高中数学选修2-2同步练习题库:定积分的简单应用(较难)

合集下载

高中数学选修2-2 北师大版 定积分 同步训练(含答案)

高中数学选修2-2 北师大版 定积分 同步训练(含答案)

1.2定积分双基达标 (限时20分钟)1.S 1=⎠⎛012x d x ,S 2=⎠⎛013x d x 的大小关系是 ( ).A .S 1=S 2B .S 21=S 2C .S 1>S 2D .S 1<S 2 解析 ⎠⎛012x d x 表示的是由曲线y =2x ,x =0,x =1及x 轴所围成的图形面积,而⎠⎛013x d x 表示的是由曲线y =3x ,x =0,x =1及x 轴围成的图形面积.因为在x ∈[0,1]内曲线y =2x 在曲线y =3x 的下方,所以S 2>S 1. 答案 D2.一物体的运动速度v =2t +1,则其在1秒到2秒的时间内该物体通过的 路程为 ( ).A .4B .3C .2D .1解析 即求⎠⎛12(2t +1)d t .可由其几何意义求解. S =(3+5)×12=4. 答案 A3.由曲线y =e x 和x =0,y =2围成图形的面积S 表示为 ( ).解析如图所示,可先求得由x =0,x =ln 2和y =e x 围成的曲边梯形的面积I 即为e x d x ,再由矩形面积减去该曲边梯形面积可得.答案 B4.定积分⎠⎛12(x +1)d x 的值是__________. 解析 ⎠⎛12(x +1)d x 表示的是由直线y =x +1,x =1,x =2及x 轴所围成的直角梯形的面积,所以⎠⎛12(x +1)d x =52. 答案 52.5.若f (x )的图像关于y 轴对称且有⎠⎛06f (x )d x =3, 则⎠⎛-66 f (x )d x =________. 解析 数形结合可知⎠⎛-66f (x )d x =2⎠⎛06f (x )d x =6. 答案 66.化简下列各式,并画出各小题所表示面积的图形:(1)⎠⎛-3-2x 2d x +⎠⎛-21 x 2d x ; (2)⎠⎛01(1-x )d x +⎠⎛12(x -1)d x 解 (1)⎠⎛-3-2x 2d x +⎠⎛-21x 2d x =⎠⎛-31x 2d x ,所表示面积的图形如图1: (2)⎠⎛01(1-x )d x +⎠⎛12(x -1)d x =⎠⎛02||1-x d x ,它所表示面积的图形如图2:综合提高 (限时25分钟)7.若函数f (x )的图像在[a ,b ]上是一条连续曲线,用n -1个等分点x i (i =1,2,…,n -1)把[a ,b ]分成n 个小区间,记x 0=a ,x n =b ,每个小区间长度为Δx ,任取ξi ∈[x i -1,x i ],则⎠⎛ab f (x )d x 等于当n →+∞时 ( ). A.∑i =1nf (x i )所趋近的某个值B.∑i =1nf (ξi )(b -a )所趋近的某个值C.∑i =1nf (ξi )Δx 所趋近的某个值D.∑i =1nf (x i )Δx n 所趋近的某个值 解析 ξi Δx 为第i 个小曲边梯形的面积,和式f (ξ1)Δx +f (ξ2)Δx +…+f (ξn )Δx 表示x =a ,x =b ,y =0及函数f (x )的图像所围成图形的面积的近似值,当分割无限变细,即n 趋向于+∞时,∑i =1nf (ξi )Δx 所趋近的值就是曲边图形的面积,即⎠⎛ab f (x )d x . 答案 C8.已知f (x )=x 3-x +sin x ,则⎠⎛-22f (x )d x 的值为( ). A .等于0B .大于0C .小于0D .不确定解析 易知f (x )为奇函数,由奇函数的性质⎠⎛-20f (x )d x =-⎠⎛02f (x )d x ,而⎠⎛-22f (x )d x =⎠⎛-20f (x )d x +⎠⎛02f (x )d x =0. 答案 A9.若⎠⎛0a x d x =1,则实数a 的值为________. 解析 由定积分的几何意义知:⎠⎛0a x d x =12×a ×a =1(a >0),则有a = 2. 答案 2。

苏教版高中数学选修2-2定积分同步练习

苏教版高中数学选修2-2定积分同步练习

高中数学学习材料(灿若寒星 精心整理制作)定积分 同步练习1. 曲线3x y =与直线x y =所围成的面积为 ( C )A 、⎰-103)(dx x xB 、⎰--113)(dx x x C 、⎰-103)(2dx x x D 、⎰--013)(dx x x 2. 曲线1,4,22===y x y x y 所围成图形的面积为 ( B ) A 、34 B 、32 C 、31 D 、383. 由y=sinx 一个周期与x 轴所围成图形的面积为( B )A 、3B 、4C 、5D 、64. 由曲线))()((),(),(x g x f x g y x f y >==与直线)(,,a b b x a x >==所围成图形的面积为 ( B )A 、dx x g x f b a ])()([⎰+B 、dx x g x f ba ])()([⎰- C 、dx x g x f ab ])()([⎰+ D 、dx x g x f ab ])()([⎰- 5. 由π====x x x y x y ,0,cos ,sin 所围成的图形的面积可表示为 ( B )A 、⎰-π0)cos (sin dx x x B 、⎰-40)sin (cos πdx x x +⎰-ππ4)cos (sin dx x x C 、⎰-π0)sin (cos dx x x D 、⎰-20)sin (cos πdx x x +⎰-ππ2)cos (sin dx x x6. 由y=x 与y=x 轴所围成图形的面积为 ( D )A 、 12B 、13C 、15D 、167. 设0)(<x f 且y=f ( x ) 与x=a , x=b 及x 轴所围成的面积为S ,则dx x f ba ⎰)(=_________ 8. 抛物线23:x y C -=与直线x y 2=所围成的图形的面积为___________________.9. 由曲线)20(,42≤≤-=x x y 与x 轴、y 轴所围成的图形被曲线)0(,2>=a ax y 分成面积相等的两部分,则常数a =_______________.10. 求抛物线2:45C y x x =-+与x 轴,直线3,5x x ==所围成的图形的面积.11.求抛物线21:1C y x =-与22:1C y x =-所围成的图形的面积.12. 一质点作直线运动,速度v(t)(单位:m /s)与时间t(单位:s)满足关系 2()3(0)v t t t =≥试求质点在前10 s 内所走过的路程S.13. 某水库有一水闸,闸门是矩形,已知这个闸门的宽AB=2m ,高AD=3m ,求当水库内蓄水面达到闸门顶时,闸门所受的总压力.14. 已知A(-1,2) 为抛物线22:x y C =上的点, 直线1l 过点A 且与抛物线C 相切. 直线2l :)1(-≠=a a x 交抛物线C于点B, 交直线1l 于D.(1)求直线1l 的方程;(2)设△ABD 的面积为S 1, 求|BD |及的值;(3)设由抛物线C 、直线11,l l 所围成图形的面积为S 2, 求证S 1∶S 2是与a 无关的常数.参考答案1.C2.B3.B4.B5.B6.D7. -S8. 332 9. 2210.32311.83 12. 质点在前10 s 内所走过的路程1000M. 13.14. (1) 024=++y x(2) |BD |2)1(2+=a ,311+=a S .(3) 当1->a 时, ⎰-+=++=a a dx x x S 1322)1(32)242( , 当1->a 时, ⎰-+-=++=1322)1(32)242(aa dx x x S . 所以S 1∶S 2 =23, 故S 1∶S 2是与a 无关的常数..。

北师版高中数学选修2-2课后习题版 第四章 §3 定积分的简单应用

北师版高中数学选修2-2课后习题版 第四章 §3 定积分的简单应用

第四章DISIZHANG定积分§3定积分的简单应用课后篇巩固提升A组1.设f(x)在区间[a,b]上连续,则曲线f(x)与直线x=a,x=b,y=0围成的图形的面积为( )A.∫ba f(x)dx B.|∫f(x)badx|C.∫ba|f(x)|dx D.以上都不对f(x)在区间[a,b]上满足f(x)<0时,∫baf(x)dx<0,排除A;当围成的图形同时存在于x轴上方与下方时,∫baf(x)dx是两图形面积之差,排除B;无论什么情况C都正确.2.下列各阴影部分的面积S不可以用S=∫ba[f(x)-g(x)]dx求出的是( )S=∫ba[f(x)-g(x)]dx的几何意义是求函数f(x)与g(x)之间的阴影部分的面积,必须注意f(x)的图像要在g(x)的图像上方,对照各选项可知,D项中的f(x)的图像不全在g(x)的图像上方.故选D.3.如图,由函数f(x)=e x-e的图像,直线x=2及x轴围成的阴影部分的面积等于( )A.e2-2e-1B.e2-2eC.e 2-e 2D.e2-2e+1S=∫21f(x)dx=∫21(e x-e)dx=(e x-e·x)|12=e2-2e.4.直线y=2x,x=1,x=2与x轴围成的平面图形绕x轴旋转一周得到一个圆台,则该圆台的体积为( )A.28π3B.32π C.4π3D.3πV=∫21π·(2x)2dx=π∫214x2dx=4π·13x3|12=4π3(8-1)=28π3.5.如图所示,在边长为1的正方形OABC中,任取一点P,则点P恰好取自阴影部分的概率为( )A.14B.15C.16D.17{y=√x,y=x,得O(0,0),B(1,1).则S阴影=∫1(√x-x)dx=(23x 32-x 22)|01=23−12=16.故所求概率为S 阴影S 正方形=161=16.6.曲线y=cos x (π2≤x ≤3π2)与x 轴围成的平面图形的面积为 .解析由图可知,曲线y=cosx (π2≤x ≤3π2)与x 轴围成的平面图形的面积S=∫3π2π2cos xdx=-sin xπ23π2=(-sin3π2)−(-sin π2)=2.7.在同一坐标系中,作出曲线xy=1和直线y=x 以及直线y=3的图像如图所示,则阴影部分的面积为 . ∫113(3-1x )dx+∫31(3-x)dx=(3x-lnx)|131+(3x -12x 2)|13=3-(1-ln 13)+(9-12×32)−(3-12)=4-ln3.8.计算由y 2=x,y=x 2所围成图形的面积.,为了确定图形的范围,先求出这两条曲线的交点的横坐标.解方程组{y 2=x ,y =x 2,得出交点的横坐标为x=0或x=1.因此,所求图形的面积S=∫10(√x -x2)dx,又因为(23x 32-13x 3)'=x 12-x 2,所以S=(23x 32-13x 3)|01=23−13=13.9.求由曲线y=x 2+4与直线y=5x,x=0,x=4所围成的平面图形的面积.,如图所示.所求平面图形为图中阴影部分.解方程组{y =x 2+4,y =5x ,得交点为A(1,5),B(4,20).故所求平面图形的面积S=∫1(x 2+4-5x)dx+∫41(5x-x 2-4)dx=(13x 3+4x -52x 2)|01+(52x 2-13x 3-4x)|14=13+4-52+52×42-13×43-4×4-52+13+4=193.10.求抛物线y 2=2x 与直线y=4-x 围成的平面图形的面积.{y 2=2x ,y =4-x得抛物线和直线的交点为(2,2)及(8,-4).方法一:选x 作为积分变量,由图可得S=S A 1+S A 2.在A 1部分:由于抛物线的上部分方程为y=√2x ,下部分方程为y=-√2x ,所以S A 1=∫2[√2x -(-√2x )]dx=2√2∫20x 12dx=2√2·23x 32|02=163.S A 2=∫82[4-x-(-√2x )]dx =(4x -12x 2+2√23x 32)|28=383.所以S=163+383=18.方法二:∵y 2=2x,∴x=12y 2. 由y=4-x.得x=4-y,∴S=∫2-4(4-y -12y 2)dy=(4y -12y 2-16y 3)|-42=18.B 组1.如图,已知曲线y=f(x)与直线y=0,x=-32,x=2围成的图形面积为S 1=1,S 2=3,S 3=32,则∫2-32f(x)dx 等于( )A.112B.12C.-12D.72∫2-32f(x)dx=∫-1-32f(x)dx+∫1-1f(x)dx+∫21f(x)dx=S 1-S 2+S 3=1-3+32=-12.2.设直线y=1与y 轴交于点A,与曲线y=x 3交于点B,O 为原点,记线段OA,AB 及曲线y=x 3围成的区域为Ω.在Ω内随机取一点P,已知点P 取在△OAB 内的概率等于23,则图中阴影部分的面积为( )A.13B.14C.15D.16{y =1,y =x 3,解得{x =1,y =1. 则曲边梯形OAB 的面积为∫1(1-x 3)dx=(x -14x 4) 01=1-14=34.∵在Ω内随机取一个点P,点P 取在△OAB 内的概率等于23, ∴点P 取在阴影部分的概率等于1-23=13,∴图中阴影部分的面积为34×13=14.故选B.3.如图所示,直线y=kx 分抛物线y=x-x 2与x 轴所围成图形为面积相等的两部分,则k 的值为 .y=x-x 2与x 轴两交点横坐标为0,1,∴抛物线与x 轴所围成图形的面积为S=∫1(x-x 2)dx=(x 22-x 33)|01=16,抛物线y=x-x 2与直线y=kx 的两交点横坐标为0,1-k.∴S 2=∫1-k0(x-x 2-kx)dx=(1-k2x 2-x33)|01-k =16(1-k)3.又∵S=16,∴(1-k)3=12.∴k=1-√123=1-√432. 1-√4324.由直线y=x 和曲线y=x 3(x≥0)所围成的平面图形,绕x 轴旋转一周所得旋转体的体积为 .{y =x ,y =x 3(x ≥0),得{x =0,y =0,或{x =1,y =1.故所求体积V=∫1πx 2dx-∫10πx 6dx=π∫10x 2dx-π∫1x 6dx=π(13x 3|01-17x 7|01)=π(13-17)=4π21.5.已知函数f(x)=x 3-x 2+x+1,求其在点(1,2)处的切线与函数g(x)=x 2围成的图形的面积.(1,2)为曲线f(x)=x 3-x 2+x+1上的点,设过点(1,2)处的切线的斜率为k,则k=f'(1)=3×12-2×1+1=2,∴过点(1,2)处的切线方程为y-2=2(x-1),即y=2x.∴y=2x 与函数g(x)=x 2围成的图形如图.由{y =x 2,y =2x可得交点A(2,4). 又S △AOB =12×2×4=4,g(x)=x 2与直线x=2,x 轴围成的区域的面积S=∫20x 2dx=13x3|02=83,∴y=2x 与函数g(x)=x 2围成的图形的面积为S'=S △AOB -S=4-83=43.。

