三向地震波的合理选取和人工定义分解
[整理版]正确选取地震波
![[整理版]正确选取地震波](https://img.taocdn.com/s3/m/f7670fc3f7ec4afe05a1df36.png)
[整理版]正确选取地震波地震波的选取方法 (MIDAS(2009-05-16 22:51:32)转载?标签: 分类: 结构专业杂谈建筑抗震设计规范(GB 50011-2001)的5.1.2条文说明中规定,正确选择输入的地震加速度时程曲线,要满足地震动三要素的要求,即频谱特性、有效峰值和持续时间要符合规定。
频谱特性可用地震影响系数曲线表征,依据所处的场地类别和设计地震分组确定。
这句话的含义是选择的实际地震波所处场地的设计分组(震中距离、震级大小)和场地类别(场地条件)应与要分析的结构物所处场地的相同,简单的说两者的特征周期Tg值应接近或相同。
特征周期Tg值的计算方法见下面公式(1)、(2)、(3)。
加速度有效峰值按建筑抗震设计规范(GB 50011-2001)中的表5.1.2-2采用。
地震波的加速度有效峰值的计算方法见下面公式(1)及下面说明。
持续时间的概念不是指地震波数据中总的时间长度。
持时Td的定义可分为两大类,一类是以地震动幅值的绝对值来定义的绝对持时,即指地震地面加速度值大于某值的时间总和,即绝对值,a(t),,k*g的时间总和,k常取为0.05;另一类为以相对值定义的相对持时,即最先与最后一个k*amax之间的时段长度,k ,0.5。
不论实际的强震记录还是人工模拟波形,一般持续时间取结构一般取0.3基本周期的5,10倍。
说明:有效峰值加速度 EPA,Sa/2.5 (1)有效峰值速度 EPV,Sv/2.5 (2)特征周期Tg = 2π*EPV/EPA (3)1978年美国ATC,3规范中将阻尼比为5,的加速度反应谱取周期为0.1-0.5秒之间的值平均为Sa,将阻尼比为5%的速度反应谱取周期为0.5-2秒之间的值平均为Sv(或取1s附近的平均速度反应谱),上面公式中常数2.5为0.05组尼比加速度反应谱的平均放大系数。
上述方法使用的是将频段固定的方法来求EPA和EPV,1990年的《中国地震烈度区划图》采用了不固定频段的方法分析各条反应谱确定其相应的平台频段。
三分量地震采集方1

三分量地震采集方1三分量地震采集方法一、概述1、开展多波多分量勘探的目的和意义多波多分量勘探又称为矢量勘探,是指综合利用纵横波震源和多分量检波器对各种波场进行观测,以揭示更多的地下构造、岩性和油气信息的勘探技术。
三分量地震勘探一般指利用纵波激发,采用三分量检波器记录一个纵向分量和两个横向分量的技术方法。
随着油气勘探的逐步深入,大庆探区的油气勘探与开发中需要解决的地质问题越来越复杂,如对松辽盆地复杂构造和复杂岩性气藏、中浅层薄互层岩性油藏、深层火山岩气藏、海拉尔古潜山裂缝性油藏等复杂目标的勘探等,这些地区常规地震数据的成像质量、分辨率,探测地下岩性、流体和各向异性的能力已无法满足复杂地质目标勘探的要求。
解决这些复杂问题,仅仅依靠纵波已经难以解决,必须采用综合物探技术方法。
国内外大量实例表明,多波多分量地震勘探能有效推动复杂地质问题的解决。
同样,在油气田开发过程中增加转换波信息也可以更好地描述油气藏、刻画油气藏动态。
