等底等高的圆柱和圆锥的关系练习题
(完整版)圆锥的体积练习题

圆锥的体积练习题一、填空:1、等底等高的圆柱和圆锥,圆柱体的体积是90立方米,那么圆锥的体积是()立方米。
2、等底等高的圆柱和圆锥,圆锥的体积是9立方米,圆柱体的体积是()立方米。
3、等底等高的圆柱和圆锥,圆柱体的体积是33立方米,那么圆锥的体积是()立方米。
二、判断。
①圆锥的体积等于圆柱体积的。
()②两个体积相等的等底圆柱和圆锥,圆锥的高一定是圆柱高的3倍。
()③一个圆锥形物体,底面积是a 平方米,高是b 米,它的体积是ab 立方米。
()④把一根圆体木头,削成一个最大的圆锥体,削去体积是圆锥体积的2倍。
()⑤圆柱体的体积一定比圆锥体的体积大()⑥圆锥的体积等于和它等底等高圆柱体积的三分之一。
()⑦正方体、长方体、圆锥体的体积都等于底面积×高。
()⑧一个圆柱的体积是27立方米,和它等底等高的圆锥的体积是9立方米。
()三、求下列各圆锥的体积:(1)底面周长是9.42米,高是1.8米;(2)底面半径是4厘米,高是21厘米;(3)底面直径是6分米,高是6分米;四、解决问题。
①一堆圆锥形的煤堆,底面半径是1.5 米,高是1.2 米。
如果每立方米煤约重1.4 吨,这堆煤有多少吨?②有一块正方体的木材,它的棱长是9分米,把这块木料加工成一个最大的圆锥体,被削去的体积是多少?③在打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是4米,高是1.2米。
每立方米小麦约重735千克,这堆小麦约有多少千克?(得数保留整千克)④一个圆锥形沙堆,底面周长是25.12米,高1.5米,每立方米的沙重1.5吨,这堆沙有多少吨?⑤把一块底面半径2厘米、高6厘米的圆柱形泥巴捏成一个与圆柱底面相等的圆锥形。
请你算出它的高。
1.把圆柱的侧面沿高剪开,得到一个( ),这个( )的长等于圆柱底面的( ),宽等于圆柱的( ),所以圆柱的侧面积等于( )一、圆柱体积。
1. 求下面各圆柱的体积。
(1)底面积0.6平方米,高0.5米(2)底面半径是3厘米,高是5厘米。
人教版数学6年级下册 第3单元(圆柱和圆锥)课后作业练习题(含答案)

人教版六年级下册第三单元圆柱和圆锥课后作业练习题一.选择题1.把一个棱长是4分米的立方体钢坯切削成一个最大的圆柱,它的体积是()立方分米。
A.50.24B.56.52C.16.75D.200.962.36个铁圆柱,可以熔铸成等底等高的圆锥体的个数是()A.12个B.18个C.36个D.108个3.两个圆柱的底面积相等,高之比是3:2,它们的体积之比是()A.3:2B.2:3C.9:44.一个圆柱与一个圆锥等底等高,已知圆柱的体积比圆锥的体积多9立方米,圆锥的体积是()立方米.A.4.5B.3C.95.用两张同样的长方形硬纸板围成两个不同的圆柱形纸筒,再分别装上两个底面,那么这两个圆柱形纸筒的()一定相等。
A.底面积B.侧面积C.表面积D.体积6.一个圆柱与一个圆锥体积相等,底面直径也相等,则圆锥的高是圆柱的高的()A.13B.23C.3倍D.6倍7.一个圆柱和一个圆锥的底面直径相等,圆柱的高是圆锥的3倍,圆锥的体积是5立方分米,圆柱的体积是()立方分米.A.5B.15C.458.一个圆柱的体积比与它等底等高的圆锥的体积大()A.3倍B.2倍C.1 3二.填空题9.底面积是212cm、高是9cm的圆锥的体积是3cm,和它等底等高的圆柱的体积是3cm.10.把6个形状完全相同的圆柱体铁块熔化后,可浇铸成与这种圆柱体等底等高的圆锥体铁块件。