数学选修2-2定积分的简单应用练习题含答案

数学选修2-2定积分的简单应用练习题含答案

数学选修2-2定积分的简单应用练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 曲线y=sin x与x轴在区间[0, 2π]上所围成阴影部分的面积为()A.−4B.−2C.2D.42. 由直线x=0,x=2,y=0和抛物线x=√1−y所围成的平面图形绕x轴旋转所得几何体的体积为()A.46 15πB.43π C.1615π D.83π3. 由直线x=1,x=2,y=0与抛物线y=x2所围成的曲边梯形的面积为()A.1 3B.53C.73D.1134. 由曲线y=x2+2与y=3x,x=0,x=1所围成的平面图形的面积为()A.5 6B.1C.53D.25. 曲线y=x2和y2=x所围成的平面图形绕x轴旋转一周后,所形成的旋转体的体积为()A.3π10B.π2C.π5D.7π106. 函数y=sin x,y=cos x在区间(π4,5π4)内围成图形的面积为()A.√2B.2√2C.3√2D.4√27. 一物体在力F(x)=3+e2x(x的单位:m,F的单位:N)的作用下,沿着与力F相同的方向,从x=0处运动到x=1处,力F(x)所做的功为()A.(3+e2)JB.(3+12e2)J C.(52+12e2)J D.(2+e2)J8. 由曲线y=√x,y=x−2及x轴所围成的封闭图形的面积是()A.4B.103C.163D.1549. 下列表示图中f(x)在区间[a, b]上的图象与x 轴围成的面积总和的式子中,正确的是( )A.∫f ba (x)dx B.|∫f ba (x)dx|C.∫f c 1a (x)dx +∫f c 2c 1(x)dx +∫f cc 2(x)dxD.∫f c 1a (x)dx −∫f c 2c 1(x)dx +∫f cc2(x)dx10. 直线y =x 与曲线y =√x 3围成的平面图形的面积是.( ) A.14 B.2 C.1D.1211. 设函数f(x)=ax 2+c(a ≠0),若∫f 10(x)dx =f(x 0),0≤x 0≤1,则x 0的值为________.12. y =cos x 与直线x =0,x =π及x 轴围成平面区域面积为________.13. 由曲线y =|x|,y =−|x|,x =2,x =−2合成的封闭图形绕y 轴旋转一周所得的旋转体的体积为V ,则V =________.14. 两曲线x −y =0,y =x 2−2x 所围成的图形的面积是________.15. 由曲线y =x 2和直线x =0,x =1,以及y =0所围成的图形面积是________. 16.若在平面直角坐标系xOy 中将直线y =x 2与直线x =1及x 轴所围成的图形绕x 轴旋转一周得到一个圆锥,则该圆锥的体积V 圆锥=∫π10(x 2)2dx =π12x 3|10=π12据此类比:将曲线y =x 2与直线y =9所围成的图形绕y 轴旋转一周得到一个旋转体,则该旋转体的体积V =________.17. 在直角坐标平面内,由直线x=1,x=2,y=0和曲线y=1所围成的平面区域的x面积是________.18. 在xOy平面上,将抛物线弧y=1−x2(0≤x≤1)、x轴、y轴围成的封闭图形记为D,如图中曲边三角形OAB及内部.记D绕y轴旋转一周而成的几何体为Ω,过点(0, y)(0≤y≤1)作Ω的水平截面,所得截面面积为(1−y)π,试构造一个平放的直三棱柱,利用祖暅原理得出Ω的体积值为________.19. 函数f(x)=x3−x2+x+1在点(1, 2)处的切线与函数g(x)=x2−x围成的图形的面积等于________.2ax2−a2x)dx,则f(a)的最大值为________.20. 已知f(a)=∫(1x2在第一象限内的交点为P.21. 已知曲线C1:y2=2x与C2:y=12(1)求曲线C2在点P处的切线方程;(2)求两条曲线所围成图形的面积S.22. 求由曲线y=x2+2与y=3x,x=0,x=2所围成的平面图形的面积.23. 已知曲线C:y=x2(x≥0),直线l为曲线C在点A(1, 1)处的切线.(1)求直线l的方程;(2)求直线l与曲线C以及x轴所围成的图形的面积.24. 如图一是火力发电厂烟囱示意图.它是双曲线绕其一条对称轴旋转一周形成的几何体,烟囱最细处的直径为10m,最下端的直径为12m,最细处离地面6m,烟囱高14m,试求该烟囱占有空间的大小.(精确到0.1m3)25.(1)已知复数z的共轭复数是z¯,且z⋅z¯−3iz=10,求z;1−3ix所围成的平面图形的面积.(2)求曲线y=√x与直线x+y=2,y=−1326.(1)已知(√x +2√x4)n 展开式的前三项系数成等差数列.求n .(2)如图所示,在一个边长为1的正方形AOBC 内,曲线y =x 2和曲线y =√x 围成一个叶形图(阴影部分),向正方形AOBC 内随机投一点(该点落在正方形AOBC 内任何一点是等可能的),求所投的点落在叶形图内部的概率.27. 求由下列给出的边界所围成的区域的面积: (1)y =sin x(π4≤x ≤π),x =π4,y =0;(2)y =x 2,y =2x 2,x =1;(3)y =x 2,y =√x .28. 求由y =4−x 2与直线y =2x −4所围成图形的面积.29. 已知曲线y =sin x 和直线x =0,x =π,及y =0所围成图形的面积为S 0. (1)求S 0.(2)求所围成图形绕ox 轴旋转所成旋转体的体积.30. 已知函数y =f(x)的图形如图所示,给出y =f(x)与x =10和x 轴所围成图形的面积估计值;要想得到误差不超过1的面积估计值,可以怎么做?31. 已知曲线C:y =√x 和直线:x −2y =0由C 与围成封闭图形记为M . (1)求M 的面积;(2)若M 绕x 轴旋转一周,求由M 围成的体积.32. 已知f(x)为一次函数,且f(x)=x ∫f 20(t)dt +1, (1)求函数f(x)的解析式;(2)若g(x)=x ⋅f(x),求曲线y =g(x)与x 轴所围成的区域绕x 轴旋转一周所得到的旋转体的体积.33. 已知圆锥的高为ℎ,底半径为r ,用我们计算抛物线下曲边梯形面积的思路,推导圆锥体积的计算公式. [提示:(1)用若干张平行于圆锥底面的平面把它切成n 块厚度相等的薄片;(2)用一系列圆柱的体积近似地代替对应的薄片,圆柱的高为ℎn ,底半径顺次为:rn ,2r n,3r n…,(n−1)r n,r ;(3)问题归结为计算和式V(n)=ℎn ×(12+22+...+n 2)×πr 2n 2,当n 越来越大时所趋向的值.].34. 求曲线y =√x(0≤x ≤4)上的一条切线,使此切线与直线x =0,x =4以及曲线y =√x 所围成的平面图形的面积最小.35. 过点(0, 1)作曲线L:y =ln x 的切线,切点为A .又L 与x 轴交于B 点,区城D 由L 、x 轴与直线AB 围成,求区域D 的面积及D 绕x 轴旋转一周所得旋转体的体积.36. 求曲线y =2x −x 2,y =2x 2−4x 所围成图形的面积.37. 已知∫(103ax +1)(x +b)dx =0,a ,b ∈R ,试求ab 的取值范围.38. 求下列曲线所围成图形的面积:曲线y=cos x,x=π2,x=3π2,y=0.39. 求曲线y=sin x与直线x=−π2,x=5π4,y=0所围成的平面图形的面积.40. 如图,直线y=kx分抛物线y=x−x2与x轴所围图形为面积相等的两部分,求k的值.参考答案与试题解析数学选修2-2定积分的简单应用练习题含答案一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 ) 1.【答案】 D【考点】定积分在求面积中的应用 【解析】由积分的几何意义可得,S =2∫sin π0xdx ,即可得出结论. 【解答】解:由积分的几何意义可得,S =2∫sin π0xdx =(−cos x)|0π=4. 故选:D . 2.【答案】 A【考点】用定积分求简单几何体的体积 【解析】由题意此几何体的体积可以看作是∫π20(1−x 2)2dx ,求出积分即得所求体积. 【解答】解:由题意几何体的体积; ∫π20(1−x 2)2dx=π(x −23x 3+15x 5)|02=π(2−23×23+15×25) =4615π 故选A . 3. 【答案】 C【考点】定积分在求面积中的应用 【解析】先根据题意画出区域,然后依据图形利用定积分表示出曲边梯形的面积,最后用定积分的定义求出所求即可. 【解答】解:直线x =1,x =2,y =0与抛物线y =x 2所围成的曲边梯形的面积为S =∫x 221dx =13x 3|12=83−13=73,故选:C .4.【答案】 A【考点】定积分的简单应用 【解析】因为所求区域均为曲边梯形,所以使用定积分方可求解,然后求出曲线y =x 2+2与y =3x 的交点坐标,然后利用定积分表示所围成的平面图形的面积,根据定积分的定义解之即可. 【解答】解:联立{y =x 2+2y =3x,解得x 1=1,x 2=2∴ S =∫(10x 2+2−3x)d x =[13X 3+2X −32X 2]01=56 故选:A 5.【答案】 A【考点】用定积分求简单几何体的体积 【解析】欲求曲线y =x 2和y 2=x 所围成的平面图形绕x 轴旋转一周后所形成的旋转体的体积,可利用定积分计算,即求出被积函数y =π(x −x 4)在0→1上的积分即可. 【解答】解:设旋转体的体积为V ,则v =∫π10(x −x 4)dx =π(12x 2−15x 5)|01=3π10.故旋转体的体积为:3π10. 故选A . 6. 【答案】 B【考点】定积分在求面积中的应用 【解析】根据定积分的几何意义,所求面积为S =∫(5π4π4sin x −cos x)dx ,然后利用公式求出sin x −cos x 的原函数F(x),算出F(5π4)−F(π4)的值,即为所求图形的面积. 【解答】解:根据题意,所求面积为S =∫(5π4π4sin x −cos x)dx =(−cos x −sin x +C)|π45π4 (其中C 为常数) ∴ S =(−cos 5π4−sin5π4+C)−(−cos π4−sin π4+C)=(√22+√22+C)−(−√22−√22+C)=2√2 故选B 7.【答案】 C【考点】定积分的简单应用 【解析】先根据题意建立关系式∫(103+e 2x )dx ,然后根据定积分的计算法则求出定积分的值即可. 【解答】解:根据题意可知F(x)所做的功为∫(103+e 2x )dx =(3x +12e 2x )|01=3+12e 2−12=52+12e 2故选C .8.【答案】 B【考点】定积分在求面积中的应用 【解析】根据定积分的几何意义,先求出积分的上下限,即可求出所围成的图形的面积 【解答】解:联立直线y =x −2,曲线y =√x 构成方程组,解得{x =4,y =2,联立直线y =x −2,y =0构成方程组,解得{x =2,y =0,如图所示:∴曲线y=√x,y=x−2及x轴所围成的封闭图形的面积S=∫√x40dx−∫(42x−2)dx=2x32|04 −(1x2−2x)|24=163−2=103.故选B.9.【答案】D【考点】定积分在求面积中的应用定积分定积分的简单应用【解析】先根据定积分的几何意义可知将区间[a, b]分成三段,然后利用上方曲线方程减下方的曲线方程,求积分即为面积,从而求出所求.【解答】解:根据定积分的几何意义可知将区间[a, b]分成三段利用上方曲线方程减下方的曲线方程,求积分即为面积S=∫fc1a (x)dx−∫fc2c1(x)dx+∫fcc2(x)dx故选:D10.【答案】D【考点】定积分在求面积中的应用【解析】先画出画出直线y=x与曲线y=√x3围成的平面图形,然后求出交点横坐标得到积分上下限,然后利用定积分表示出图形的面积,根据定积分的运算法则进行求解即可.【解答】解:画出直线y=x与曲线y=√x3围成的平面图形图形关于原点对称,交点的横坐标为−1,1∴直线y=x与曲线y=√x3围成的平面图形的面积是∫(1−1√x3−x)dx=2∫(1√x3−x)dx=2(34x43−12x2)|01=2(34−12−0)=12故选D .二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 ) 11.【答案】 √33【考点】定积分的简单应用 【解析】求出定积分∫f 10(x)dx ,根据方程ax 02+c =∫f 10(x)dx 即可求解.【解答】解:∵ f(x)=ax 2+c(a ≠0),∴ f(x 0)=∫f 10(x)dx =[ax 33+cx]01=a3+c .又∵f(x 0)=ax 02+c .∴ x 02=13,∵ x 0∈[0, 1]∴ x 0=√33. 12.