液压传动轴承实验
心得体会 观察液压零件体会

观察液压零件体会观察液压零件体会桂林电子科技大学实验报告辅导有意见:实验名称液压元件拆装实验作者学号同作者辅导员实验时间年月日成绩签名实验一液压元件拆装实验一、实验目的:液压动力元件——液压泵是液压系统的重要组成部分,通过对液压泵的拆装实训以达到下列目的:1、进一步理解常用液压泵的结构组成及工作原理。
2、掌握的正确拆卸、装配及安装连接方法。
3、掌握常用液压泵维修的基本方法。
二、实验用液压泵、工具及辅料:1、实验用液压泵:齿轮泵2台、叶片泵2台、轴向柱塞泵1台。
2、工具:内六方扳手2套、固定扳手、螺丝刀、卡簧钳等。
3、辅料:铜棒、棉纱、煤油等。
三、实验要求:1、实习前认真预习,搞清楚相关液压泵的工作原理,对其结构组成有一个基本的认识。
2、针对不同的液压元件,利用相应工具,严格按照其拆卸、装配步骤进行,严禁违反操作规程进行私自拆卸、装配。
3、实习中弄清楚常用液压泵的结构组成、工作原理及主要零件、组件特殊结构的作用。
四、实训内容及注意事项:在实习老师的指导下,拆解各类液压泵,观察、了解各零件在液压泵中的作用,了解各种液压泵的工作原理,按照规定的步骤装配各类液压泵。
1、齿轮泵型号:CB-B型齿轮泵。
结构:泵结构见图1-1及图1-2。
①工作原理在吸油腔,轮齿在啮合点相互从对方齿谷中退出,密封工作空间的有效容积不断增大,完成吸油过程。
在排油腔,轮齿在啮合点相互进入对方齿谷中,密封工作空间的有效容积不断减小,实现排油过程。
图1-1外啮合齿轮泵结构示意图图1-2齿轮泵结构示意图1-后泵盖2-滚针轴承3-泵体4-前泵盖5-传动轴②拆装步骤1、拆解齿轮泵时,先用内六方扳手在对称位置松开6个紧固螺栓,之后取掉螺栓,取掉定位销,掀去前泵盖4,观察卸荷槽、吸油腔、压油腔等结构,弄清楚其作用,并分析工作原理。
2、从泵体中取出主动齿轮及轴、从动齿轮及轴。
3、分解端盖与轴承、齿轮与轴、端盖与油封。
(此步可以不做)4、装配步骤与拆卸步骤相反。
液压与气动实验室实验指导书(5)

实 验 次 数
设定参数
p
待测参数 q
( L / min)
P 电
(kW )
计算结果 n (r/min)
(MPa)
η pv
η pm
ηp
Pi
( kW )
Po
( kW )
五、实验结果分析及思考题 1、根据测试数据和计算数据,在实验报告中画出以下特征曲线。 1) p —q 曲线; 3) p —η 总 曲线; 2) p —η pv 曲线; 4) p — Pi 曲线。
1、液压系统原理图如图 1-1 所示。
图 1-1 液阻特性实验液压系统原理图 1-电动机 2-液压泵 3-溢流阀 4-节流阀1 5、8、9-压力表 7-二位三通电磁换向阀 10-流量传感器 11-节流阀 212-温度计
2、实验步骤 (1)薄壁小孔液阻特性实验
2
1)启动计算机,进入薄壁小孔液阻特性实验; 2)按油路图将被测试件薄壁小孔及控制件接好,启动电机,,全松溢流阀 3,按下 供压按钮,关闭节流阀 4,调节溢流阀 3 至系统工作压力 6.3MPa; 3)调节节流阀 4,使泵出口压力表显示值 6 MPa (由被测元件液阻特性决定); 4)以自己的学号填写【测试数据文件】名和【实验报告 HTML 文件存储】名; 5)在【实验项目选择】栏内选择【测试数据】 ,在【测试数据操作】栏内的编辑 框内,填写【测试次数】 ,点击【实验项目选择】栏内【项目运行】 ,全松节流阀 11,观 察显示区流量(L/min)最大值。 