在兴城地区开展三分量地震勘探试验是针对松辽盆地北部中浅层砂泥薄互层及深层火山岩等复杂勘探目标的特点,在充分吸收、消化国内外已有技术的基础上,通过现场试验,一是探讨利用数字检波器采集的三分量地震资料进一步提高葡萄花油层、扶杨油层分辨率的潜力,二是探索利用数字检波器采集的三分量地震资料识别营城组、登楼库组及泉头组储层和储层含气性有效预测的潜力,形成一套有效和实用的多分量地震资料采集、处理、解释等方法和相应的技术流程,提高储层岩性识别以及含油气储层预测的精度,同时,为大庆探区其它地区油气勘探开发进行技术准备。
2、国内外研究现状目前,三分量地震勘探技术在国际上发展迅猛,正成为海上油气田勘探开发阶段必不可少的技术手段,取得了可观的经济效益。
在进行海上多分量地震勘探研究的同时,国外也在开展陆上转换波勘探的研究工作,在理论和实际应用方面对多分量地震勘探技术进行了深入研究,并做了许多工作。
在三分量检波器研制方面,已由动圈式三分量检波器发展到数字检波器。
弹塑性时程分析用地震波选取的基本原则(转载)

弹塑性时程分析用地震波选取的基本原则地震动具有强烈随机性,分析表明,结构的地震反应随输入地震波的不同而差距很大,相差高达几倍甚至十几倍之多。
故要保证时程分析结果的合理性,必须合理选择输入地震波。
归纳起来,选择输入地震波时应当考虑以下几方面的因素:峰值、频谱特性、地震动持时以及地震波数量,其中,前三个因素称为地震动的三要素。
1、峰值调整地震波的峰值一定程度上反映了地震波的强度,因此要求输入结构的地震波峰值应与设防烈度要求的多遇地震或罕遇地震的峰值相当,否则应按下式对该地震波的峰值进行调整。
A′(t) = (A′max/Amax) A (t)其中,A′(t) 和A′max分别为地震波时程曲线与峰值,A′max取设防烈度要求的多遇或罕遇地震的地面运动峰值; A (t) 和Amax分别为原地震波时程曲线与峰值。
2、频谱特性频谱即地面运动的频率成分及各频率的影响程度。
它与地震传播距离、传播区域、传播介质及结构所在地的场地土性质有密切关系。
地面运动的特性测定表明,不同性质的土层对地震波中各种频率成分的吸收和过滤的效果是不同的。
一般来说,同一地震,震中距近,则振幅大,高频成分丰富;震中距远,则振幅小,低频成分丰富。
因此,在震中附近或岩石等坚硬场地土中,地震波中的短周期成分较多,在震中距很远或当冲积土层很厚而土质又较软时,由于地震波中的短周期成分被吸收而导致长周期成分为主。
合理的地震波选择应从两个方面着手:1) 所输入地震波的卓越周期应尽可能与拟建场地的特征周期一致。
2) 所输入地震波的震中距应尽可能与拟建场地的震中距一致。
3、地震动持时地震动持时也是结构破坏、倒塌的重要因素。
结构在开始受到地震波的作用时,只引起微小的裂缝,在后续的地震波作用下,破坏加大,变形积累,导致大的破坏甚至倒塌。
有的结构在主震时已经破坏但没有倒塌,但在余震时倒塌,就是因为震动时间长,破坏过程在多次地震反复作用下完成,即所谓低周疲劳破坏。
上海地震波-三向输入选取(说明)m

上海地区抗震设计输入地震时程说明(共8页)同济大学房结构工程与防灾研究所二〇一二年六月目录1 天然地震时程选取原则 (3)2 峰值调整 (3)3 频谱特性 (3)4 地震动持时 (3)5 人造地震动生成的方法 (3)6 目标反应谱的确定 (4)7 所选地震时程的基本信息 (4)8 地震时程反应谱与规范反应谱对比 (5)上海地区抗震设计输入地震时程说明1 天然地震时程选取原则天然地震动具有很强的随机性,随着输入地震波的不同结构的地震响应也会有很大的差异,故要保证时程分析结果的合理性,在选择地震波时必须遵循一定的原则。
一般而言,选择输入地震波时应以地震波的三要素(峰值、频谱特性、地震动持时)为主要考虑因素。