【答案】2【考点】定积分在求面积中的应用 【解析】本题利用直接法求解,根据三角函数的对称性知,曲线y =cos x 与直线x =0,x =π所围成的平面区域的面积S 为:曲线y =cos x 与直线x =0,x =π2所围成的平面区域的面积的两倍,最后结合定积分计算面积即可. 【解答】解:根据对称性,得:曲线y =cos x 与直线x =0,x =π所围成的平面区域的面积S 为:曲线y =cos x 与直线x =0,x =π2所围成的平面区域的面积的两倍, ∴ S =2∫cos π20xdx =2 故答案为2.13.【答案】323π【考点】旋转体(圆柱、圆锥、圆台)用定积分求简单几何体的体积【解析】作出曲线围成的封闭图象,根据旋转得到旋转体的结构即可得到结论.【解答】解:曲线y=|x|,y=−|x|,x=2,x=−2合成的封闭图形绕y轴旋转一周所得的旋转体为底面半径为2,高为4的圆柱,去掉2个底面半径为2,高为2的圆锥,则对应的体积为π×42−2×13π×22×2=16π−16π3=323π,故答案为:323π14.【答案】92【考点】定积分在求面积中的应用【解析】先根据题意画出区域,然后依据图形得到积分上限为3,积分下限为0,从而利用定积分表示出曲边梯形的面积,最后用定积分的定义求出所求即可.【解答】解:先根据题意画出图形,得到积分上限为3,积分下限为0;两曲线x−y=0,y=x2−2x所围成的图形的面积是∫(33x−x2)dx而∫(303x−x2)dx=(32x2−13x3)|03=272−9=92∴曲边梯形的面积是92故答案为92.15. 【答案】13【考点】定积分在求面积中的应用 【解析】作出两个曲线的图象,求出它们的交点,由此可得所求面积为函数y =x 2在区间[0, 1]上的定积分的值,再用定积分计算公式加以运算即可得到本题答案. 【解答】解:∵ 曲线y =x 2和直线L:x =1的交点为A(1, 1),∴ 曲线C:y =x 2、直线L:x =1与x 轴所围成的图形面积为 S =∫x 210dx =13x 3|01=13.故答案为:13.16. 【答案】81π2【考点】用定积分求简单几何体的体积 【解析】根据类比推理,结合定积分的应用,即可求出旋转体的体积. 【解答】解:根据类比推理得体积V =∫π90(√y)2dy =∫π90ydy =12πy 2|09=81π2,故答案为:81π2.17.【答案】 ln 2【考点】定积分在求面积中的应用 【解析】先根据所围成图形的面积利用定积分表示出来,然后根据定积分的定义求出面积即可. 【解答】解:由题意,S =∫1x 21dx =ln x|12=ln 2.故答案为:ln 2. 18. 【答案】√34π 【考点】用定积分求简单几何体的体积 【解析】(1−y)π看作是把一个底面边长为1,高为π的直三棱柱平放得到的,根据祖暅原理,每个平行水平面的截面积相等,故它们的体积相等,即可得出结论. 【解答】解:(1−y)π看作是把一个底面边长为1,高为π的直三棱柱平放得到的, 根据祖暅原理,每个平行水平面的截面积相等,故它们的体积相等, 即Ω的体积为π⋅√34=√34π. 故答案为√34π. 19. 【答案】92【考点】定积分在求面积中的应用 【解析】求出函数的切线方程,利用积分的几何意义即可求出区域的面积. 【解答】解:函数的导数为f′(x)=3x 2−2x +1,则在(1, 2)处的切线斜率k =f′(1)=3−2+1=2, 则对应的切线方程为y −2=2(x −1),即y =2x , 由{y =x 2−x y =2x,解得x =3或x =0,则由积分的几何意义可得阴影部分的面积S =∫(302x −x 2+x)dx =(32x 2−13x 3)| 30 =92,故答案为:92.20. 【答案】29【考点】定积分的简单应用 【解析】先根据定积分的运算公式求出f(a)的解析式,然后利用二次函数的图象和性质即可求出f(a)的最大值. 【解答】解:f(a)=∫(102ax 2−a 2x)dx =(23ax 3−12a 2x 2)|01=23a −12a 2∴ 当a =23时,f(a)取最大值,最大值为29 故答案为:29三、 解答题 (本题共计 20 小题 ,每题 10 分 ,共计200分 ) 21.【答案】解:(1)∵ 交点为P(2,2),∴ 曲线C 2的导函数为:y ′=x ∴ 切点坐标为(2,2),故该点的切线方程为:2x −y −2=0. (2)两曲线交点坐标(0,0),(2,2), S ∈∫(√2x −12x 2)20dx =43.【考点】定积分在求面积中的应用利用导数研究曲线上某点切线方程 【解析】 此题暂无解析 【解答】解:(1)∵ 交点为P(2,2),∴ 曲线C 2的导函数为:y ′=x ∴ 切点坐标为(2,2),故该点的切线方程为:2x −y −2=0. (2)两曲线交点坐标(0,0),(2,2), S ∈∫(√2x −12x 2)20dx =43. 22. 【答案】解:联立{y =x 2+2y =3x,解得x 1=1,x 2=2∴ S =∫(10x 2+2−3x)d x +∫(213x −x 2−2)d x =[13X 3+2X −32X 2]01+[32X 2−13X 3−2X]12=1【考点】定积分的简单应用 【解析】因为所求区域均为曲边梯形,所以使用定积分方可求解. 【解答】解:联立{y =x 2+2y =3x,解得x 1=1,x 2=2∴ S =∫(10x 2+2−3x)d x +∫(213x −x 2−2)d x =[13X 3+2X −32X 2]01+[32X 2−13X 3−2X]12=1 23. 【答案】解:(1)由y′=2x ,则切线l 的斜率k =y′|x=1=2×1=2,切线l 的方程为y −1=2(x −1)即2x −y −1=0;(2)如图,所求的图形的面积s =∫x 2120dx +∫[112x 2−(2x −1)]dx =112.【考点】定积分在求面积中的应用利用导数研究曲线上某点切线方程【解析】(1)根据导数的几何意义即可求出切线方程;(2)根据定积分的几何意义即可求出所围成的图形的面积. 【解答】解:(1)由y′=2x ,则切线l 的斜率k =y′|x=1=2×1=2,切线l 的方程为y −1=2(x −1)即2x −y −1=0;(2)如图,所求的图形的面积s =∫x 2120dx +∫[112x 2−(2x −1)]dx =112.24.【答案】解:由题意,将烟囱横截面按照如图放置,建立坐标系如图,双曲线的短轴长为2A =10,并且过(−6, 6),所以双曲线方程为y 225−11x 225×36=1,所以V =π∫(8−611x 236+25)dx =1659.2m 3【考点】用定积分求简单几何体的体积 双曲线的特性【解析】由题意建立坐标系,得到如图的双曲线,烟囱最细处的直径为10m 即2a =10,最下端的直径为12m ,最细处离地面6m ,即双曲线经过(−6, 6),烟囱高14m ,即自变量范围为−6到8,由此利用定积分的值得到体积. 【解答】解:由题意,将烟囱横截面按照如图放置,建立坐标系如图,双曲线的短轴长为2A =10,并且过(−6, 6), 所以双曲线方程为y 225−11x 225×36=1,所以V =π∫(8−611x 236+25)dx =1659.2m 325.【答案】解:(1)设z =a +bi (a,b ∈R ), 则z ¯=a −bi ,∴ z ⋅z ¯−3iz =a 2+b 2+3b −3ai . 又∵ z ⋅z ¯−3iz =101−3i =1+3i , ∴ {a 2+b 2+3b =1,−3a =3,解得 {a =−1,b =0,或{a =−1,b =−3,∴ z =−1或z =−1−3i . (2)由{y =√x ,x +y =2,解得{x =1,y =1,即曲线y =√x 与直线x +y =2的交点坐标为(1,1), 同理可得,曲线y =√x 与直线y =−13x 的交点坐标为(0,0),直线x +y =2与直线y =−13x 的交点坐标为(3,−1),所以围成的平面图形的面积为: S =∫(√x +13x)10dx +∫(2−x +13x)31dx=(23x 32+16x 2)|01+(2x −13x 2)|13=136.【考点】 复数的运算 共轭复数复数代数形式的混合运算 定积分在求面积中的应用 【解析】 此题暂无解析 【解答】解:(1)设z =a +bi (a,b ∈R ), 则z ¯=a −bi ,∴ z ⋅z ¯−3iz =a 2+b 2+3b −3ai . 又∵ z ⋅z ¯−3iz =101−3i =1+3i , ∴ {a 2+b 2+3b =1,−3a =3,解得 {a =−1,b =0,或{a =−1,b =−3,∴ z =−1或z =−1−3i . (2)由{y =√x ,x +y =2,解得{x =1,y =1,即曲线y =√x 与直线x +y =2的交点坐标为(1,1), 同理可得,曲线y =√x 与直线y =−13x 的交点坐标为(0,0), 直线x +y =2与直线y =−13x 的交点坐标为(3,−1),所以围成的平面图形的面积为: S =∫(√x +13x)10dx +∫(2−x +13x)31dx=(23x 32+16x 2)|01+(2x −13x 2)|13=136.26. 【答案】解:(1)∵ (√x 2x4)n 展开式的前三项系数成等差数列,∴ C n 0+C n 2(12)2=2C n 1⋅12…∴ 1+n(n−1)2×14=n ,整理得n 2−9n +8=0,n 1=1(舍) n 2=8…(2)所投的点落在叶形图内记为事件A ,由几何概型的概率公式得: P(A)=叶形图面积AOBC 的面积=∫(10√x−x 2)dx1=(23x 32−13x 3)|01=13…【考点】二项式定理的应用定积分在求面积中的应用 等差数列的性质几何概型计算(与长度、角度、面积、体积有关的几何概型) 【解析】(1)由题意可得,C n 0+C n 2(12)2=2C n 1⋅12,解关于n 的方程即可;(2)由几何概型的概率公式可知,需求叶形图的面积,利用定积分∫(10√x −x 2)dx 可求叶形图的面积,从而使问题解决. 【解答】解:(1)∵ (√x 2√x4)n 展开式的前三项系数成等差数列,∴ C n 0+C n 2(12)2=2C n 1⋅12…∴1+n(n−1)2×14=n,整理得n2−9n+8=0,n1=1(舍)n2=8…(2)所投的点落在叶形图内记为事件A,由几何概型的概率公式得:P(A)=叶形图面积AOBC的面积=∫(1√x−x2)dx1=(23x32−13x3)|01=13…27.【答案】利用S=∫ππ4sin xdx=(−cos x)|π4π=1+√22.利用S=∫10(2x2−x2)dx=23x3|01−13x3|01=13.由于{y=x2y=√x,解得{x=0y=0或{x=1y=1,所以S=∫10(√x−x2)dx=23x32|01−13x3|01=23−13=13.【考点】定积分的简单应用【解析】首先求出被积函数的原函数,进一步利用定积分知识求出结果.【解答】利用S=∫ππ4sin xdx=(−cos x)|π4π=1+√22.利用S=∫10(2x2−x2)dx=23x3|01−13x3|01=13.由于{y=x2y=√x,解得{x=0y=0或{x=1y=1,所以S=∫10(√x−x2)dx=23x32|01−13x3|01=23−13=13.28.【答案】解:由y=4−x2与直线y=2x−4联立,可得交点(−4, −12),(2, 0),∴y=4−x2与直线y=2x−4所围成图形的面积S=∫(2−44−x2−2x+4)dx=(−13x3−x2+8x)|−42=36.【考点】定积分在求面积中的应用【解析】先联立方程,组成方程组,求得交点坐标,可得被积区间,再用定积分表示出y=4−x2与直线y=2x−4所围成图形的面积,即可求得结论.【解答】解:由y=4−x2与直线y=2x−4联立,可得交点(−4, −12),(2, 0),∴y=4−x2与直线y=2x−4所围成图形的面积S=∫(2−44−x2−2x+4)dx=(−13x 3−x 2+8x)|−42=36.29. 【答案】解:(1)S 0=∫sin π0xdx =[−cos x]0π=(−cos π)−(−cos 0)=1+1=2 (2)V =π∫sin 2π0xdx =π[x2−14sin 2x]0π=π(π2−14×0)=π22【考点】用定积分求简单几何体的体积 定积分在求面积中的应用【解析】(1)根据题意可知曲线y =sin x 和直线x =0,x =π,及y =0所围成图形的面积为S 0=∫sin π0xdx ,解之即可;(2)所围成图形绕ox 轴旋转所成旋转体的体积为V =π∫sin 2π0xdx ,根据定积分的定义解之即可. 【解答】解:(1)S 0=∫sin π0xdx =[−cos x]0π=(−cos π)−(−cos 0)=1+1=2 (2)V =π∫sin 2π0xdx=π[x 2−14sin 2x]0π=π(π2−14×0)=π2230.