6)调节节流阀 11,同时观察显示区流量(L/min)值,使其在流量测量点最小值附 近; 7)在【测试数据操作】栏内点击【数据记录】键,测试数据记录在【实验数据表】 中; 8)调节节流阀 11,同时观察显示区流量(L/min)值,使其在下一个流量测量点附 近,重复操作 6) ,直至测试完成。 9)在【实验项目选择】栏内选择【实验结果表显示】 ,点击【实验项目选择】栏 内【项目运行】 。 10)在【实验项目选择】栏内选择【实验曲线显示】 ,点击【实验项目选择】栏内 【项目运行】 。 11)在【实验项目选择】栏内选择【输出实验报告(HTML 格式) 】 ,点击【实验 项目选择】栏内【项目运行】 。 12)拷贝计算机中实验记录文件。 2)细长小孔液阻特性实验 1)启动计算机,进入细长小孔液阻特性实验; 2)按油路图将被测试件细长小孔及控制件接好,启动电机,,全松溢流阀 3,按下 供压按钮,关闭节流阀 4,调节溢流阀 3 至系统工作压力 6.3MPa; 3)调节节流阀 4,使泵出口压力表显示值 6 MPa (由被测元件液阻特性决定); 4)以自己的学号填写【测试数据文件】名和【实验报告 HTML 文件存储】名; 5)在【实验项目选择】栏内选择【测试数据】 ,在【测试数据操作】栏内的编辑 框内,填写【测试次数】 ,点击【实验项目选择】栏内【项目运行】 ,全松节流阀 11,观 察显示区流量(L/min)最大值。 6)调节节流阀 11,同时观察显示区流量(L/min)值,使其在流量测量点最小值附 近; 7)在【测试数据操作】栏内点击【数据记录】键,测试数据记录在【实验数据表】 中; 8)调节节流阀 11,同时观察显示区流量(L/min)值,使其在下一个流量测量点附 近,重复操作 6) ,直至测试完成。 9)在【实验项目选择】栏内选择【实验结果表显示】 ,点击【实验项目选择】栏 内【项目运行】 。 10)在【实验项目选择】栏内选择【实验曲线显示】 ,点击【实验项目选择】栏内 【项目运行】 。 11)在【实验项目选择】栏内选择【输出实验报告(HTML 格式) 】 ,点击【实验 项目选择】栏内【项目运行】 。 12)拷贝计算机中实验记录文件。
液压实验指导书修改稿

实验一液压动力元件拆装一、实验目的通过对液压泵的拆装可加深对泵结构及其工作原理的了解,能对液压泵的加工及装配工艺有一个初步的结识,并了解如何结识液压泵的铭牌、型号等内容。
二、实验用工具及材料内六角扳手、固定扳手、螺丝刀、各类液压泵(齿轮泵、双作用叶片泵、限压式变量叶片泵)三、实验内容及环节拆解各类液压元件,观测及了解各零件在液压泵中的作用,了解各种液压泵的工作原理,按一定的环节装配各类液压泵。
1.齿轮泵型号:CB-B型齿轮泵,结构图见图1-1。
图1-1 齿轮泵1-轴承外环 2-堵头 3-滚子 4-后泵盖 5-键 6-齿轮 7-泵体8-前泵盖 9-螺钉10-压环 11-密封环 12-积极轴 13-键 14-泻油孔15-从动轴 16-泻油槽 17-定位销工作原理:在吸油腔,轮齿在啮合点互相从对方齿谷中退出,密封工作空间的有效容积不断增大,完毕吸油过程。
在排油腔,轮齿在啮合点互相进入对方齿谷中,密封工作空间的有效容积不断减小,实现排油过程。
2.双作用叶片泵型号:YB-6型叶片泵,结构图见图1-2。
工作原理:当轴3带动转子4转动时,装于转子叶片槽中的叶片在离心力和叶片底部压力油的作用下伸出,叶片顶部紧贴与顶子表面,沿着定子曲线滑动。