2 峰值调整地震波的峰值一定程度上反应了地震波的强度,因此要求输入结构的地震波峰值应与设防烈度要求的多遇地震或罕遇地震的峰值相当(峰值相当并非峰值相等,而是在峰值相近的情况下所选用地震波的反应谱与规范反应谱基本相符)。
3 频谱特性频谱是地面运动的频率成分及各频率的影响程度。
它与地震传播距离、区域、介质及结构所在的场地土性质有密切关系。
一般来说,在震中附近或岩石等坚硬场地土中,地震波中的短周期成分较多,在震中距较远或软弱场地土中,地震波的长期成分较多。
输入地震波的卓越周期应尽可能与拟建场地的特征周期一致,且在一定的周期段内与规范反应谱尽量接近。
对于天然地震记录而言,3个方向地震波同时都与规范反应谱很接近的条件是很难满足的,但应保证至少一个水平向地震波反应谱与规范反应谱基本吻合。
4 地震动持时地震持时也是结构破坏和倒塌的重要因素,工程实践中确定地震动持续时间的原则是:1)地震记录最强烈部分应包含在所选持续时间内,2)若对结构进行弹塑性地震反应分析(考虑累计损伤效应),持续时间可取长些。
另外,在截取地震波时尚需注意尽量在速度/位移零点处截断以尽量避免加速度积分时速度或位移的``漂移''现象。
地震波的选取方法

地震波的选取方法2010-10-20 22:32:00| 分类:默认分类|举报|字号订阅建筑抗震设计规范(GB 50011-2001)的5.1.2条文说明中规定,正确选择输入的地震加速度时程曲线,要满足地震动三要素的要求,即频谱特性、有效峰值和持续时间要符合规定。
频谱特性可用地震影响系数曲线表征,依据所处的场地类别和设计地震分组确定。
这句话的含义是选择的实际地震波所处场地的设计分组(震中距离、震级大小)和场地类别(场地条件)应与要分析的结构物所处场地的相同,简单的说两者的特征周期Tg值应接近或相同。
特征周期Tg值的计算方法见下面公式(1)、(2)、(3)。
加速度有效峰值按建筑抗震设计规范(GB 50011-2001)中的表5.1.2-2采用。
地震波的加速度有效峰值的计算方法见下面公式(1)及下面说明。
持续时间的概念不是指地震波数据中总的时间长度。
持时Td的定义可分为两大类,一类是以地震动幅值的绝对值来定义的绝对持时,即指地震地面加速度值大于某值的时间总和,即绝对值|a(t)|>k*g的时间总和,k常取为0.05;另一类为以相对值定义的相对持时,即最先与最后一个k*amax之间的时段长度,k一般取0.3~0.5。
不论实际的强震记录还是人工模拟波形,一般持续时间取结构基本周期的5~10倍。
说明:有效峰值加速度EPA=Sa/2.5 (1)有效峰值速度EPV=Sv/2.5 (2)特征周期Tg = 2π*EPV/EPA (3)1978年美国ATC-3规范中将阻尼比为5%的加速度反应谱取周期为0.1-0.5秒之间的值平为Sa,将阻尼比为5%的速度反应谱取周期为0.5-2秒之间的值平均为Sv(或取1s附近的平均速度反应谱),上面公式中常数2.5为0.05组尼比加速度反应谱的平均放大系数。
上述方法使用的是将频段固定的方法来求EPA和EPV,1990年的《中国地震烈度区划图》采用了不固定频段的方法分析各条反应谱确定其相应的平台频段。
地震讲义5-三维地震资料的解释

起泥浆柱中质点垂直运动并向下传播的波,在声波测井中称为
斯通利波。其传播速度较低且不呈球面发散(衰减很慢),很难 通过一般叠加方法压制掉。一般可采用加大井源距等办法减弱
基础,以便更清楚地认识待解释的地震资料,经过哪些数字处理,
那些处理会对地震信号的波形、频谱的影响等等。
二、人机联作解释系统配置
1.硬件设备 1)主机系统
2)数据输入与存储系统
图4-11 地震解释工作站基本硬件配置