【答案】解:设f(x)=ax 3+bx 2+cx +d ,则f′(x)=3ax 2+2bx +c , 由图象可知{ f(0)=0f(1)=1f′(4)=0f′(7)=0,即{ d =0a +b +c =0c 3a =28−2b 3a =11,解得{ a =2137b =−33137c =168137d =0, ∴ f(x)=2137x 3−33137x 2+168137x . ∴ S =∫f 100(x)dx =(2137×x 44−33137×x 33+168137×x 22)|10≈17.5. 若要想得到误差不超过1的面积估计值,可使用分段函数求出f(x)的解析式,然后使用定积分求出面积. 【考点】定积分在求面积中的应用 【解析】设f(x)=ax 3+bx 2+cx +d ,利用待定系数法确定函数关系式,利用定积分求出面积估计值;若要误差小可分段求出f(x)的解析式,然后使用定积分求出面积. 【解答】解:设f(x)=ax 3+bx 2+cx +d ,则f′(x)=3ax 2+2bx +c ,由图象可知{ f(0)=0f(1)=1f′(4)=0f′(7)=0,即{ d =0a +b +c =0c 3a =28−2b 3a =11,解得{ a =2137b =−33137c =168137d =0, ∴ f(x)=2137x 3−33137x 2+168137x . ∴ S =∫f 100(x)dx=(2137×x 44−33137×x 33+168137×x 22)|10≈17.5. 若要想得到误差不超过1的面积估计值,可使用分段函数求出f(x)的解析式,然后使用定积分求出面积. 31. 【答案】解:(1)曲线C:y =√x 和直线:x −2y =0联立,可得交点坐标为(4, 2),则 S =∫(40√x −12x)dx =(23x 32−x 24)|04=43;(2)V =∫[40π(√x)2−π(x2)2]dx =π(x 22−x 312)|04=8π3.【考点】用定积分求简单几何体的体积 旋转体(圆柱、圆锥、圆台)【解析】(1)求得交点坐标,可得积分区间,即可求M 的面积; (2)旋转一周所得旋转体的体积应该用定积分来求.【解答】 解:(1)曲线C:y =√x 和直线:x −2y =0联立,可得交点坐标为(4, 2),则 S =∫(40√x −12x)dx =(23x 32−x 24)|04=43; (2)V =∫[40π(√x)2−π(x2)2]dx=π(x 22−x 312)|04=8π3.32.【答案】 解:(1)设f(x)=kx +b , ∵ f(x)=x ∫f 20(t)dt +1, ∴ kx +b =x •(kt 22+bt)|02+1,∴ kx +b =(2k +2b)x +1,∴ k =−2,b =1, ∴ f(x)=−2x +1,;2)g(x)=xf(x)=−2x 2+x , ∴ V =π∫[120xf(x)]2dx =π240. 【考点】用定积分求简单几何体的体积定积分【解析】(1)利用待定系数法,结合定积分的定义求函数f(x)的解析式;(2)求出g(x),应用定积分来求旋转体的体积.【解答】解:(1)设f(x)=kx+b,∵f(x)=x∫f2(t)dt+1,∴kx+b=x•(kt22+bt)|02+1,∴kx+b=(2k+2b)x+1,∴k=−2,b=1,∴f(x)=−2x+1,;2)g(x)=xf(x)=−2x2+x,∴V=π∫[120xf(x)]2dx=π240.33.【答案】解:(1)若干张平行于圆锥底面的平面把它切成n块厚度相等的薄片;(2)用一系列圆柱的体积近似地代替对应的薄片,圆柱的高为ℎn ,底半径顺次为:rn,2r n ,3rn…,(n−1)rn,r;(3)问题归结为计算和式V(n)=ℎn ×(12+22+...+n2)×πr2n2,当n越来越大时所趋向的值.(对V求极限V=limn→∞ℎn×(12+22+...+n2)×πr2n2=lim n→∞ℎn⋅16n(n+1)(2n+1)⋅πr2n2=ℎπr26limn→∞2n2+3n+1n2=πr2ℎ3=13S底ℎ故圆锥的体积等于13的圆柱体的体积【考点】用定积分求简单几何体的体积【解析】利用极限的定义进行分割、近似代换和求极限的方法,进行推到【解答】解:(1)若干张平行于圆锥底面的平面把它切成n块厚度相等的薄片;(2)用一系列圆柱的体积近似地代替对应的薄片,圆柱的高为ℎn ,底半径顺次为:rn,2r n ,3rn…,(n−1)rn,r;(3)问题归结为计算和式V(n)=ℎn ×(12+22+...+n2)×πr2n2,当n越来越大时所趋向的值.(对V求极限V=limn→∞ℎn×(12+22+...+n2)×πr2n2=lim n→∞ℎ⋅1n(n+1)(2n+1)⋅πr22=ℎπr26limn→∞2n2+3n+1n2=πr2ℎ3=13S底ℎ故圆锥的体积等于13的圆柱体的体积34.【答案】解:设(x0, y0)为曲线y=√x(0≤x≤4)上任一点,得曲线于该点处的切线方程为:y−y0=2√x −x0)即y=y02+2√x.得其与x=0,x=4的交点分别为(0,y02),(4,y02+2y0)于是由此切线与直线x=0,x=4以及曲线y=√x所围的平面图形面积为:S=∫(4 0y022x√x)dx=2y0+x−163=2√x0x−163应用均值不等式求得x0=2时,S取得最小值.即所求切线即为:y=22+√22.【考点】定积分在求面积中的应用【解析】先根据导数的几何意义求出曲线y=√x(0≤x≤4)上任一点处的切线方程,再求出积分的上下限,然后利用定积分表示出图形面积,最后利用定积分的定义进行求解即可.【解答】解:设(x0, y0)为曲线y=√x(0≤x≤4)上任一点,得曲线于该点处的切线方程为:y−y0=2x −x0)即y=y02+2x.得其与x=0,x=4的交点分别为(0,y02),(4,y02+2y0)于是由此切线与直线x=0,x=4以及曲线y=√x所围的平面图形面积为:S=∫(4 0y022√x√x)dx=2y0+√x−163=2√x0√x−163应用均值不等式求得x0=2时,S取得最小值.即所求切线即为:y=2√2+√22.35.【答案】解:设切线方程为y =kx +1,切点坐标为(a, b), 则{k =1aka +1=b ln a =b ,解得a =e 2,b =2,∴ 切线方程为y =1e 2x +1.将y =0代入y =1e 2x +1得x =−e 2,∴ B(−e 2, 0). ∴区域D 的面积为∫(e 2−e 21e 2x+1)dx −∫ln e 21xdx=x 22e 2+x|e 2−e 2−x(ln x −1)|e 21=2e 2+e 2=3e 2.区域D 绕x 轴旋转一周所得几何体体积为13⋅π⋅22⋅2e 2−π⋅∫(e 21ln x)2dx =8πe 23−π⋅x[(ln x)2−2ln x +2]|e 21=8πe 23−(2e 2−2)⋅π=2πe 23+2π.【考点】用定积分求简单几何体的体积 【解析】求出A 的坐标和切线方程,则所求面积和体积均可用两个定积分的差来表示. 【解答】解:设切线方程为y =kx +1,切点坐标为(a, b), 则{k =1aka +1=b ln a =b,解得a =e 2,b =2,∴ 切线方程为y =1e 2x +1.将y =0代入y =1e 2x +1得x =−e 2,∴ B(−e 2, 0). ∴区域D 的面积为∫(e 2−e 21e 2x+1)dx −∫ln e 21xdx=x 22e 2+x|e 2−e 2−x(ln x −1)|e 21=2e 2+e 2=3e 2.区域D 绕x 轴旋转一周所得几何体体积为13⋅π⋅22⋅2e 2−π⋅∫(e 21ln x)2dx=8πe 23−π⋅x[(ln x)2−2ln x +2]|e 21=8πe 23−(2e 2−2)⋅π=2πe 23+2π.36. 【答案】解:由{y =2x −x 2y =2x 2−4x ,得{x =0y =0或{x =2y =0, ∴ 所求图象的面积为:∫[20(2x −x 2)−(2x 2−4x)]dx =∫(206x −3x 2)dx =(3x 2−x 3)|02=3×22−23=12−8=4. 【考点】定积分在求面积中的应用 【解析】先求出两曲线的交点坐标,利用定积分的应用即可求出对应图形的面积. 【解答】解:由{y =2x −x 2y =2x 2−4x ,得{x =0y =0或{x =2y =0, ∴ 所求图象的面积为:∫[20(2x −x 2)−(2x 2−4x)]dx =∫(206x −3x 2)dx =(3x 2−x 3)|02=3×22−23=12−8=4. 37. 【答案】解:∫(103ax +1)(x +b)dx =∫[103ax 2+(3ab +1)x +b]dx=[ax 3+12(3ab +1)x 2+bx]|01 =a +12(3ab +1)+b =0即3ab +2(a +b)+1=0 设ab =t ∴ a +b =−3t+12则a ,b 为方程x 2+3t+12x +t =0两根△=(3t+1)24−4t ≥0∴ t ≤19或t ≥1∴ a ⋅b ∈(−∞, 19]∪[1, +∞) 【考点】定积分的简单应用 【解析】先根据定积分的运算法则建立a 与b 的等量关系,然后设ab =t 则a +b =−3t+12,再利用构造法构造a ,b 为方程x 2+3t+12x +t =0两根,然后利用判别式可求出a .b 的取值范围. 【解答】解:∫(103ax +1)(x +b)dx =∫[103ax 2+(3ab +1)x +b]dx=[ax 3+12(3ab +1)x 2+bx]|01 =a +12(3ab +1)+b =0即3ab +2(a +b)+1=0 设ab =t ∴ a +b =−3t+12则a ,b 为方程x 2+3t+12x +t =0两根△=(3t+1)24−4t ≥0∴ t ≤19或t ≥1∴ a ⋅b ∈(−∞, 19]∪[1, +∞) 38.【答案】解:根据对称性,得: 曲线y =cos x 与直线x =π2、x =3π2、y =0所围成的平面区域的面积S 为:曲线y =cos x与直线x =π2,x =π所围成的平面区域的面积的二倍, ∴ S =−2∫cos ππ2xdx =−2sin x =2.故曲线y =cos x 与直线x =π2、x =3π2、y =0所围成的面积为2.【考点】定积分在求面积中的应用 【解析】本题利用直接法求解,根据三角函数的对称性知,曲线y =cos x 与直线x =π2、x =3π2、y =0所围成的平面区域的面积S 为:曲线y =cos x 与直线x =π2,x =π所围成的平面区域的面积的二倍,最后结合定积分计算面积即可. 【解答】解:根据对称性,得: 曲线y =cos x 与直线x =π2、x =3π2、y =0所围成的平面区域的面积S 为:曲线y =cos x与直线x =π2,x =π所围成的平面区域的面积的二倍, ∴ S =−2∫cos ππ2xdx =−2sin x =2.故曲线y =cos x 与直线x =π2、x =3π2、y =0所围成的面积为2.39. 【答案】解:s =∫|5π4−π2sin x|dx =−∫sin 0−π2xdx+∫sin π0xdx−∫sin 5π4πxdx=cos x|−π20−cos x|0π+cos x|π5π4=1+2+(−√22+1)=4−√22. 【考点】定积分在求面积中的应用 【解析】求曲线y =sin x 与直线x =−π2,x =5π4,y =0所围成的平面图形的面积【解答】解:s =∫|5π4−π2sin x|dx =−∫sin 0−π2xdx+∫sin π0xdx−∫sin 5π4πxdx=cos x|−π20−cos x|0π+cos x|π5π4=1+2+(−√22+1)=4−√22. 40.【答案】 由 {y =kx y =x −x2 得 {x =1−k y =k −k 2 (0<k <1). 由题设得∫10−k[(x −x 2)−kx]dx =12∫(10x −x 2)dx 即∫10−k[(x −x 2)−kx]dx =12( 12x 2−13x 3)|01=112 ∴ (1−k)3=12 ∴ k =1−√432∴ 直线方程为y =(1−√432)x . 故k 的值为:k =1−√432.【考点】定积分的简单应用 【解析】先由 {y =kx y =x −x 2 得 {x =1−k y =k −k 2 ,根据直线y =kx 分抛物线y =x −x 2与x 轴所围成图形为面积相等的两个部分得∫10−k[(x −x 2)−kx]dx =12∫(10x −x 2)dx 下面利用定积分的计算公式即可求得k 值. 【解答】由 {y =kx y =x −x 2得 {x =1−k y =k −k 2 (0<k <1).由题设得∫10−k[(x −x 2)−kx]dx =12∫(10x −x 2)dx 即∫10−k[(x −x 2)−kx]dx =12( 12x 2−13x 3)|01=112试卷第31页,总31页 ∴ (1−k)3=12 ∴k =1−√432∴ 直线方程为y =(1−√432)x . 故k 的值为:k =1−√432.。