叶片往定子的长轴方向运动时叶片伸出,使得由定子5的内表面、配流盘2、7、转子和叶片所形成的密闭容腔不断扩大,通过配流盘上的配流窗口实现吸油。
往短轴方向运动时叶片缩进,密闭容腔不断缩小,通过配流盘上的配流窗口实现排油。
转子旋转一周,叶片伸出和缩进两次。
图1-2 双作用叶片泵1-滚针(动)轴承 2-吸油盘 3-传动轴 4-转子 5-定子 6-泵体7-压油盘 8-滚针(动)轴承盖 9-叶片3. 内反馈限压式变量叶片泵型号:YBN型内反馈限压式变量叶片泵结构简图见图1-3(1)变量原理依据弹簧弹力与油液对定子内表面的作用力的合力产生的水平分力Fsinθ互相大小关系,使定子产生水平方向的运动,改变定子与转子的偏心量的大小,进而改变泵的排量和流量。
液压实验报告

桂林电子科技大学实验一实验报告一、液压泵拆装(一)实验目的液压动力元件——液压泵是液压系统的重要组成部分,通过对液压泵的拆装实训以达到下列目的:1、进一步理解常用液压泵的结构组成及工作原理。
2、掌握的正确拆卸、装配及安装连接方法。
3、掌握常用液压泵维修的基本方法。
(二)实验用液压泵、工具及辅料1、实验用液压泵:齿轮泵2 台、叶片泵2 台、轴向柱塞泵 1 台。
2、工具:内六方扳手2 套、固定扳手、螺丝刀、卡簧钳等。
3、辅料:铜棒、棉纱、煤油等。
(三)实验要求1、实习前认真预习,搞清楚相关液压泵的工作原理,对其结构组成有一个基本的认识。
2、针对不同的液压元件,利用相应工具,严格按照其拆卸、装配步骤进行,严禁违反操作规程进行私自拆卸、装配。
3、实习中弄清楚常用液压泵的结构组成、工作原理及主要零件、组件特殊结构的作用。
(四)实训内容及注意事项在实习老师的指导下,拆解各类液压泵,观察、了解各零件在液压泵中的作用,了解各种液压泵的工作原理,按照规定的步骤装配各类液压泵。
1、齿轮泵型号:CB-B 型齿轮泵。
结构:泵结构见图1-1 及图1-2。
①工作原理在吸油腔,轮齿在啮合点相互从对方齿谷中退出,密封工作空间的有效容积不断增大,完成吸油过程。
在排油腔,轮齿在啮合点相互进入对方齿谷中,密封工作空间的有效容积不断减小,实现排油过程。
②拆装步骤1、拆解齿轮泵时,先用内六方扳手在对称位置松开6个紧固螺栓,之后取掉螺栓,取掉定位销,掀去前泵盖4,观察卸荷槽、吸油腔、压油腔等结构,弄清楚其作用,并分析工作原理。
2、从泵体中取出主动齿轮及轴、从动齿轮及轴。
3、分解端盖与轴承、齿轮与轴、端盖与油封。
4、装配步骤与拆卸步骤相反。
③拆装注意事项1、拆装中应用铜棒敲打零部件,以免损坏零部件和轴承。
2、拆卸过程中,遇到元件卡住的情况时,不要乱敲硬砸,请指导老师来解决。
3、装配时,遵循先拆的部件后安装,后拆的零部件先安装的原则,正确合理的安装,脏的零部件应用煤油清洗后才可安装,安装完毕后应使泵转动灵活平稳,没有阻滞、卡死现象。
机械零部件认知实验

第3部分机械设计实验3.1 机械零部件认知实验3.1.1 实验目的1.初步了解《机械设计》课程所研究的各种常用零件的结构、类型、特点及应用。
2.了解各种标准件的结构形式及相关的国家标准。
3.了解各种传动的特点及应用。
4.增强对各种零部件的结构及机器的感性认识。
3.1.2 实验方法学生通过对实验指导书的学习及“机械零件陈列柜”中的各种零件的展示,实验教学人员的介绍、答疑及同学的观察去认识机器常用的基本零件,使理论与实际对应起来,从而增强同学对机械零件的感性认识。
并通过展示的机械设备、机器模型等,使学生清楚知道机器的基本组成要素—机械零件。