11.一个圆柱的体积是3188.4cm,高是15cm,它的底面积是2cm.12.一个圆柱的底面周长是9.42分米,高3分米,它个圆柱的侧面积是平方分米,体积是立方分米。
13.把一根3米长的圆柱体木材截成三段圆柱体,表面积增加了12平方分米,这根木料的体积是立方分米。
14.一个圆柱和一个圆锥等底等高,它们的体积差是94.2立方厘米,这个圆柱的体积是立方厘米.又知圆锥的底面半径是3厘米,这个圆柱的侧面面积是平方厘米.15.做一节底面直径是10厘米,长为1米的圆柱形烟囱,至少需要一张平方厘米的铁皮。
《圆锥的体积》练习题

圆锥的体积练习题姓名:学号:1.填一填。
(1)准备等底等高的圆柱形容器和圆锥形容器各一个,将圆锥形容器装满沙子,再倒入圆柱形容器,()次能倒满。
或将圆柱形容器装满水,再倒入圆锥形容器,能将圆锥形容器倒满()次。
因为圆柱的体积=()×(),所以圆锥的体积=(),用字母表示圆锥的体积计算公式是()。
(2)一个圆柱和一个圆锥等底等高,如果圆锥的体积是9dm3,那么圆柱的体积是();如果圆柱的体积是9dm3,那么圆锥的体积是()。
(3)下图中,圆锥()的体积与圆柱的体积相等。
(4)一个圆锥的底面直径和高都是6cm,那么这个圆锥的体积是()cm3。
(5)一个圆锥的体积是15.7m3,底面积是3.14m2,那么它的高是()m。
(6)将24个圆锥形铁块熔化后,可以重新铸成和原来圆锥形铁块等底等高的圆柱形铁块()个。
(损耗忽略不计)(7)圆柱底面半径是圆锥底面半径的3倍,它们的高相等,那么圆柱体积是圆锥体积的()倍。
(8)一个圆锥形沙堆,底面积是12m2,高是1.5m,用这堆沙铺在长8m、宽5m的长方体跳远坑中,厚()m。
(9)一个圆锥的底面半径是3cm,高是6cm,它的体积是()cm³;与这个圆锥等底等高的圆柱的体积是()cm³。
(10)一个圆锥的底面周长是18.84dm,高是5dm,它的体积是()dm³。
(11)把一个体积为94.2cm³的圆柱木料削成个最大的圆锥,这个圆锥的体积是()cm³,削去部分的体积是()cm³。
(12)一个圆柱与一个圆锥的底面积相等,体积也相等。
若圆锥的高是1.8dm,则圆柱的高是()dm;若圆柱的高是1.8dm,则圆锥的高是()dm。
2.有一堆圆锥形的沙子,底面直径是12m,高是5m。
(1)这堆沙子有多少立方米?(2)如果把这堆沙子以3cm的厚度铺在宽10m的路上,能铺多长的路?3.计算下面圆锥的体积。
4.一个圆锥形路障警示标志如下图,这个路障标志的体积约是多少立方厘米?5.把一个体积是282.6cm³的铁块熔铸成一个底面半径为6cm的圆锥形机器零件,圆锥形零件的高是多少厘米?6.如图,先将甲容器注满水,再将甲容器中的水倒入空的乙容器中,这时乙容器中的水面有多高?7.把一个横截面是正方形的长方体木块削成个最大的圆锥。
北师大版六年级下册《第1章_圆柱和圆锥》小学数学-有答案-同步练习卷C(5)

北师大版六年级下册《第1章圆柱和圆锥》小学数学-有答案-同步练习卷C(5)一、填空题(共7小题,每小题0分,满分0分)1. 等底等高的圆柱和圆锥体积相差6.28立方厘米,那么它们的体积之和是________立方厘米。
2. 一个圆柱的体积是36立方分米,与它等底等高的圆锥的体积是________立方分米。
3. 0.75立方分米=________立方厘米4500立方分米=________立方米760cm2=________dm28.5m2=________dm25600毫升=________升7.8立方分米=________升=________毫升。
