效(计算)翼缘宽度:
离梁肋越远,T形梁翼缘受压的 压应力越小,因此对受压翼缘的宽 度有一定限制,在这个限制的宽度 范围内,认为翼缘的压应力均匀分 布。
单元4 T形截面梁正截面承载力计算
2.T形梁截面复核例题
上一例题中,若已配置受拉钢筋为8Φ25,即As=4418mm2,弯矩设计值 M=650KN.m,其余已知条件不变,试验算截面是否安全。
解题分析:T形梁首先需要确定计算翼缘宽度,之后判定T形截面类别,再进 行相应计算。 [解] (1)确定翼缘计算宽度
as
同上一题,取bf'=600mm
(2)判别T形截面类别
fc=9.6N/mm2,ft=1.1N/mm2; fy=300N/mm2, ξb=0.55
1
fcbf
hf
h0
hf 2
1.0 9.6
600
100
730
100 2
391 .7 10 6
N .mm
391 .7KN.m 450 KN.mm 第二类T形截面
(3)求M1
139.8mm b h0
0.55 740mm
(5)求As As
1 fcbx 1 fc b f
fy
bh f
1.0 9.6 250139.8 1.0 9.6 600 250100 2238mm2
300
(6)选钢筋 选用6Φ22,As=2281mm2
6Φ22
250
单元4 T形截面梁正截面承载力计算
求:验算截面是否安全
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档