3.1.3 实验内容3.1.3.1螺纹联接螺纹联接是利用螺纹零件工作的,主要用作紧固零件。
基本要求是保证联接强度及联接可靠性,同学们应了解如下内容:1.螺纹的种类:常用的螺纹主要有普通螺纹、梯形螺纹、矩形螺纹和锯齿螺纹。
前者主要用于联接,后三种主要用于传动。
2.螺纹联接的基本类型:常用的有普通螺栓联接,双头螺柱联接、螺钉联接及紧定螺钉联接。
3.螺纹联接的防松:常见的摩擦防松方法有对顶螺母,弹簧垫圈及自锁螺母等;机械防松方法有开口销与六角开槽螺母、止动垫圈及串联钢丝等;铆冲防松主要是将螺母拧紧后把螺栓末端伸出部分铆死,或利用冲头在螺栓末端与螺母的旋合处打冲,利用冲点防松。
4.提高螺纹联接强度的措施通过参观螺纹联接展柜,同学应区分出:①什么是普通螺纹、管螺纹、梯形螺纹和锯齿螺纹;②能认识什么是普通螺纹、双头螺纹、螺钉及紧定螺钉联接;③能认识摩擦防松与机械防松的零件。
3.1.3.2 标准联接零件通过实验学生们要能区分螺栓与螺钉;能了解各种标准化零件的结构特点,使用情况;了解各类零件有哪些标准代号,以提高学生们对标准化意识。
1.螺栓:一般是与螺母配合使用以联接被联接零件,无需在被联接的零件上加工螺纹,其联接结构简单,装拆方便,种类较多,应用最广泛。
2.螺钉:螺钉联接不用螺母,而是紧定在被联接件之一的螺纹孔中,其结构与螺栓相同,但头部形状较多以适应不同装配要求。
实验一-液压泵拆装实验

实验一、液压泵拆装实验一、实验目的:了解常用液压泵的结构特点二、实验要求:通过对液压泵的拆装,加深对液压泵结构特点和工作原理的认识。
三、实验内容(一)、齿轮泵拆装分析1.齿轮泵型号:CB-B型齿轮泵2.拆卸步骤:1)松开6个紧固螺钉2,分开端盖1和5;从泵体4中取出主动齿轮及轴、从动齿轮及轴;2)分解端盖与轴承、齿轮与轴、端盖与油封。
此步可不做。
装配顺序与拆卸相反。
3.主要零件分析1)泵体4 泵体的两端面开有封油槽d,此槽与吸油口相通,用来防止泵内油液从泵体与泵盖接合面外泄,泵体与齿顶圆的径向间隙为0.13~0.16mm。
2)端盖1与5 前后端盖内侧开有卸荷槽e(见图中虚线所示),用来消除困油。
端盖1上吸油口大,压油口小,用来减小作用在轴和轴承上的径向不平衡力。
3)齿轮3 两个齿轮的齿数和模数都相等,齿轮与端盖间轴向间隙为0.03~0.04mm,轴向间隙不可以调节。
4.思考题1)齿轮泵的密封容积怎样形成的?2)该齿轮泵有无配流装置?它是如何完成吸、压油分配的?3)该齿轮泵中存在几种可能产生泄漏的途径?为了减小泄漏,该泵采取了什么措施?4)该齿轮泵采取什么措施来减小泵轴上的径向不平衡力的?5)该齿轮泵如何消除困油现象的?(二)、限压式变量叶片泵拆装分析1.叶片泵型号:YBX型变量叶片泵2.拆卸步骤:1)松开固定螺钉,拆下弹簧压盖,取出弹簧4及弹簧座5;2)松开固定螺钉,拆下活塞压盖,取出活塞11;3)松开固定螺钉,拆下滑块压盖,取出滑块8及滚针9;4)松开固定螺钉,拆下传动轴左右端盖,取出左配流盘、定子、转子传动轴组件和右配流盘;5)分解以上各部件。
拆卸后清洗、检验、分析,装配与拆卸顺序相反。
3.主要零件分析1)定子和转子定子的内表面和转子的外表面是圆柱面。
转子中心固定,定子中心可以左右移动。
定子径向开有13条槽可以安置叶片。
2)叶片该泵共有13个叶片,流量脉动较偶数小。
叶片后倾角为240,有利于叶片在惯性力的作用下向外伸出。
最新液压传动实验报告.

最新液压传动实验报告.