2.软件组成与功能
l)系统软件
2)应用软件
应用软件一般包括以下几部分: a.数据输入与管理软件: 软件 d.绘图软件 b.数据显示软件: c.解释 f.处理分析软件
2.等时切片的断层识别 1)标志层同相轴系统中断和错断,或者强振幅错断,并以大角度 切割构造走向。
2) 同相轴走向突变或者零乱,
图4-7 同相轴异常扭曲
图4-8 同相轴走向不一致
3) 识别断层产状,当断层直立时,则时间系列剖面上同一 条断层位置重合;断层倾斜时,时间系列剖面上断层应有规律 地向一侧移动;若时间系列剖面上断层线无规律移动,剖面上 断层显示不清楚,应用垂直剖面来识别。
图4-21 利用VSP资 料提取衰减值判别岩性
图4-22 含油气圈闭
直达波振幅衰减关系
向变化,因而波的特征更明显、更灵敏, 2)由于检波点更接近地层界面,容易记录到来自界面有关 的波,反射品质更好。 3)能记录到具有负视速度的上行波和正视速度的下行波, 容易区别和分离;能提供精确的处理参数(如速度、频谱、 增益函数),确定多次波的来源等和求取地震子波,以便进
三向地震波的合理选取和人工定义

实验方法
采用适当的方法对数据进行处理和分析,包括滤波、去噪、提取有效信号等。
参数设置
根据实验需求,合理设置实验参数,如采样率、滤波器类型等。
实验数据与方法
结果展示
将实验结果以图表、图像等形式进行展示,便于观察和分析。
结果分析
对实验结果进行深入分析,探讨地震波的传播规律和影响因素。
结果对比
将实验结果与理论预测或已有数据进行对比,验证实验的准确性和可靠性。
三向地震波的合理选取和人工定义
目录
引言 三向地震波的基本理论 三向地震波的合理选取 三向地震波的人工定义 实验与分析 结论与展望
01
引言
地震波是研究地球内部结构和地震活动的重要手段,而三向地震波的合理选取和人工定义对于地震波场模拟、地震灾害评估和地震工程设计等方面具有重要意义。
随着地震工程和防灾减灾领域的不断发展,对于三向地震波的合理选取和人工定义提出了更高的要求,需要更加精细和准确的方法和技术。
详细描述
频谱分析是一种常用的地震波选取方法,它通过分析地震波的频率成分和能量分布,选择具有代表性的地震波。这种方法能够反映地震波的传播规律和地质构造特征,有助于提高地震资料的解释精度和地震模拟的准确性。
基于地震波频谱的选取方法
VS
根据地震波的传播路径,选择在不同地质构造和地球介质中传播的地震波。
详细描述
三向地震波的人工定义
基于地震波合成的人工定义方法
合成方法
通过模拟地震波传播过程,利用已知的地震波参数(如震源深度、震源类型等)和地质结构信息,生成具有相似特征的地震波信号。
优点
可以模拟不同类型和复杂度的地震波,适用于研究地震波传播规律和模拟地震波场。
缺点
弹性动力时程分析

《高层混凝土结构技术规程》JGJ3-2002
第3.3.5条 按本规程第3.3.4 条规定进行动力时程分析时, 应符合下列要求: 1 应按建筑场地类别和设计地震分组选用不少于二组实际地震 记录和一组人工模拟的加速度时程曲线,其平均地震影响系 数曲线应与振型分解反应谱法所采用的地震影响系数曲线在 统计意义上相符,且弹性时程分析时,每条时程曲线计算所 得的结构底部剪力不应小于振型分解反应谱法求得的底部剪 力的65%,多条时程曲线计算所得的结构底部剪力的平均值 不应小于振型分解反应谱法求得的底部剪力的80%; 2 地震波的持续时间不宜小于建筑结构基本自振周期3~4倍, 也不宜少于12s,地震波的时间间距可取0.01s或0.02s; 4 结构地震作用效应可取多条时程曲线计算结果的平均值与振 型分解反应谱法计算结果的较大值。