高中数学选修2-2-定积分的概念及其简单应用

高中数学选修2-2-定积分的概念及其简单应用

定积分的概念及其简单应用知识集结知识元定积分的应用知识讲解1.定积分的应用【应用概述】正如前面定积分的概念哪里所说,定积分表示的是一个面积,是一个大于零的数.那么它在实际当中的应用也就和求面积相关.例1:定积分|sin x|dx的值是.解:|sin x|dx==﹣cos x+cos x=1+1+0﹣(﹣1)=3.这个题如果这样子出,|sin x|在区间(0,)上与x轴所围成的面积,那么就成了一个应用题.如何解这类应用题呢?其实就是构建一个定积分,找到区间和要积分的函数即可.【定积分在求面积中的应用】1、直角坐标系下平面图形的面积2、极坐标系下平面图形的面积由连续曲线r=r(θ)及射线θ=α,θ=β所围成的平面图形的面积(图6)为3、用定积分求平面图形的面积的步骤a)根据已知条件,作出平面图形的草图;根据图形特点,恰当选取计算公式;b)解方程组求出每两条曲线的交点,以确定积分的上、下限;c)具体计算定积分,求出图形的面积.例题精讲定积分的应用例1.直线x=1,x=e与曲线y=围成的面积是()A.B.C.D.例2.由曲线,直线y=x所围成的封闭图形的面积是()A.B.C.D.1例3.抛物线y=x2-1与直线y=x+1所围成的平面图形的面积是()A.B.C.5D.用定积分研究简单几何体的体积知识讲解1.用定积分求简单几何体的体积【知识点的知识】1、已知平行截面面积的立体的体积2、旋转体的体积例题精讲用定积分研究简单几何体的体积例1.祖暅原理也称祖氏原理,是我国数学家祖暅提出的一个设计集合求积的著名命题:“幂势既同,则积不容异”,“幂”是截面积,“势”是几何体的高,意思是两个同高的立体,如在等高处截面积相等,则体积相等.由曲线x2=4y,x2=-4y,x=4,x=-4围成图形绕y轴旋转一周所得为旋转体的体积为V1:满足x2+y2≤16,x2+(y-2)2≥4,x2+(y+2)2≥4的点(x,y)组成的图形绕y轴旋转一周所得旋转体的体积为V2,则()A.V1=V2B.V1=V2C.V1=V2D.V1=2V2例2.曲线y=e x,直线x=0,x=与x轴围成的平面图形绕x轴旋转一周得到旋转体的体积是()A.B.C.D.例3.曲线y=x2和y2=x所围成的平面图形绕x轴旋转一周后,所形成的旋转体的体积为()A.B.C.D.。

11-12学年高中数学 1.7 定积分的简单应用同步练习 新人教A版选修2-2

11-12学年高中数学 1.7 定积分的简单应用同步练习 新人教A版选修2-2

定积分的简单应用一、选择题1.如图所示,阴影部分的面积为( )A.⎠⎛a b f (x )d xB.⎠⎛a b g (x )d xC.⎠⎛ab [f (x )-g (x )]d xD.⎠⎛ab [g (x )-f (x )]d x[答案] C[解析] 由题图易知,当x ∈[a ,b ]时,f (x )>g (x ),所以阴影部分的面积为⎠⎛ab [f (x )-g (x )]d x .2.如图所示,阴影部分的面积是( )A .2 3B .2- 3 C.323D.353[答案] C[解析] S =⎠⎛1-3(3-x 2-2x )d x即F (x )=3x -13x 3-x 2,则F (1)=3-1-13=53,F (-3)=-9-9+9=-9.∴S =F (1)-F (-3)=53+9=323.故应选C.3.由曲线y =x 2-1、直线x =0、x =2和x 轴围成的封闭图形的面积(如图)是( ) A.⎠⎛02(x 2-1)d xB .|⎠⎛02(x 2-1)d x |C.⎠⎛02|x 2-1|d xD.⎠⎛01(x 2-1)d x +⎠⎛12(x 2-1)d x[答案] C[解析] y =|x 2-1|将x 轴下方阴影反折到x 轴上方,其定积分为正,故应选C.4.设f (x )在[a ,b ]上连续,则曲线f (x )与直线x =a ,x =b ,y =0围成图形的面积为( ) A.⎠⎛a b f (x )d xB .|⎠⎛ab f (x )d x |C.⎠⎛ab |f (x )|d xD .以上都不对[答案] C[解析] 当f (x )在[a ,b ]上满足f (x )<0时,⎠⎛ab f (x )d x <0,排除A ;当阴影有在x 轴上方也有在x 轴下方时,⎠⎛ab f (x )d x 是两面积之差,排除B ;无论什么情况C 对,故应选C.5.曲线y =1-1681x 2与x 轴所围图形的面积是( )A .4B .3C .2D.52[答案] B[解析] 曲线与x 轴的交点为⎝ ⎛⎭⎪⎫-94,0,⎝ ⎛⎭⎪⎫94,0故应选B.6.一物体以速度v =(3t 2+2t )m/s 做直线运动,则它在t =0s 到t =3s 时间段内的位移是( )A .31mB .36mC .38mD .40m[答案] B[解析] S =⎠⎛03(3t 2+2t )d t =(t 3+t 2)| 30=33+32=36(m),故应选B.7.(2010·山东理,7)由曲线y =x 2,y =x 3围成的封闭图形面积为( )A.112B.14 C.13D.712[答案] A[解析] 由⎩⎪⎨⎪⎧y =x2y =x 3得交点为(0,0),(1,1).∴S =⎠⎛01(x 2-x 3)d x =⎪⎪⎪⎝⎛⎭⎪⎫13x 3-14x 410=112.8.一物体在力F (x )=4x -1(单位:N)的作用下,沿着与力F 相同的方向,从x =1运动到x =3处(单位:m),则力F (x )所做的功为( )A .8JB .10JC .12JD .14J[答案] D[解析] 由变力做功公式有:W =⎠⎛13(4x -1)d x =(2x 2-x )| 31=14(J),故应选D.9.若某产品一天内的产量(单位:百件)是时间t 的函数,若已知产量的变化率为a =36t,那么从3小时到6小时期间内的产量为( )A.12B .3-32 2C .6+3 2D .6-3 2[答案] D [解析] ⎠⎛3636tdt =66t | 63=6-32,故应选D.10.过原点的直线l 与抛物线y =x 2-2ax (a >0)所围成的图形面积为92a 3,则直线l 的方程为( )A .y =±axB .y =axC .y =-axD .y =-5ax[答案] B[解析] 设直线l 的方程为y =kx ,由⎩⎪⎨⎪⎧y =kx y =x 2-2ax 得交点坐标为(0,0),(2a +k,2ak +k 2) 图形面积S =∫2a +k[kx -(x 2-2ax )]d x=⎝ ⎛⎭⎪⎫k +2a 2x 2-x 33| 2a +k 0=(k +2a )32-(2a +k )33=(2a +k )36=92a 3∴k =a ,∴l 的方程为y =ax ,故应选B. 二、填空题11.由曲线y 2=2x ,y =x -4所围图形的面积是________. [答案] 18[解析] 如图,为了确定图形的范围,先求出这两条曲线交点的坐标,解方程组⎩⎪⎨⎪⎧y 2=2x y =x -4得交点坐标为(2,-2),(8,4).因此所求图形的面积S =⎠⎛4-2(y +4-y 22)d y取F (y )=12y 2+4y -y 36,则F ′(y )=y +4-y22,从而S =F (4)-F (-2)=18.12.一物体沿直线以v =1+t m/s 的速度运动,该物体运动开始后10s 内所经过的路程是________.13.由两条曲线y =x 2,y =14x 2与直线y =1围成平面区域的面积是________.[答案] 43[解析] 如图,y =1与y =x 2交点A (1,1),y =1与y =x 24交点B (2,1),由对称性可知面积S =2(⎠⎛01x 2d x+⎠⎛12d x -⎠⎛0214x 2d x )=43.14.一变速运动物体的运动速度v (t )=⎩⎪⎨⎪⎧2t (0≤t ≤1)a t(1≤t ≤2)b t (2≤t ≤e )则该物体在0≤t ≤e 时间段内运动的路程为(速度单位:m/s ,时间单位:s)______________________. [答案] 9-8ln2+2ln2[解析] ∵0≤t ≤1时,v (t )=2t ,∴v (1)=2; 又1≤t ≤2时,v (t )=a t, ∴v (1)=a =2,v (2)=a 2=22=4; 又2≤t ≤e 时,v (t )=bt, ∴v (2)=b2=4,∴b =8.∴路程为S =⎠⎛012t d t +⎠⎛122td t +⎠⎛2e 8td t =9-8ln2+2ln2 .三、解答题15.计算曲线y =x 2-2x +3与直线y =x +3所围图形的面积.[解析] 由⎩⎪⎨⎪⎧y =x +3y =x 2-2x +3解得x =0及x =3.从而所求图形的面积S =⎠⎛03(x +3)d x -⎠⎛03(x 2-2x +3)d x=⎠⎛03[(x +3)-(x 2-2x +3)]d x=⎠⎛03(-x 2+3x )d x=⎝ ⎛⎭⎪⎫-13x 3+32x 2| 30=92.16.设y =f (x )是二次函数,方程f (x )=0有两个相等的实根,且f ′(x )=2x +2. (1)求y =f (x )的表达式;(2)若直线x =-t (0<t <1)把y =f (x )的图象与两坐标轴所围成图形的面积二等分,求t 的值.[解析] (1)设f (x )=ax 2+bx +c (a ≠0),则f ′(x )=2ax +b , 又已知f ′(x )=2x +2,∴a =1,b =2, ∴f (x )=x 2+2x +c .又方程f (x )=0有两个相等实根. ∴判别式Δ=4-4c =0,即c =1. 故f (x )=x 2+2x +1.(2)依题意有⎠⎛-1-t (x 2+2x +1)d x =⎠⎛0-t (x 2+2x +1)d x ,∴⎝ ⎛⎭⎪⎫13x 3+x 2+x | -t -1=⎝ ⎛⎭⎪⎫13x 3+x 2+x | 0-t 即-13t 3+t 2-t +13=13t 3-t 2+t .∴2t 3-6t 2+6t -1=0, ∴2(t -1)3=-1,∴t =1-132.17.A 、B 两站相距7.2km ,一辆电车从A 站开往B 站,电车开出t s 后到达途中C 点,这一段速度为1.2t (m/s),到C 点的速度达24m/s ,从C 点到B 站前的D 点以等速行驶,从D 点开始刹车,经t s 后,速度为(24-1.2t )m/s ,在B 点恰好停车,试求:(1)A 、C 间的距离; (2)B 、D 间的距离;(3)电车从A 站到B 站所需的时间. [解析] (1)设A 到C 经过t 1s , 由1.2t =24得t 1=20(s),所以AC =∫2001.2t d t =0.6t 2| 200=240(m).(2)设从D →B 经过t 2s , 由24-1.2t 2=0得t 2=20(s), 所以DB =∫200(24-1.2t )d t =240(m). (3)CD =7200-2×240=6720(m). 从C 到D 的时间为t 3=672024=280(s).于是所求时间为20+280+20=320(s).18.在曲线y =x 2(x ≥0)上某一点A 处作一切线使之与曲线以及x 轴所围成的面积为112,试求:(1)切点A 的坐标; (2)过切点A 的切线方程.[解析] 如图所示,设切点A (x 0,y 0),由y ′=2x ,过A 点的切线方程为y -y 0=2x 0(x -x 0),即y =2x 0x -x 20.令y =0得x =x 02,即C ⎝ ⎛⎭⎪⎫x 02,0.设由曲线和过A 点的切线及x 轴所围成图形的面积为S ,S =S 曲边△AOB -S △ABC . S 曲边△AOB =∫x 00x 2d x =13x 30, S △ABC =12|BC |·|AB | =12⎝ ⎛⎭⎪⎫x 0-x 02·x 20=14x 30,即S =13x 30-14x 30=112x 30=112.所以x 0=1,从而切点A (1,1),切线方程为y =2x -1.。