在本次实验中,我们对液压传动系统的性能进行了全面的测试和分析。
实验的主要目的是验证液压传动在不同工况下的效率、稳定性以及响
应速度。
实验设备包括一个闭环液压系统,由液压泵、阀门、执行元件(液压缸)、传感器和控制器组成。
实验过程中,我们首先对系统进行了预热,确保液压油温度稳定在预定范围内,以消除温度对实验结果的潜
在影响。
在效率测试方面,我们通过改变液压泵的流量和压力,记录了系统在
不同负载下的输出功率和能耗。
数据显示,在中等负载下,系统达到
了最高的能量转换效率。
我们还观察到,在高负载或低负载极端条件下,效率有所下降。
稳定性测试主要通过突然改变负载和流量来评估系统对干扰的抵抗能力。
实验结果表明,液压系统能够在短时间内适应这些变化,且在大
部分情况下能够快速恢复到稳定状态。
响应速度测试是通过测量系统从一个稳态转换到另一个稳态所需的时
间来完成的。
我们发现,系统的响应速度受到液压缸尺寸、油液粘度
和控制器设定的影响。
通过优化这些参数,可以显著提高系统的动态
响应。
最后,我们还对液压系统的故障诊断和维护进行了研究。
通过分析液
压油的污染程度、系统的压力和温度监测数据,我们能够预测潜在的
故障并及时进行维护,从而延长系统的使用寿命。
综上所述,本次实验报告提供了液压传动系统在不同工况下的性能数据,为液压系统的优化设计和维护提供了科学依据。
未来的工作将集中在进一步降低能耗、提高系统稳定性和响应速度上。
液压泵性能测试及液压泵拆装实验

液压泵性能测试及液压泵拆装实验一液压泵性能测试实验(一)实验目的:1.检查实验用泵压系是否能达到额定压力和额定流量。
.2.测定实验用泵的压力——流量特性。
3.测定液压泵的容积效率。
4.测定液压泵的总效率。
(二)实验设备:QCS003B液压实验台1.实验台液压系统图(图1--1)2.实验台液压元件一览表(表1--1)。
表1--1序号序号元件名称序号元件名称序号元件名称1 叶片泵 9 溢流阀 17 速度缸2 溢流阀 10 节流阀 18 加载缸3 电磁换向阀 11 电磁换向阀 19 功率表4 单向换向阀 12 电磁换向阀 20 流量计5 节流阀 13 压力换向阀 21 滤油器6 节流阀 14 被测溢流阀 22 滤油器7 节流阀 15 电磁换向阀 23 温度计8 叶片泵 16 电磁换向阀 24 量筒(1) 实验内容:1.液压泵额定压力和额定流量的测定。
实验台被测叶片泵的额定压力为63bar,额定流量为8.6L/min。
实验时调节实验台的溢流阀9和节流阀10,可分别由压力表P6和流量计20读出其压力和流量值。
实测值应达到或大于泵的额定值。
2.液压泵压力—流量特性的测定因液压泵工作时有间隙泄漏,泵的工作压力越高,其流量损失越大,实际流量越小。
依次改变泵的工作压力就能测出相应压力的流量值,从而得到泵的压力与流量的关系曲线q=f(p) 3.液压泵容积效率的测定液压泵的容积效率ηv 是泵在额定压力下工作时的流量q p 与零压时的流量之比。
分别测量泵在额定压力下的流量q p 和零压下(无负载)的流量q 0后,可按下式计算出泵的容积效率:ηv =opq q 4.液压泵总效率的测定液压泵的总效率η是泵在额定压力下工作时的输出功率p ou 与输出功率p i 的比值,即ioup p 泵的输入功率p i 也就是电机的输出功率p ou ’,它等于电机的输入功率p i ’与电机效率η’ 的乘积。
电机的输入功率的数值可由功率表19读出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三液体动压轴承实验
一、实验目的
1、了解实验台的构造和工作原理,通过实验进一步了解动压润滑的形成,加深对动压原理的认识。
2、学习动压轴承油膜压力分布的测定方法,绘制油膜压力径向和轴向分布图,验证理论分布曲线。
3、掌握动压轴承摩擦特征曲线的测定方法,绘制f—n曲线,加深对润滑状态与各参数间关系的理解。