三向地震波的合理选取
加速度
方向:S50E,记录时长:40.00秒
时间(秒)
加速度
方向:S40W,记录时长:40.00秒
时间(秒)
加速度
方向:VERT,记录时长:40.00秒
时间(秒)
规准加速度谱
3.69
周期(秒)
1
2
3
4
5
6
保留的旧版地震波库
1.3.3 如何人工定义地震波
在当前的工程目录下建立相应的地震波文件。 在当前的工程目录下建立相应的地震波文件。 文件名采用“ 加上“ ” 文件名采用 “ USER”加上 “ 1” 、 “ 2” 或其他数字 加上 ” 。 使用“.X”、“.Y”和“.Z”文件后缀给出主方向、次方 文件后缀给出主方向、 使用“ 、 和 文件后缀给出主方向 向和竖向所对应的地震波波形。 向和竖向所对应的地震波波形。如果用户给出了无后 缀文件, 缀文件,则认为该文件中的内容为主方向地震波波形 。 例如“USER1”、“USER2.X”、“USER2.Y”、 例如“ 、 、 、 “USER2.Z”等文件名都是合法的。 等文件名都是合法的。 等文件名都是合法的 文件中第一行输入用户地震波步数n; 在第2~第 文件中第一行输入用户地震波步数 ; 在第 第 n+1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
19.5。动力弹塑性分析方法
动力弹塑性分析方法的特点
将罕遇地震作用以较为真实的加速度时程方式进行输入。 考虑结构的弹塑性性质。 对结构没有过多限制其应用范围的基本假定,适用范围 广泛,可以认为是一种仿真分析方法。 多条地震波分析时,计算时间相对较长。 选取不同的地震波进行分析时,计算结果可能差别较大, 需要使用者进行合理罕遇地震下三种薄弱层弹塑性变形 验算方法及其适用范围
19.1。弹塑性分析目的、意义 19.2。弹塑性分析的规范规定 19.3。简化弹塑性分析方法及适用范围 19.4。静力弹塑性分析方法 19.5。动力弹塑性分析方法
19.1。弹塑性分析目的、意义
三水准设防中的“大震不倒” 。 两阶段设计中的“第二阶段弹塑性变形验算”。 强震下变形验算的基本问题:计算和确定薄弱层位移 反应和变形能力;通过改善结构均匀性、加强薄弱层 和薄弱部位使得层间位移角满足弹塑性变形验算限值 要求。
19.4。静力弹塑性分析方法
抗倒塌分析图
静力弹塑性分析方法的特点
静力弹塑性分析方法是将动力地震作用静力化的一种罕 遇地震分析方法。 考虑结构的弹塑性性质。 较动力弹塑性分析方法能一定程度上节省计算时间。 通过静力推覆分析过程可以了解结构的抗倒塌能力。 通过能力谱方法可以得到结构的罕遇地震下最大弹塑性 位移角。 能力谱方法存在“以第一振型振动为主、结构可以等效 为单自由度体系”等前提假定,能否适用于超高层结构 仍然需要探讨;但推覆分析过程有一定的普适性。
选取地震波
实测地震波——特征参数
实测地震波——反应谱
规准加速度谱
3.69
周期(秒)
1
2
3
4
5
6
实测地震波——东南向40度作用
加速度 方向:S50E,记录时长:40.00秒
时间(秒)
实测地震波——西南向50度作用
加速度 方向:S40W,记录时长:40.00秒
时间(秒)
实测地震波——竖向作用
18.2。三向地震波的合理选取
按照规范的要求,至少应该选择三条地震波进行地震时程反 应的分析,并规定了最小基底剪力。当计算的基底剪力不满 足规范要求,则应认为该地震波不合格,应重新选择分析, 直至选到合适的地震波为止。 而实际上,只有在建筑物所在地的地震波才有可能有意义。 但是大多数地区不具备这个条件,则可以用实测的人工波来 代替。目前重要建筑物的场地波都是通过实测和人工模拟产 生的,即实测人工波。