(必考题)高中数学高中数学选修2-2第四章《定积分》测试题(含答案解析)(4)

(必考题)高中数学高中数学选修2-2第四章《定积分》测试题(含答案解析)(4)

一、选择题1.已知函数()2ln 2f x mx x x =+-在定义域内存在单调递减区间,则实数m 的取值范围是( ) A .12m ≥B .12m < C .1m ≥ D .1m < 2.如图,矩形ABCD 的四个顶点()(0,1),(,1),(,1),0,1A B C D ππ--,正弦曲线f xsinx 和余弦曲线()g x cosx =在矩形ABCD 内交于点F ,向矩形ABCD 区域内随机投掷一点,则该点落在阴影区域内的概率是( )A .B .C .D .3.如图,设D 是途中边长分别为1和2的矩形区域,E 是D 内位于函数1(0)y x x=>图象下方的阴影部分区域,则阴影部分E 的面积为( )A .ln 2B .1ln 2-C .2ln 2-D .1ln 2+4.())122011d x x x --⎰的值是( )A .π143- B .π14- C .π123- D .π12- 5.使函数()322912f x x x x a =-+-图象与x 轴恰有两个不同的交点,则实数a 可能的取值为( ) A .8B .6C .4D .26.由直线,1y x y x ==-+,及x轴所围成平面图形的面积为 ( )A .()101y y dy ⎡⎤--⎣⎦⎰B .()1201x x dx ⎡⎤-+-⎣⎦⎰C .()121y y dy ⎡⎤--⎣⎦⎰D .()101x x dx ⎡⎤--+⎣⎦⎰7.曲线()sin 0πy x x =≤≤与直线12y =围成的封闭图形的面积是 AB.2C .π23-Dπ38.设函数e ,10()1x x f x x ⎧-≤≤⎪=<≤,计算11()d f x x -⎰的值为( ) A .1e πe 4-+ B .e 1πe 4-+ C.e 1e - D .e 1πe 2-+ 9.由直线y= x - 4,曲线y =x 轴所围成的图形面积为( )A .15B .13C .252D .40310.已知函数20()cos 0x f x x x ≥⎧=⎨<⎩,则12()f x dx π-⎰的值等于( )A .1B .2C .3D .411.设[0,1]()1,[1,0)x f x x x ∈=+∈-⎪⎩,则11()f x dx -⎰等于( )A .12π+B .122π+ C .124π+ D .14π+12.若函数f (x )=cos x +2xf ′π()6,则f π()3-与f π()3的大小关系是( ) A .f π()3-=f π()3B .f π()3->f π()3 C .f π()3-<f π()3D .不确定二、填空题13.由函数()ln f x x x x =-的图像在点(,())P e f e 处的切线,l 直线1x e -=直线x e =(其中e 是自然对数的底数)及曲线ln y x =所围成的曲边四边形(如图中的阴影部分)的面积S =_________.14.()222sin 4x x dx -+-=⎰______.15.由曲线sin .cos y x y x ==与直线0,2x x π==所围成的平面图形的面积是______.16.定积分21d 1x x ⎰-的值为__________. 17.已知()[](]2,0,11,1,x x f x x e x⎧∈⎪=⎨∈⎪⎩(e 为自然对数的底数),则()e 0f x dx =⎰_________.18.在下列命题中 ①函数1()f x x=在定义域内为单调递减函数; ②已知定义在R 上周期为4的函数()f x 满足(2)(2)f x f x -=+,则()f x 一定为偶函数;③若()f x 为奇函数,则()2()(0)aaaf x dx f x dx a -=>⎰⎰;④已知函数32()(0)f x ax bx cx d a =+++≠,则0a b c ++=是()f x 有极值的充分不必要条件;⑤已知函数()sin f x x x =-,若0a b +>,则()()0f a f b +>. 其中正确命题的序号为___________________(写出所有正确命题的序号).19.1202x xdx -+=⎰__________20.若,则的值是__________.三、解答题21.设函数()32f x x ax bx =++在点1x =处有极值2-. (1)求常数,a b 的值;(2)求曲线()y f x =与x 轴所围成的图形的面积.22.设点P 在曲线2yx 上,从原点向(2,4)A 移动,如果直线OP ,曲线2y x 及直线2x =所围成的两个阴影部分的面积分别记为1S ,2S ,如图所示.(1)当12S S 时,求点P 的坐标;(2)当12S S +有最小值时,求点P 的坐标.23.已知函数()3269f x x x x =-+-.若过点()1,P m -可作曲线()y f x =的切线有三条,求实数m 的取值范围. 24.已知函数1211()(1)x f x adt x t+=++⎰()1x >-. (1)若()f x 在1x =处有极值,问是否存在实数m ,使得不等式2214()m tm e f x ++-≤对任意[]1,x e e ∈-及[]1,1t ∈-恒成立?若存在,求出m 的取值范围;若不存在,请说明理由.()2.71828e =;(2)若1a =,设2()()(1)F x f x x x =-+-. ①求证:当0x >时,()0F x <; ②设*111()12(1)n a n N n n n n =++⋅⋅⋅+∈++++,求证:ln 2n a > 25.如图,在棱长为1的正方体1111ABCD A BC D -中,E 为AB 的中点.求:(1)异面直线1BD 与CE 所成角的余弦值; (2)点A 到平面1A EC 的距离. 26.已知函数2()ln 1a f x x x +=++,其中a ∈R. (1)当a =4时,求f (x )的极值点;(2)讨论并求出f (x )在其定义域内的单调区间.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B【解析】求导函数,可得()1'220f x mx x x=+->,,函数()2ln 2f x mx x x =+-在定义域内是增函数,所以()'0f x < 成立,即1220(0)mx x x+-<>恒成立,所以21211m x ⎛⎫->-- ⎪⎝⎭,所以21m ->-,所以12m < 时,函数()f x 在定义域内是增函数.故选B .2.B解析:B 【解析】试题分析:阴影部分的面积()044sin cos (cos sin )|1S x x dx x x ππππ=-=--=+⎰由几何概型可知:向矩形ABCD 区域内随机投掷一点,则该点落在阴影区域内的概率是0ABCDS P S =矩形,故选B . 考点:几何概型.3.D解析:D 【解析】试题分析:由题意,阴影部分E 由两部分组成,因为函数1(0),y x x=>当2y =时,1,2x =所以阴影部分E 的面积为1111221121ln |1ln 2,2dx x x ⨯+=+=+⎰故选D . 考点:利用定积分在曲边形的面积.4.A解析:A 【详解】因为定积分11122000d )(x d x x x ⎫⎫=-⎪⎪⎭⎭⎰⎰⎰,结合定积分的几何意义可知,原式等于圆心为(1,1),半径为1的四分之一个圆的面积减去13得到,即为143-π,选A. 5.C解析:C 【解析】f ′(x )=6x 2−18x +12,令f ′(x )=0得x 2−3x +2=0,解得x =1,或x =2. ∴当x <1或x >2时,f ′(x )>0,当1<x <2时,f ′(x )<0,∴f (x )在(−∞,1)上单调递增,在(1,2)上单调递减,在(2,+∞)上单调递增, ∴当x =1时,f (x )取得极大值f (1)=5−a , 当x =2时,f (x )取得极小值f (2)=4−a ,∵f (x )只有两个零点,∴5−a =0或4−a =0,即a =5或a =4. 本题选择C 选项.6.C解析:C 【解析】如图,由直线y=x ,y=−x+1,及x 轴围成平面图形是红色的部分,它和图中蓝色部分的面积相同,∵蓝色部分的面积()121S x x dx ⎡⎤=--⎣⎦⎰,即()121y y dy ⎡⎤--⎣⎦⎰.本题选择C 选项.7.D解析:D 【解析】曲线()sin 0πy x x =≤≤与直线12y =的两个交点坐标分别为(π6,12),(5π6,12), 则封闭图形的面积为5π5π66ππ6611πsin cos |3223x dx x x ⎛⎫⎛⎫-=--= ⎪ ⎪⎝⎭⎝⎭⎰本题选择D 选项.点睛:(1)用微积分基本定理求定积分,关键是求出被积函数的原函数.此外,如果被积函数是绝对值函数或分段函数,那么可以利用定积分对积分区间的可加性,将积分区间分解,代入相应的解析式,分别求出积分值相加. (2)根据定积分的几何意义可利用面积求定积分. (3)若y =f (x )为奇函数,则()()0aaf x dx a ->⎰ =0.8.B解析:B 【解析】因为函数2e ,10()1,01x x f x x x ⎧-≤≤⎪=⎨-<≤⎪⎩,所以1012110()d e d 1d x f x x x x x --=+-⎰⎰⎰,其中01101e 1e d e e e 11e e xxx ---==-=-=-⎰,1201d x x -⎰表示圆221x y +=在第一象限的面积,即12π1d 4x x -=⎰,所以11e 1π()d e 4f x x --=+⎰,故选B .9.D解析:D 【详解】根据题意,画出如图所示:由直线4y x =-,,曲线2y x =x 轴所围成的面积为:4288221402(24)(4)42322xdx x x dx x x x x +⎰+=+-+=.故选D.10.C解析:C 【分析】由函数20()cos 0x f x x x ≥⎧=⎨<⎩,根据定积分的运算性质,得10122()cos 2f x dx xdx dx ππ--=+⎰⎰⎰,即可求解,得到答案.【详解】由题意,函数20()cos 0x f x x x ≥⎧=⎨<⎩,根据定积分的运算性质,可得110100222()cos 2sin |2|123f x dx xdx dx x x πππ---=+=+=+=⎰⎰⎰,故选C . 【点睛】本题主要考查了定积分的计算,其中解答中熟记定积分的运算性质,准确运算是解答的关键,着重考查了运算与求解能力,属于基础题.11.C解析:C 【解析】 【分析】 利用()1111211()f x dx dx d x x x --+-=+⎰⎰⎰计算出定积分的值.【详解】 依题意得()10111211()f x dx dx d x x x --+-=+⎰⎰⎰202111π|π12424x x -⎛⎫=++⨯⨯=+ ⎪⎝⎭,故选C. 【点睛】本小题主要考查定积分的计算,考查运算求解能力,属于基础题.12.C解析:C 【解析】依题意得f′(x)=-sin x +2f′π()6 ,所以f′π()6=-sin π()6+2f′π()6,f′π()6=,f′(x)=-sin x +1,因为当x ∈ππ(,)22-时,f′(x)>0,所以f(x)=cos x +x 在ππ(,)22-上是增函数,所以f π3⎛⎫-⎪⎝⎭<f π3⎛⎫⎪⎝⎭,选C. 二、填空题13.【分析】利用导数求得切线的方程利用定积分计算出阴影部分的面积【详解】所以切线的方程为:故阴影部分面积为故答案为:【点睛】本小题主要考查切线方程的计算考查定积分计算面积属于中档题解析:2221122e e e++-【分析】利用导数求得切线l 的方程,利用定积分计算出阴影部分的面积. 【详解】()()()''ln ,ln 1,0f x x f e e f e e e ====-=,所以切线l 的方程为:y x e =-.故阴影部分面积为()2111ln ln |2eeeex x e dx x x x x ex ⎛⎫-+=--+ ⎪⎝⎭⎰2221111111ln ln 22e e e e e e e e e e e ⎡⎤⎛⎫=--⋅+---+⨯⎢⎥ ⎪⎝⎭⎢⎥⎣⎦22121122e e e ⎡⎤=⋅---+⎢⎥⎣⎦2221122e e e ++-=. 故答案为:2221122e e e++-【点睛】本小题主要考查切线方程的计算,考查定积分计算面积,属于中档题.14.【分析】根据定积分的四则运算和几何意义求定积分【详解】因为故答案为2π【点睛】本题考查了定积分的计算;利用定积分的几何意义分别求出两个被积函数的定积分属于基础题 解析:2π【分析】根据定积分的四则运算和几何意义求定积分. 【详解】因为(222222sin sin 022x dx xdx ππ---+=+=+=⎰⎰⎰故答案为2π. 【点睛】本题考查了定积分的计算;利用定积分的几何意义分别求出两个被积函数的定积分,属于基础题.15.