二、实验原理及装置
1、实验原理
液体动压滑动轴承的工作原理是通过轴颈的旋转将润滑油带入摩擦表面,由于油的粘性(粘度)作用,当达到足够高的旋转速度时油就被挤入轴与轴瓦配合面间的楔形间隙内而形成流体动压效应,在承载区内的油层中产生压力,当压力的大小能平衡外载荷时,轴与轴瓦之间形成了稳定的油膜,这时轴的中心对轴瓦中心处于偏心位置,轴与轴瓦间的摩擦是处于完全液体摩擦润滑状态,其油膜形成过程及油膜压力分布如图1所示。
图1 建立液体动压润滑的过程及油膜压力分布图
2、实验装置
本实验使用湖南长庆科教仪器有限公司生产的HS-B型液体动压轴承实验台如图2所示,它由传动装置、加载装置、摩擦系数测量装置、油膜压力测量装置和被试验轴承等组成。
图2 滑动轴承试验台
1.操纵面板2.电机3.三角带4.轴向油压传感器接头5.外加载荷传感器6.螺旋加载杆7.摩擦力传感器测力装置8.径向油压传感器(7只)9.传感器支撑板10.主轴11.主轴瓦12.主轴箱
1)传动装置
由直流电机2通过三角带3带动主轴顺时针旋转,由无级调速器实现无级调速。
本实验台主轴的转速范围为3~375rpm,主轴的转速由装在面板1上的数码管直接读出。
2)加载装置
油膜的径向压力分布曲线是在一定的载荷和一定的转速下绘制的。
当载荷改变或轴的转速改变时所测出的压力值是不同的,所绘出的压力分布曲线也是不同的。
转速的改变方法如前所述。
本实验台采用螺旋加载,转动螺杆即可改变载荷的大小,所以载荷之值通过传感器数字显示,直接在实验台的操纵板上读出。
3)摩擦系数测量装置
径向滑动轴承的摩擦系数f随轴承的特性系数λ=μn/p值的改变而改变(μ—油的动力粘度,n—轴的转速,P—压力,P=W/Bd,W—轴上的载荷,W=轴瓦自重+外加载荷。
本实验台轴瓦自重为40N,B—轴瓦的宽度,d—轴的直径。
)
在边界摩擦时,f随λ的变大而变化很小,进入混合摩擦后,λ的改变引起f的急剧变化,在刚形成液体摩擦是f达到最小值,此后,随λ的增大油膜厚度也随之增大,因而f也有所增大。
摩擦系数f之值为
f=(π2/30ψ)·(μn/p)+0.55ψξ
式中,ψ—相对间隙;
ξ—随轴承长径比而变化的系数,对于l/d<1的轴承,ξ=1.5;l/d≥1时,ξ=1。
相对间隙:ψ= (D-d)/d
计算如下:dn=15000<50000 ,
D-d=0.0007d+0.008=0.05
ψ= (D-d)/d =0.05/60=0.0008
4)油膜压力测量装置
在轴承上半部中间即轴承有效宽度B/2处的剖面上沿圆周1200内钻有七个均匀分布的小孔,每个小孔联接一个压力传感器(测周向压力),在轴承轴向有效宽度B/4处也钻有一个小孔,并连接一只压力传感器(测轴向压力)。
从而可绘出轴承的周向和轴向压力分布曲线。
5)实验台的主要参数及性能
试验轴瓦内径d=70mm
长度B=125mm
粗糙度 (旧标准 )
材料ZQSn6-6-3
加载范围0-1000N(0~100kg)
负载传感器精度0.01量程0~10mm
压力传感器精度2.5%量程0~0.6MPa
测力杆上测力点与轴承中心距离L=120mm
测力计标定值K=0.098N/△
电机功率 355W
调速范围:3~500rpm
试验台重量:52kg
三、实验内容及要求
1.在轴承载荷F=80kg和F=70kg时,分别测量轴承周向油膜压力和轴向油膜压力,绘制出周向和轴向油膜压力分布曲线,并求出轴承的实际承载量。
2.测定轴承压力、轴转速、润滑油粘度与摩擦系数之间的关系,用计算机进行数据处理,得出轴承f—λ曲线。
3.液体动压轴承油膜压力周向分布的仿真分析与位置模拟:采用与实验台配套的仿真软件,通过建模与数值仿真,得到液体动压轴承油膜压力周向分布的仿真曲线,以及轴承在不同载荷作用下的最小油膜厚度和偏位角。
四、实验方法与步骤