4. 一个圆柱体的底面半径是4厘米,高6厘米,它的侧面积是________,表面积是________,体积是________.5. 一个圆柱的底面半径扩大2倍,高缩小2倍,它的侧面积________,体积________.6. 一台播种机的滚筒是一个圆柱体,底面直径和筒长都是1米,每分钟滚动50圈,一小时后可播种________平方米。
7. 一个圆柱体积是36立方分米,如果高不变,底面半径扩大2倍,这个圆柱体体积是________立方分米。
二、判断题(共5小题,每小题0分,满分0分)圆柱和圆锥都有无数条高。
________.(判断对错)一个圆柱截成两段,表面积增加而体积不变。
________.(判断对错)求一个圆柱形水桶能装多少水,是求水桶的体积。
________.(判断对错)当圆锥体积一定时,它的高越大,底面积越小。
________.(判断对错)一个圆柱的底面直径和高相等,侧面沿高展开,得到的图形是正方形。
________.(判断对错)三、选择题(共4小题,每小题0分,满分0分)沿着圆柱侧面上的高展开后的图形是()A.长方形B.正方形C.平行四边形D.长方形或正方形把一个圆柱切割后拼成一个近似的长方体,它的体积()A.增加了B.减少了C.不变一个圆柱底面积扩大2倍,高缩小2倍,它的体积()A.扩大2倍B.不变C.扩大4倍一个圆锥和一个圆柱高相等,体积也相等,圆锥与圆柱底面积的比为()A.3:1B.1:3C.9:1四、解答题(共9小题,满分0分)一个圆柱形铁块,底面周长50.24厘米,高3厘米,每立方厘米铁重7.8克,这个铁块重多少千克?(得数保留整数)要给一个罐头贴上广告图,这个罐头底面周长18.84厘米,高7厘米,这个广告图的面积是多少平方厘米?有两根底面直径相等的圆柱,其中一根体积是706.5立方厘米,高400厘米,另一根高360厘米,体积是多少立方厘米?有一个铁皮制成的礼品盒,用绳子扎好,如图所示,求:(1)共用去绳子多少厘米?(2)至少用多少平方厘米铁皮?(3)体积是多少立方厘米?有一个圆柱形木桩,沿直径切开切面是一个正方形,圆柱底面周长是6.28厘米,求圆柱体体积。
【精品】圆柱与圆锥练习题(培优)

【精品】圆柱与圆锥练习题(培优)一、圆柱与圆锥1.一个圆锥沙堆,底面半径是2米,高1.5米,每立方米的黄沙重2吨,这堆沙重多少吨? 【答案】解: ×3.14×22×1.5×2= ×3.14×4×1.5×2=6.26×2=12.56(吨)答:这堆沙重12.56吨。
【解析】【分析】圆锥的体积=底面积×高×,根据体积公式计算出沙子的体积,再乘每立方米黄沙的重量即可求出总重量。
2.如图,这是用塑料薄膜覆盖的蔬菜大棚,长15米,横截面是一个直径为2米的半圆。
大棚内的空间有多大?【答案】解:3.14×(2÷2)2×15÷2=23.55(立方米)答:大棚内的空间有23.55立方米。
【解析】【分析】观察图可知,大棚的形状是一个圆柱的一半,要求大棚内的空间大小,用圆柱的体积÷2=大棚内的空间大小,据此列式解答.3.有一个底面直径为20厘米的装有一些水的圆柱形玻璃杯,已知杯中水面距杯口2.24厘米.若将一个半径为9厘米的圆锥形铅锤完全浸入水中,水会溢出314立方厘米.求铅锤的高.【答案】解:3.14×(20÷2)2×2.24+314=3.14×100×2.24+314=703.36+314=1017.36(立方厘米),1017.36 ÷(3.14×92)=1017.36×3÷254.34=3052.08÷254.34=12(厘米),答:铅锤的高是12厘米。