【分析】三角函数的对称性可得S=2求定积分可得【详解】由三角函数的对称性和题意可得S=2=2(sinx+cosx )=2(+)﹣2(0+1)=2﹣2故答案为2﹣2【点睛】本题考查三角函数的对称性和定积解析:2【分析】三角函数的对称性可得S=2()4cosx sinx dx π-⎰,求定积分可得.【详解】由三角函数的对称性和题意可得S=2()4cosx sinx dx π-⎰=2(sinx+cosx )40|π=2(22+22)﹣2(0+1)=22﹣2 故答案为22﹣2【点睛】本题考查三角函数的对称性和定积分求面积,属基础题.16.【解析】根据定积分的定义知故填解析:23【解析】根据定积分的定义知,1231111112d |3333x x x --⎛⎫==--= ⎪⎝⎭⎰,故填23.17.【解析】因为所以解析:43【解析】因为()[](]2,0,11,1,x x f x x e x⎧∈⎪=⎨∈⎪⎩,所以()e1e231e0101114|ln |33f x dx x dx dx x x x =+=+=⎰⎰⎰ 18.②④⑤【解析】①函数在定义域内不为单调递减函数在和为单调递减函数;;②已知定义在上周期为4的函数满足则所以一定为偶函数;③若为奇函数则;④已知函数则即有极值充分性成立;有极值所以不必要;⑤函数为单调解析:②④⑤ 【解析】 ①函数()1f x x=在定义域内不为单调递减函数,在(,0)-∞ 和(0,)+∞ 为单调递减函数;;②已知定义在R 上周期为4的函数()f x 满足()()22f x f x -=+, 则()(4)()f x f x f x =-=-所以()f x 一定为偶函数;③若()f x 为奇函数,则()0aaf x dx -=⎰;④已知函数()()320f x ax bx cx d a =+++≠,2()32,f x ax bx c +'=+ 则0a b c ++=22224124()124()0b ac a c ac a c ac ⇒∆=-=+-=+-> ,即()f x 有极值,充分性成立;()10,2a b c f x ===-,,,也有极值,所以不必要; ⑤函数()sin f x x x =-为单调递增奇函数,所以0a b +>,则()()(),f a f b f b >-=-即 ()()0f a f b +>. 正确命题的序号为②④⑤19.【解析】表示以(10)为圆心1为半径的圆的个圆的面积所以π×12=;故答案为:解析:4π【解析】1202x xdx -+⎰表示以(1,0)为圆心,1为半径的圆的14个圆的面积,所以14π×12=4π;故答案为:4π20.2【解析】试题分析:∵易得故答案为考点:定积分的计算解析:2 【解析】 试题分析:∵,易得,故答案为.考点:定积分的计算.三、解答题21.(1)0,3a b ==-;(2)92. 【分析】(1)求出导函数,利用函数()32f x x ax bx =++在1x =处有极值2-,由()12f =-且()'10f =,解方程组,即可求得,a b 的值;(2)利用定积分的几何意义,先确定确定函数的积分区间,被积函数,再求出原函数,利用微积分基本定理,结合函数的对称性即可得结论. 【详解】(1)由题意知()2'32f x x ax b =++,()12f =-且()'10f =,即12,320,a b a b ++=-⎧⎨++=⎩,解得0,3a b ==-.(2)如图,由1问知()33f x x x =-.作出曲线33y x x =-的草图,所求面积为阴影部分的面积.由330x x -=得曲线33y x x =-与x 轴的交点坐标是()3,0-,()0,0和()3,0,而33y x x =-是R 上的奇函数,函数图象关于原点中心对称. 所以y 轴右侧阴影面积与y 轴左侧阴影面积相等. 所以所求图形的面积为()330213S x x dx ⎡⎤=-⎣⎦⎰ 4213932|4220x x ⎛⎫=--= ⎪⎝⎭. 【点睛】本题主要考查利用导数研究函数的极值、定积分的几何意义以及微积分基本定理的应用,属于中档题. 已知函数的极值()f m n =求参数的一般步骤是:(1)列方程求参数()()'0f m nf m ⎧=⎪⎨=⎪⎩;(2)检验方程的解的两边导函数符号是否相反. 22.(1)41639⎛⎫⎪⎝⎭,;(2)()22,.【解析】分析:(1)设点P 的横坐标为t ,得点P 的坐标,利用定积分求解22128,2636t t S S t ==-+,利用12S S ,求得t 的值,即可求得点P 的坐标.(2)由(1)可求当12S S +,化简后,为t 的函数,再利用导数求得12S S +的最小值. 详解:(1)设点P 的横坐标为t (0<t <2),则P 点的坐标为(t ,t 2), 直线OP 的方程为y=tx S 1=∫0t (tx ﹣x 2)dx=,S 2=∫t 2(x 2﹣tx )dx=38t 2t 36-+,因为S 1=S 2,,所以4t 3=,点P 的坐标为41639⎛⎫ ⎪⎝⎭, (2)S=S 1+S 2=333t 8t t 82t 2t 63633+-+=-+S ′=t 2﹣2,令S'=0得t 2﹣2=0,因为0<t S'<0t <2时,S'>0所以,当S 1+S 2有最小值,P 点的坐标为).点睛:本题主要考查了定积分的应用及利用导数求解函数的最值问题,着重考查了分析问题和解答问题的能力,以及推理与运算能力.23.1116m -<<【解析】 【分析】首先写出切线方程,然后将问题转化为方程有三个实数根的问题,利用导函数研究函数的极值即可确定m 的取值范围. 【详解】设过P 点的切线切曲线于点()00,x y ,则切线的斜率2003129k x x =-+-.所以切线方程为()()20031291y x x x m =-+-++,故()()23200000003129169y x x xm x x x =-+-++=-+-,要使过P 可作曲线()y f x =的切线有三条,则方程()()2320000003129169x x xm x x x -+-++=-+-有三解0032023129,m x x x ∴=--+()3223129g x x x x =--+令则()()()26612612g x x x x x =--=+-'易知1,2x =-为()g x 的极值大、极小值点,又()()11,16,g x g x =-=极小极大 故满足条件的m 的取值范围1116.m -<< 【点睛】本题主要考查导函数研究函数的切线,导函数研究函数的极值,等价转化的数学思想等知识,意在考查学生的转化能力和计算求解能力.24.(1)存在,22m -≤≤;(2)①证明见解析;②证明见解析. 【分析】(1)根据微积分基本定理求得()f x ,由()10f '=,求得参数a ;利用导数求函数的在区间上的最值,结合一次不等式在区间上恒成立问题,即可求得参数m 的范围; (2)①求得()F x ',利用导数求得()F x 的单调性,即可容易证明; ②由①中所求,可得12ln()11k k k +>++,利用对数运算,即可证明.【详解】由题可知2()ln(1)(1)f x a x x =+++,∴()221af x x x '=+++. (1)由()01f '=,可得2202a++=,8a =-. 又当8a =-时,()()()2311x x f x x +'-=+,故()f x 在区间()0,1单调递减,在()1,+∞单调递增. 故函数()f x 在1x =处取得极值,所以8a =-.∵11e <-,82(1)(3)()2211x x f x x x x --+'=++=++.∴()0f x '>,当[]1,x e e ∈-时,由上述讨论可知,()f x 单调递增, 故2min ()(1)8f x f e e =-=-+不等式2214()m tm e f x ++-≤对任意[]1,x e e ∈-及[]1,1t ∈-恒成立, 即:22222min 14()148m tm e f x m tm e e ++-≤⇔++-≤-+, 即:260m tm +-≤对[]1,1t ∈-恒成立,令2()6g t m mt =+-,(1)0g ⇒-≤,(1)0g ≤即260m m --≤,且260m m +-≤,整理得()()320m m -+≤,且()()320m m +-≤, 解得:22m -≤≤,即为所求.(2)①∵2()()(1)ln(1)F x f x x x x x =-+-=+-,∴()1xF x x-'=+ 当0x >时,()0F x '<,∴()F x 在(0,)+∞上单调递减,()(0)0F x F ∴<=即证.②由①可得:ln(1)(0)x x x +<> 令:11x k =+,得11ln(1)11k k +<++,即:12ln()11k k k +>++ ∴1112322ln ln ln 12(1)1221n n n n n n n n n n +++++⋅⋅⋅+>++⋅⋅⋅++++++++=ln 2 即证. 【点睛】本题考查由极值点求参数值,利用导数由恒成立问题求参数范围,以及利用导数证明不等式以及数列问题,属压轴题.25.(1)1515(2)66【分析】(1)延长DC 至G ,使12CG DC =,连结12BG 、1D G ,则1D BG ∠就是异面直线1BD 与CE 所成的角. 在1D BG ∆中由余弦定理即可求得1cos D BG ∠.(2)过1A 作1AH CE ⊥交CE 的延长线于H .连结AH .可知AHE CBE ∆∆∽,进而求得AH 和1A H ,即可利用等体积11A ACE A A CE V V --=求得点A 到平面1A EC 的距离.【详解】(1)延长DC 至G ,使12CG DC =,连结12BG 、1D G ,如下图所示:∵//CG EB∴四边形EBGC 是平行四边形 ∴BG EC ∥∴1D BG ∠就是异面直线1BD 与CE 所成的角.在1D BG ∆中13D B =5BG =,221313122D G ⎛⎫=+= ⎪⎝⎭∴1cos D BG ∠=2221112D B BG D G D B BG+-⋅5133154415152+-==⨯即异面直线1BD 与CE 15 (2)过1A 作1A H CE ⊥交CE 的延长线于H .连结AH .底面ABCD 如图所示.由于90AHE B ∠=∠=,AEH CEB ∠=∠,则AHE CBE ∆∆∽ ∴AH AECB CE= ∴52CE =,12AE =∴11255CB AE AH CE ⋅⋅=== 在1Rt A AH ∆中,11A A =,5AH =∴165A H =设点A 到平面1A EC 的距离为d 则由三棱锥体积公式可得:111133ACE A CE AA S d S ∆∆⨯=⨯ 即11111322⨯⨯⨯⨯=111613245d ⨯+所以6d =即点A 到平面1A EC 的距离为66. 【点睛】本题考查了空间中异面直线夹角的求法,将异面直线平移使其相交找到夹角是常用方法,利用等体积法求点到平面距离的方法,属于中档题.26.(1)x =23f (x )的极大值点,x =23f (x )的极小值点;(2)详见解析. 【解析】 【分析】(1)利用导数求函数f(x)的极值点;(2)先求出()221()1(1)f x x ax x x '=-++,设g (x )=x 2-ax +1,对a 分类讨论求出函数的单调区间. 【详解】解:(1)f (x )的定义域为(0,+∞),当a =4时,f (x )=ln x +61x +, 2221641()(1)(1)x x f x x x x x -+'=-=++.令f ′(x )=0⇒x =列表(2)()222121()1(1)(1)a f x x ax x x x x +'=-=-+++, 设g (x )=x 2-ax +1,∵x >0,∴①当a <0时,g (x )>0,f ′(x )>0在x ∈(0,+∞)上恒成立, 此时函数f (x )在区间(0,+∞)上单调递增;②当a >0时,222()1124a a g x x ax x ⎛⎫=-+=-+- ⎪⎝⎭.当1-24a ≥0,即0<a ≤2时,g (x )>0,f ′(x )>0在x ∈(0,+∞)上恒成立,此时函数f (x )在区间(0,+∞)上单调递增;当a >2时,方程g (x )=0的两根分别为12,22a a x x +==,且0<x 1<x 2,∴当x ∈(0,x 1)时,g (x )>0,f ′(x )>0,故函数f (x )在(0,x 1)上单调递增; 当x ∈(x 1,x 2)时,g (x )<0,f ′(x )<0,故函数f (x )在(x 1,x 2)上单调递减; 当x ∈(x 2,+∞)时,g (x )>0,f ′(x )>0,故函数f (x )在(x 2,+∞)上单调递增. 综上所述,当a ≤2时,函数f (x )的单调增区间为(0)∞,+,没有减区间;当a >2时,函数f (x )的减区间为12()x x ,;增区间为(0,x 1),(x 2,+∞). 【点睛】本题主要考查利用导数求函数的极值点,考查利用导数求函数的单调区间,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于中档题.。