1、测取绘制径向油膜压力分布曲线与承载曲线图。
1)启动电机,将轴的转速调整到一定值(可取200rpm左右),注意观察从轴开始运转至200rpm时灯泡亮度的变化情况,待灯泡完全熄灭,此时已处于完全液体润滑状态;
2)用加载装置分几次加载70kg左右(但且莫加载超过1000N即100kg)。
3)待各压力传感器的压力值稳定后,由左至右依次记录各压力传感器的压力值:
4)卸载、关机
5)根据测出的各压力传感器的压力值按一定比例绘制出油压分布曲线,此图的具体画法是:沿着圆周表面从左到右画出角度分别为30°、50°、70°、90°、110°、130°、150°分别得出油孔点l、2、3、4、5、6、7的位置。
通过这些点与圆心O连线,在各连线的延长线上,将压力传感器(比例:0.1MP=5mm)测出的压力值画出压力线l-l' 、2-2' 、3-3' ……7-7' 。
将1'、2' ……7'各点连成光滑曲线,此曲线就是所测轴承的一个径向截面的油膜径向压力分布曲线。
为了确定轴承的承载量,用Pi 表示向量1-1'、2-2'、……7-7'的压力值。
在投影直径0"-8"上先画出轴承表面上油孔位置的投影点1" 2"……7",然后通过这些点画出上述相应的各点压力Pi ,即1"'、2"'、…7"'等点,(其长度1"-1"'=l-l',2"-2"'=2-2',等等)将各点平滑连接起来,所形成的曲线即为在载荷方向的压力分布。
在投影直径0"-8"上做一个矩形,采用方格纸,使其面积与曲线所包围的面积相等,那么,矩形的边长P平均乘以轴瓦宽度B再乘以轴的直径d便是该轴承油膜的承载量。
但必须考虑端部泄漏造成的压力损失,故最后的油膜承载量为:q=P平均·B·d·δ
P平均:径向单位平均压力
B:轴瓦宽度110mm
d:轴的直径60mm
δ:端泄系数,取0.7。
2.测量摩擦系数f与绘制摩擦特性曲线
1)启动电机,逐渐使电机升速,在转速达到250-300转时,旋动螺杆,逐渐加载到700N(70kg),稳定转速后减速。
2)依次记录转速250-2转,负载为70kg时的摩擦力。
3)卸载,减速,停机。
4)根据记录的转速和摩擦力的值计算整理f 值,按一定比例绘制摩擦特性曲线如图所示。
五、实验操作注意事项
开机前的准备:用汽油将主轴油箱清理干净,加入N68(40#)机油至圆形油标中线以上。
面板上调速旋钮逆时针旋到底(转速最低),夹在螺旋杆旋至于外加载荷传感器脱离接触。
通电后,旋转调速旋钮使主轴在100—200rpm运行。
此时油膜指示灯应熄灭。
稳定运行3—4分钟后,即可按实验指导书的要求操作。
注意事项:
1、由于主轴和轴瓦加工精度高,配合间隙小,使用的润滑油必须是经过
过滤的清洁机油,使用过程中严禁灰尘与金属屑进入油内。
2、外加载荷传感器所加负载不允许超过120kg,以免损坏传感器元件。
3、机油牌号的选择可根据具体环境,温度,在10#—40#内选择。
4、为防止主轴瓦在无油膜运转时烧坏,在面板上装有无油膜报警指示灯,正常工作是指示灯是熄灭的,严禁在指示灯亮时主轴高速运转。
5、作摩擦特性曲线实验,应从较高转速(300转/分)降速往下做。
加载的外载荷在70—100 kg内选择一定值,并在整个过程中,保持着一定值至结束实验。
六、实验结果分析
七、思考题
1.哪些因素影响液体动压轴承的承载能力及其油膜的形成?形成动压油膜的必要条件是什么?
2. f-λ曲线说明什么问题?试解释当λ增加时,为什么在非液体摩擦区和液体摩擦区f会随之下降和增大?
八、实验总结
实验三、液体动压滑动轴承实验报告班级:姓名:学号:成绩:实验日期:实验地点:指导教师:
一、实验目的:
二、实验设备及工作原理:
三、实验结果:
1、叙述滑动轴承产生液体摩擦现象:
2、测试数据及处理结果:
⑵摩擦系数f与特性系数μn/p曲线:
⑶油膜压力分布曲线:
⑷油膜承载能力曲线:
⑸实验结果分析:
四、思考题
五、实验总结。