【解析】【分析】根据题意可知,先求出圆锥形铅锥的体积,用圆柱形玻璃杯上面的空白部分的体积+溢出的水的体积=圆锥形铅锥的体积,然后用圆锥形铅锥的体积÷÷铅锥的底面积=铅锥的高,据此列式解答.4.我们熟悉的圆柱、长方体、正方体等立体的图形都称作直柱体,如图所示的三棱柱也是直柱体。
六年级数学《圆柱和圆锥》同步练习题及答案

六年级数学《圆柱和圆锥》同步练习题及答案六年级数学《圆柱和圆锥》同步练习题及答案一、填空(1)一个圆柱和一个圆锥的底面积和高分别相等,圆锥的体积是圆柱体积的( ),圆柱的体积是圆锥体积的( ).(2)一个圆柱底面半径是1厘米,高是2.5厘米。
它的侧面积是 ( )平方厘米。
(3)一个圆柱体和一个圆锥体的底面积和体积分别相等,已知圆柱体的高6厘米,那么圆锥体的高是 ( )厘米。
(4)底等高的圆柱和圆锥的体积相差16立方米,这个圆柱的体积是( )立方米,圆锥的体积是( )立方米。
(5)一个圆锥体的底面周长是12.56分米,高是6分米,它的体积是( )立方分米。
(6)一个圆锥体底面直径和高都是6厘米,它的体积是( )立方厘米。
(7)一根长2米的圆木,截成两同样大小的圆柱后,表面积增加48平方厘米,这根圆木原来的体积是( )立方厘米。
(8)一个体积为60立方厘米的圆柱,削成一个最大的圆锥,这个圆锥的体积是( )立方厘米。
(9)圆柱的底面半径是3厘米,体积是6.28立方厘米,这个圆柱的高是( )厘米。
(10) 圆锥的底面半径是6厘米,高是20厘米,它的体积是( )立方厘米。
(11) 一个圆柱体高4分米,体积是40立方分米,比与它等底的圆锥体的体积多10立方分米。
这个圆锥体的高是( )分米。
(12) 把一段圆钢切削成一个最大的圆锥体,切削掉的部分重8千克,这段圆钢重( )千克.(13) 一个圆锥的体积是7.2立方米,与它等底等高的圆柱的体积是( )立方米.(14) 一个棱长是4分米正方体容器装满水后,倒入一个底面积是12平方分米的圆锥体容器里正好装满,这个圆锥体的高是( )分米。
(15) 一个圆锥的底面半径是3厘米,体积是6.28立方厘米,这个圆锥的高是( )厘米.(16) 一个圆柱和一个圆锥的底面积和高分别相等,圆锥的体积是圆柱体积的( ),圆柱的体积是圆锥体积的( ).(17) 一个直圆柱底面半径是1厘米,高是2.5厘米。
圆柱和圆锥之间的关系

18
等积等底 锥h是柱h的3倍
20cm
30cm
90cm
理解为:等积等底, 锥h是柱h的3倍。
(2)如果这是一个圆柱形铁块,把它铸造成一个底面积相等的圆锥,这个圆锥的高是多少?
大胆猜测:
如果在体积相等,高相等的条件下,圆锥和圆柱底面积之间又有怎样的关系?
对比练习三
2
单击此处添加小标题
单击此处添加小标题
A 高一定相等 B 侧面积一定相等 C 侧面积和高都相等 D 侧面积和高都不 相等
B
生活中的数学:
202X——202X年度
20厘米
15厘米
单击此处添加副标题
文艺清新工作总结
3、一个圆柱和一个与它等底等高圆锥的体积之和是12立方米,圆柱的体积是( )立方米,圆锥的体积是( )立方米。
1、一个圆柱的体积是a立方厘米,与它等底等高圆锥的体积是( )立方厘米。
a
18
9
3
对比练习一
自由空间
对比练习二: 1、一个圆柱和一个圆锥的体积和底面积分别相等,圆锥的高是6cm,圆柱的高是( )cm。 2、一个圆柱和一个圆锥的体积和底面积分别相等,圆柱的高6cm,圆锥的高是( )cm。
P
Q
P
Q
P
Q
B
A
C
B
4、把一个圆柱在平坦的桌面上滚 A 表面积 B 侧面积 C 底面积 B 动,那么滚动的面积是( ).