19.2。弹塑性分析的规范规定
《建筑抗震设计规范》GB 50011-2001 《高层混凝土结构技术规程》JGJ 3-2002 《高层民用建筑钢结构技术规程》JGJ99-98
《建筑抗震设计规范》
3.4.3条 竖向不规则结构应(宜)进行弹塑 性变形分析 3.6.2条 弹塑性分析可以根据具体情况采用 弹塑性静力、时程、简化方法 5.5.2条 何种结构需要进行弹塑性变形验算 5.5.3条 弹塑性变形验算方法 5.5.4条 弹塑性分析的简化方法 5.5.5条 弹塑性层间位移角限值
加速度 方向:VERT,记录时长:40.00秒
时间(秒)
保留的旧版地震波库
18.3。如何人工定义地震波
在当前的工程目录下建立相应的地震波文件。 文件名应采用“ USER” 加上“ 1”或“ 2”或其他阿拉伯数 字。 使用“.X”、“.Y”和“.Z”文件后缀给出主方向、次方向 和竖向所对应的地震波波形。如果用户给出了无后缀的 文件,则认为该文件中的内容为主方向的地震波波形。 例 如 “ USER1” 、 “ USER2.X” 、 “ USER2.Y” 、 “USER2.Z”等文件名都是合法的。 文件中第一行输入用户地震波步数N;在第2~第N+1行写 入地震波加速度值,单位任意,但要一致。
18。三向地震波的合理选取和人工定义 18.1。时程分析与三向地震波 18.2。三向地震波的合理选取 18.3。如何人工定义地震波
18.1。 时程分析与地震波
弹性、弹塑性时程分析均与地震波相关。 TAT 、 SATWE 、 PMSAP 、 EPDA 等软件时程分析时均 需选取地震波。 旧版软件采用的是按照场地土区分的单向地震波库; 新版软件采用的是按照特征周期区分的三向地震波库。 三向地震波可以退化为单向地震波进行计算。 可以通过填写文本文件的方式增加用户地震波。
新抗震规范5.5.3条规定,罕遇地震下薄弱层(部位)弹塑 性变形验算可采用下列方法: “不超过12层且层刚度无突 变的钢筋混凝土框架结构、单层钢筋混凝土柱厂房可采用 5.5.4条的简化计算方法。” 新抗震规范5.5.4条规定的简化弹塑性分析方法包含两方面 内容: 薄弱层按照楼层区分强度系数确定。 弹塑性层间位移角由罕遇地震弹性层间位移角折减得到。 可以看出,简化的弹塑性分析方法: 有明确的适用范围,超出此范围不能采用。 薄弱层的判断和相应弹塑性层间位移角的确定均是估算结 果。
新抗震规范5.1.2条规定,“特别不规则的建筑、甲类建 筑和表5.1.2-1所列高度范围的高层建筑,应采用时程分 析法进行多遇地震下的补充计算”,“采用时程分析法 时,应按建筑场地类别和设计地震分组选用不少于两组 的实际强震记录和一组人工模拟的加速度时程曲线”。
地震波与反应谱应在“统计意义上相符”。 时程分析法单波和平均值的底部剪力应不小于按反应谱 方法得到的底部剪力的“65%”和“80%”等限值。 新抗震规范5.5.3条规定,除可以采用简化方法计算外的 建筑结构,可采用静力弹塑性分析方法或弹塑性时程分 析方法。
《高层混凝土结构技术规程》
4.6.4条 , 4.6.5条 ,5.1.13条, 4.6.4条有具体规定
基本遵从于《建筑抗震设计规范》
《高层民用建筑钢结构技术规程》
5.3.6条~5.3.10条、5.4.4条、 5.5.3条,有具体
规定,有层间侧移延性比规定
19.3。简化弹塑性分析方法及应用范围