2m
5、一个圆锥的体积是18.84
立方米,池底直径是3米,圆锥的 高是( ).
一个圆柱的侧面积是12.56平方 厘米,底面半径是2厘米,那么这 个圆柱的体积是( ).
2、冬天护林工人给圆柱形 的树干的下端涂防蛀涂 料,那么粉刷树干的面积
六年级数学圆柱与圆锥试题

六年级数学圆柱与圆锥试题1.在一个高为30厘米的圆柱体容器,平放着一个稜长为10厘米的正方体铁块,现在打开一个水龙头往容器里注水,3分钟时水面恰好和正方体铁块平齐,14分钟时水注满容器,这个圆柱体的容积是多少立方厘米?【答案】6600cm3.【解析】“3分钟时水面恰好和正方体铁块平齐”说明此时水已达到圆柱体容器的容积的10÷30=处,“14分钟时水注满容器”说明水注满这个容器的(1﹣)=用了(14﹣3)=11分钟,故如果原来没有放入稜长为10厘米的正方体铁块就注水的话,应该用11÷(1﹣)=16.5分钟,这就比14分钟多出(16.5﹣14)=2.5分钟,这2.5分钟就是水注满棱长10厘米的正方体铁块所占据的空间(即这个正方体的体积)用的时间,这就是说2.5分钟可以放水10×10×10=1000立方厘米,而从上面的分析可以知道水注满圆柱体容器的时间是16.5分钟,所以,圆柱体的容积是1000÷2.5×16.5=6600立方厘米.解:(14﹣3)÷(1﹣10÷30),=11÷,=16.5(分钟);10×10×10÷(16.5﹣14)×16.5,=1000÷2.5×16.5,=400×16.5,=6600(cm3);答:这个圆柱体的容积是6600cm3.【点评】此题的解答关键是求出两次注水时间的差,再求出长方体铁块所占容器空间的注水时间是几分钟,由此进行分析解答即可.2.一个盛满水的圆锥形容器,水深18厘米,将水全部倒入和它等底等高的圆柱形容器里,水深是________厘米.【答案】6【解析】圆锥的体积=×底面积×高,圆柱的体积=底面积×高,再据这些水的体积不变,即可求出倒入圆柱中的水的高度.解:设圆锥的底面积为S,圆柱的高为h,则圆锥的体积为S×18=6S(立方厘米),因为圆柱与圆锥等底等高,所以圆柱中水的高为:6S÷S=6(厘米),答:水深为6厘米.故答案为:6.【点评】此题考查了圆锥与圆柱体积的计算方法,关键是明白:水的体积不变.3.在一个高24厘米的圆锥形量杯里装满了水,如果将这些水倒入与它底面积相等的圆柱形量杯中,水面高_______厘米.【答案】8【解析】解:圆锥形容器中的水的体积与圆柱形容器中的水的体积相等,圆锥与圆柱的底面积也相等,因此,圆柱形容器中水的高是圆锥高的;24×=8(厘米);答:水面高8厘米.故答案为:8.4.一个圆锥形的稻谷堆,量得它的底面周长为12.56米,高为1.5米,已知每立方米稻谷重750千克,这堆稻谷共重多少千克?【答案】4710千克【解析】解:谷堆的体积:×3.14×(12.56÷3.14÷2)2×1.5,=×3.14×22×1.5,=3.14×4×0.5,=6.28(立方米),稻谷的重量:6.28×750=4710(千克);答:这堆稻谷共重4710千克.5.一个圆柱和一个圆锥的底面半径之比是3:4,高之比是2:3,圆柱和圆锥的体积之比是()A.8:9B.9:16C.16:9D.9:8【答案】D【解析】根据“个圆柱和一个圆锥的底面半径之比是3:4”,把圆柱的半径看作3份,圆锥的半径就是4份;“高的比是2:3,”把圆柱的高看作2份,圆锥的高3份,再分别代入圆柱与圆锥的体积公式,计算出体积,写出对应的比即可.解:圆柱的体积:π×32×2=18π,圆锥的体积:×π×42×3=16π,圆柱和圆锥的体积比是:18π:16π=9:8,答:圆柱和圆锥之比是9:8.故选:D.【点评】此题主要考查了圆柱与圆锥的体积公式的实际应用,注意此题是求体积的比,所以在求体积时不用把π算出来.6.圆锥的体积一定等于圆柱体积的三分之一(判断对错)【答案】×【解析】因为圆柱和圆锥是在“等底等高”的条件下,圆锥的体积才是圆柱体积的,所以原题说法是错误的.解:圆锥的体积是与它等底等高的圆柱体积的,原题没有“等底等高”的条件是不成立的;故答案为:×.【点评】此题是考查圆柱、圆锥的关系,要注意圆柱和圆锥在等底等高的条件下有3倍或的关系.7.以长方形的长为轴旋转一周,可以得到一个;以直角三角形的一个直角边为轴旋转一周,就可以得到一个.【答案】圆柱体;圆锥体.【解析】(1)我们知道点动成线,线动成面,面动成体.由于长方形或正方形的对边相等,长方形或正方形以它的一边为轴旋转一周,它的上、下两个面就是以半径相等的两个圆面,与轴平行的一边形成一个曲面,这个长方形或正方形就成为一个圆柱.(2)根据圆锥的认识:为轴的那条直角边是旋转后的圆锥的高,另一条直角边是旋转后的圆锥的底面半径;进而得出结论.解:(1)以一个长方形的长为轴,把它旋转一周,可以得到一个圆柱;(2)如果以直角三角形的一条直角边为轴旋转一周,可以得到一圆锥体;故答案为:圆柱体;圆锥体.【点评】本题是考查图形的旋转.以一个长方形或正方形的一边为轴,把它旋转一周,可以得到一个圆柱;一个直角三角形以一条直角边为轴旋转一周可以得到一个圆锥.8.如图所示,把底面周长25.12厘米、高12厘米的圆柱切成若干等份,拼成一个近似的长方体.这个长方体的体积是立方厘米,表面积比原来圆柱的表面积增加了平方厘米.【答案】602.88,48.【解析】这个近似长方体的长就是圆柱底面周长的一半,宽就是圆柱的底面半径,高就是圆柱的高,根据长方体的体积计算公式“V=abh”即可求出它的体积(这个近似长方体的体积与圆柱的体积相等,也可根据圆柱的体积公式“V=πr2h”计算出);表面积比原来圆柱增加了两个长为圆柱高,宽为圆柱底面半径的长方形的面积,根据长方形的面积公式“S=ab”即可求出.解:(25.12÷2)×(25.12÷2÷3.14)×12=12.56×4×12=602.88(立方厘米);(25.12÷2÷3.14)×12=4×12=48(平方厘米)答:这个长方体的体积是602.88立方厘米,表面积比原来圆柱的表面积增加了48平方厘米.故答案为:602.88,48.【点评】这就是圆柱体积计算公式推导过程,把一个圆柱沿半径切成相等的若干拼成一个近似的长方体,这个长方体与圆柱体积相等,其长是圆柱底面周长的一半,宽是圆柱底面半径,高是圆柱的高,根据长方体的体计算公式即可求出它的体积.表面积比原来圆柱增加了两个长为圆柱高,宽为圆柱底面半径的长方形的面积.9.姥姥做了一个圆柱形的抱枕,长50cm,底面直径20cm.如果侧面用花布,底面用黄色的布,花布至少需 cm2,黄布至少需 cm2.【答案】3140;628.【解析】根据圆柱的特征:圆柱的上、下面是完全相同的两个圆,侧面是一个曲面,侧面展开是一个长方形,这个长方形的长等于圆柱的底面周长,宽等于圆柱的高.圆柱的侧面积=底面周长×高,圆的面积公式:s=πr2,把数据分别代入公式解答.解:侧面积:3.14×20×50=3.14×1000=3140(平方厘米)两个底面积:3.14×(20÷2)2×2=3.14×100×2=628(平方厘米)答:侧面用花布需要3140平方厘米,底面用黄布需要628平方厘米.故答案为:3140;628.【点评】此题属于圆柱的表面积的实际应用,考查目的是使学生能够灵活运用圆柱的表面积公式解决有关的实际问题.10.一个底为3厘米,高为2厘米的直角三角形,以高为轴旋转一周,将会得到一个底面直径是厘米,高为厘米的体,它的体积是立方厘米.【答案】6,2,圆锥,18.84.【解析】根据题干可得,这个直角三角形旋转一周得到的是圆锥,其中直角三角形的底就是圆锥底面的半径,高就是这个圆锥的高,结合圆锥的体积公式即可解决问题.解:根据圆锥的特征可得,这个直角三角形以高为轴旋转一周,将会得到一个底面半径是3厘米,高为2厘米的圆锥体,所以直径是3×2=6(厘米);体积为:×3.14×32×2,=×3.14×9×2,=18.84(立方厘米).故答案为:6,2,圆锥,18.84.【点评】抓住圆锥的特征,即可找出对应的数据,然后利用体积公式进行计算.11.一个圆锥形沙堆,底面积是12.56,高0.9米.把这堆沙子铺入长4.5米,宽2米的沙坑内,可以铺多厚?【答案】0.42米【解析】根据题意,把圆锥形沙堆铺成长方体似的沙坑,沙子的体积没有变化,因此根据圆锥的体积公式V=sh可计算出沙子的体积,然后再用沙子的体积除以沙坑的底面积即可得到沙子铺的厚度,列式解答即可得到答案.解:(×12.56×0.9)÷(4.5×2)=3.768÷9,≈0.42(米),答:这些沙子大约可以铺0.42米厚.【点评】解答此题的关键是确定沙子的体积没有变化,然后再根据圆锥的体积和长方体的体积公式进行计算即可.12.水管内直径为20厘米,水在管内的流速是每秒20厘米,每秒流过的水是毫升.【答案】628【解析】根据圆柱的容积(体积)公式:v=sh,把数据代入公式解答即可.解:3.14×(20÷2)2×20=3.14×100×20=628(立方厘米)=628(毫升),答:每秒流过的水是628毫升.故答案为:628.【点评】此题主要考查圆柱的容积(体积)公式的灵活运用,关键是熟记公式,注意:体积单位与容积单位之间的换算.13.半径和高都是2分米的这个圆柱,体积和表面积相等..(判断对错)【答案】×【解析】根据圆柱的表面积和体积的意义,圆柱的表面积是指围成这个圆柱的侧面积和两个底面的面积,圆柱的体积是指圆柱所占空间的大小,因为表面积和体积不是同类量,所以不能进行比较.据此判断.解:因为表面积和体积不是同类量,所以不能进行比较.因此,半径和高都是2分米的这个圆柱,体积和表面积相等.这种说法是错误的.故答案为:×.【点评】此题解答关键是明确:只有同类量才能进行比较.14.把2米长的圆柱形木棒锯成三段,表面积增加了4dm2,原来木棒的体积是 dm3.【答案】20.【解析】由题意可知:把圆柱形木棒锯成3段,要锯3﹣1=2次,共增加(2×2)个底面;也就是说,增加的4平方分米是4个底面的面积,由此可求出一个底面的面积,进而可求出原来木料的体积.解:2×(3﹣1)=4(个);2米=20分米;4÷4×20=20(立方分米);故答案为20.【点评】此题是求体积的复杂应用题,要注意分析题中增加的表面积是哪些面的面积.15.同学们在探究圆锥形铁块的体积时,做了以下实验:(单位:厘米)你能计算出铁块的体积吗?【答案】157立方厘米.【解析】求放入水中铁块的体积即求上升水的体积,根据圆柱的体积=底面积×高,即可列式解答.解:3.14×(10÷2)2×(7﹣5),=3.14×25×2,=3.14×50,=157(立方厘米);答:铁块的体积是157立方厘米.【点评】解答此题关键是理解求完全浸没在水中物体的体积就等于上升水的体积.16.一个底面积1.5平方分米的玻璃缸里有一块石头,如图所示.水深18厘米,拿出石块后水面下降到15厘米,这块石头体积是多少?【答案】450立方厘米.【解析】分析“一个底面积1.5平方分米的玻璃缸里有一块石头,如图所示.水深18厘米”这个条件,可以根据V=sh算出水和石头的总体积;分析条件“拿出石块后水面下降到15厘米”可知,这个玻璃缸里的水深15厘米,又知道底面积,则可以根据V=sh求出水的体积;用水和石头的体积减去水的体积,就是这块石头的体积.注意:在算这道题时,单位不统一,因此首先要把1.5平方分米看作150平方厘米.解:1.5平方分米=150平方厘米总体积 V=sh=150×18=2700(立方厘米)水的体积 V=sh=150×15=2250(立方厘米)石头的体积=总体积﹣水的体积=2700﹣2250=450(立方厘米)答:这块石头体积是450立方厘米.【点评】解答本题的关键是知道这块石头的体积就是下降的水的体积.17.某人要挖一口圆柱形水井,在比例尺是1:80的设计图上,水井口的直径是1cm,深10cm,这口井实际占地面积是多少平方米?能挖出多少立方米的土?【答案】占地面积是0.5024平方米,能挖出4.0192立方米的土【解析】先根据比例尺求出水井的实际直径和深度,在计算实际占地面积和体积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等底等高的圆柱和圆锥的关系练习题
等底等高,圆柱的体积是圆锥体积的3倍,圆锥体积是圆柱的三分之一。
1一个圆柱和一个圆锥等底等高,圆柱的体积是48立方厘米,那么圆锥的体积是(),如果圆锥的体积是36立方厘米,圆柱的体积是()。
2.把一个圆柱削成一个最大的圆锥,这个圆柱的体积是48.15立方分米,削成的圆锥的体积是()立方分米,削去的体积是()。
3. 把一个圆柱削成一个最大的圆锥,这个圆锥的体积是3.2立方分米,削去的体积是()立方分米,原来圆柱的体积是()。
4.一个圆柱的底面半径是3㎝,高是2㎝,与它等底等高的圆锥体的体积是()。
5.一个圆柱与一个圆锥等底等高,圆锥的体积是19.2立方厘米,该圆柱的体积比圆锥的体积多()立方厘米。
6.等底等高的圆柱和圆锥,已知它们的体积之差是24立方分米,则圆柱的体积是()立方分米,圆锥的体积是()。
7.一个圆锥的体积是a立方厘米,和它等底等高的圆柱的体积是()立方厘米。
8.一个重3千克的圆柱形的铁坯,可以熔铸成()个和它等底等高的圆锥形零件。
9.等底等高的一个圆柱和一个圆锥的体积相差6.28立方厘米,圆锥的体积是()。
10.把一个圆柱体钢坯削成一个最大的圆锥体,要削去1.8立方厘米,未削前圆柱的体积是()立方厘米。
11.一个圆柱与和它等底等高的圆锥的体积和是144立方厘米。
圆柱的体积是()立
方厘米,圆锥的体积是()立方厘米。
二体积相等、底面积相等或体积相等、高相等的圆柱和圆锥的关系。
1.高12厘米的圆锥形量杯装满水,如果把这些水倒入与它底面积相等的圆柱形量杯中,水面高是()㎝。
2.一个圆柱和一个圆锥等底等体积,圆柱高1.2厘米,圆锥的高是()厘米。
3. 一个圆柱和一个圆锥底面积相等,体积相等,圆柱的高是15分米,圆锥的高是()分米。
4一个圆柱和一个圆锥底面积相等,体积相等,圆柱的高是6分米,圆锥的高是()分米。
三圆锥(圆柱)体积变化填空。
1.一个圆锥(圆柱)的高不变,底面半径扩大到原来的2倍,它的体积扩大到原来的()倍。
2. 一个圆锥的高不变,底面面积扩大到原来的3倍,它的体积扩大到原来的()倍。
3.一个圆锥的高扩大2倍,底面周长缩小2倍,它的体积()。
4.一个圆锥的底面半径扩大3倍,如果体积不变,高应该()倍。
5.一个圆柱体,如果底面半径扩大2倍,高缩小2倍,侧面积(),体积()。