高中数学选修2-2同步练习题库:定积分的简单应用(选择题:一般)

高中数学选修2-2同步练习题库:定积分的简单应用(选择题:一般)

定积分的简单应用(选择题:一般)1、在平面直角坐标系中,由直线,,与曲线围成的封闭图形的面积是()A. B. C. D.2、直线与曲线在第一象限内围成的封闭图形的面积为().A. B. C. D.3、已知函数(为自然对数的底数)的图象与直线、轴围成的区域为,直线、与轴、轴围成的区域为,在区域内任取一点,则该点落在区域内的概率为()A. B. C. D.4、抛物线把圆盘分成两个部分,则这两部分的面积之比为()A. B. C. D.5、由曲线与直线所围成的平面图形的面积是()A.1 B. C. D.6、已知等比数列,且,则的值为()A. B. C. D.7、由抛物线与直线所围成的图形的面积是().A. B. C. D.8、设是由轴,直线和曲线围成的曲边三角形区域,集合,若向区域上随机投一点,点落在区域内的概率为,则实数的值是()A. B. C. D.9、曲线与直线围成的封闭图形的面积为( )A. B. C. D.10、由曲线y=x2,y=x3围成的封闭图形面积为()A. B. C. D.11、如图,由曲线,直线和轴围成的封闭图形的面积是()A. B. C. D.12、曲线和直线所围成图形的面积是()A.4 B.8 C.9 D.1013、设集合A={(x,y)||x|+|y|≤2},B={(x,y)∈A|y≤x2},从集合A中随机地取出一个元素P(x,y),则P(x,y)∈B的概率是()A. B. C. D.14、由曲线,所围成图形的面积为()A. B. C. D.15、由曲线,所围成图形的面积.16、已知二次函数的图像如图所示,则它与轴所围图形的面积为()A. B. C. D.17、由曲线,直线所围成的平面图形的面积为()A. B. C. D.18、下图中阴影部分的面积用定积分表示为()A. B.C. D.19、直线与曲线所围成的曲边梯形的面积为()A.9 B. C. D.2720、由直线,及x轴所围成平面图形的面积为()A. B.C. D.21、曲线与直线围成的封闭图形的面积是A. B. C. D.22、设曲线及直线所围成的封闭图形为区域,不等式组所确定的区域为,在区域内随机取一点,则该点落在区域内的概率为A. B. C. D.23、=______.24、函数的图象与轴所围成的封闭图形的面积为()A. B. C. D.25、下图中阴影部分的面积用定积分表示为()A. B.C. D.26、直线与曲线在第一象限内围成的封闭图形的面积为()A. B. C.2 D.427、如图所示的阴影部分是由轴,直线及曲线围成,现向矩形区域内随机投掷一点,则该点落在阴影部分的概率是()A. B. C. D.28、由曲线,直线及轴所围成的封闭图形的面积为()A. B. C.4 D.629、如图所示,曲线与坐标轴所围成的面积为A. B. C. D.30、如图放置的边长为1的正方形PABC沿轴滚动,点B恰好经过原点.设顶点的轨迹方程是,则A. B. C. D.31、直线y=-x与函数f(x)=-x3围成封闭图形的面积为()A.1 B. C. D.032、已知,是曲线与轴围成的封闭区域.若向区域内随机投入一点,则点落入区域的概率为()A. B. C. D.33、由曲线、直线和轴所围成的封闭图形的面积是()A. B.C. D.34、在抛物线与直线围成的封闭图形内任取一点,为坐标原点,则直线被该封闭图形解得的线段长小于的概率是()A. B. C. D.35、由直线与曲线所围成的封闭图形的面积为()A. B. C. D.236、已知二次函数的图像如图所示,则它与轴所围成封闭图形的面积为()A. B. C. D.37、在函数,的图象上有一点,若该函数的图象与轴、直线,围成图形(如图阴影部分)的面积为,则函数的图象大致是()A. B.C. D.38、,则 ( )A.1 B.0 C.0或1 D.以上都不对39、设,则的展开式中常数项是()A.332 B.-332 C.320 D.-32040、曲线直线,以及轴所围成的封闭图形的面积是()A. B. C. D.41、由曲线,直线及轴所围成的图形是面积为()A.12 B.24 C.16 D.1842、如图所示,正弦曲线,余弦曲线与两直线,所围成的阴影部分的面积为()A.1 B.C.2 D.43、曲线,和直线围成的图形面积是()A. B.C. D.44、由直线与曲线所围成的封闭图形的面积为()A. B.C. D.45、由曲线y=x2与直线y=2x所围成的平面图形的面积为( )A. B.C. D.46、阿基米德在《论球与圆柱》一书中推导球的体积公式时,得到一个等价的三角恒等式,若在两边同乘以,并令,则左边.因此阿基米德实际上获得定积分的等价结果.则()A.-2 B.1C.-1 D.247、若 ,则()A. B. C. D.48、如图所示的阴影部分是由轴,直线及曲线围成,现向矩形区域内随机投掷一点,则该点落在阴影部分的概率是()A. B. C. D.49、若二项式的展开式中的常数项为,则()A. B. C. D.50、若二项式的展开式中的常数项为,则()A. B. C. D.51、由直线,及轴围成平面图形的面积为()A. B.C. D.52、由曲线,直线及轴所围成的图形的面积为()A. B. C. D.53、已知,则的大小关系为()A. B.C. D.54、设,则二项式展开式中含项的系数是()A. B.192 C. D.24055、已知,则的值为()A. B. C. D.56、由曲线,直线及轴所围成的平面图形的面积为()A. B. C. D.57、曲线在点(0,1)处的切线与坐标轴所围三角形的面积为()A. B.1 C.2 D.358、在点处的切线与坐标轴所围三角形的面积为()A. B. C. D.59、已知,是由直线与曲线围成的封闭区域,用随机模拟的方法求的面积时,先产生上的两组均匀随机数,和,由此得个点,据统计满足的点数是,由此可得区域的面积的近似值是()A. B. C. D.60、由曲线围成的封闭图形面积为()A. B. C. D.61、由曲线,所围成图形的面积.62、定积分的值为()A.1 B.e-1 C.e D.e+163、由和围成的封闭图形的面积是()A. B. C. D.64、设,若,则()A.-1 B.0 C.1 D.25665、设(其中为自然对数的底数),则的值为()A. B. C. D.66、已知函数的定义域为,值域为[1,5],则在平面直角坐标系内,点的运动轨迹与两坐标轴围成的图形的面积是()A.8 B.6 C.4 D.267、定积分的值为()A. B. C. D.68、由直线x=,x=,y=0与曲线y=cos x所围成的封闭图形的面积为( )A. B.1 C. D.69、由曲线,直线及轴所围成的平面图形的面积为()A. B. C. D.70、由直线,曲线以及轴所围成的图形面积为()A. B.13 C. D.15参考答案1、D2、D3、C4、B5、D6、D7、A8、D9、B10、C11、C12、B13、B15、16、B17、C18、B19、A20、C21、D22、D23、;24、A25、B26、D28、A29、D30、B31、C32、D33、B34、C35、C36、B37、B38、C39、B40、D41、D42、D43、D44、B45、C46、D47、B48、D49、D50、D51、C52、C53、B54、D55、D56、A57、A58、D59、B60、A61、62、C63、C64、B65、A66、C67、B68、D69、A70、A【解析】1、由上图可得所求的面积为,故选D.2、直线与曲线的交点坐标为和,故直线与曲线在第一象限内围成的封闭图形的面积.故选.3、直线、与轴、轴围成的区域为的面积为,,函数(为自然对数的底数)的图象与直线、轴围成的区域为为,由几何概型概率公式可得在区域内任取一点,则该点落在区域内的概率为,故选C.4、设抛物线右方的圆盘的面积为s1,抛物线左方的圆盘的面积为s2,则由于y2=2x与x2+y2=8的交点为:(2,±2)∴S1==2(dy﹣dy)=2(π+)∴S2=8π﹣S1=6π-s2,∴两部分面积的比是.故答案为:5、作出对应的图象如图所示:由得,由三角函数的对称性可得,故选D.点睛:本题主要考查了定积分在求面积中的应用,运用微积分基本定理计算定积分的关键是找到被积函数的原函数,属于基础题;用定积分求平面图形的面积的步骤:1、根据已知条件,作出平面图形的草图;根据图形特点,恰当选取计算公式;2、解方程组求出每两条曲线的交点,以确定积分的上、下限;3、具体计算定积分,求出图形的面积.6、表示以原点为圆心以为半径的圆的面积的四分之一,故,,故选D.7、联立,解得或,∴由抛物线与直线所围成的图形的面积,故选A.8、根据题意,区域Ω即边长为1的正方形的面积为1×1=1,区域A即曲边三角形的面积为,若向区域Ω上随机投一点P,点P落在区域A内的概率是,则有,解可得,,故选D.9、由,直线,令,可得或,曲线与直线交于点或,因此围成的封闭图形的面积,故选B.10、由题可知y=x2,y=x3围成的封闭图形的面积为.故选C.11、阴影部分面积为,而故选C. 点睛:1.求曲边图形面积的方法与步骤(1)画图,并将图形分割为若干个曲边梯形;(2)对每个曲边梯形确定其存在的范围,从而确定积分的上、下限;(3)确定被积函数;(4)求出各曲边梯形的面积和,即各积分的绝对值的和.2.利用定积分求曲边图形面积时,一定要找准积分上限、下限及被积函数.当图形的边界不同时,要分不同情况讨论.12、曲线y=x3-3x与y=x的交点坐标为(0,0),(2,2),(-2,-2),根据题意画出图形,曲线y=x3-3x和直线y=x围成图形的面积本题选择B选项.点睛:利用定积分求曲线围成图形的面积的步骤:(1)画出图形;(2)确定被积函数;(3)确定积分的上、下限,并求出交点坐标;(4)运用微积分基本定理计算定积分,求出平面图形的面积.求解时,注意要把定积分与利用定积分计算的曲线围成图形的面积区别开:定积分是一个数值(极限值),可为正,可为负,也可为零,而平面图形的面积在一般意义上总为正.13、集合是一个正方形区域的内部及边界,个顶点是,集合是抛物线下方的区域,由,可求得两图象在第一象限的交点坐标为,抛物线下方的区域的面积,根据对称性,可得面积为,正方形的面积为,的概率是,故选B.14、联立方程组,解得或,即交点坐标为,则两曲线所围成图形的面积为,故选A.15、试题分析:作出如图的图象,联立,解得或,即点,所求面积为:.考点:定积分.16、试题分析:先根据函数的图象求出函数的解析式,然后利用定积分表示所求面积,最后根据定积分运算法则求出所求.由图像可知二次函数的图像过点,,,可得二次函数解析式为;所以它与X轴所围图形的面积为.故选B.考点:定积分的应用.17、由,解得,解得,解得,所围成的平面图形的面积为,则,,故选C.18、由题意积分区间为,对应的函数为,,∴阴影部分的面积用定积分表示为,故选B.19、直线x=0,x=3,y=0与曲线y=x2所围成的曲边梯形的面积为:.本题选择A选项.20、如图,由直线y=x,y=−x+1,及x轴围成平面图形是红色的部分,它和图中蓝色部分的面积相同,∵蓝色部分的面积,即.本题选择C选项.21、曲线与直线的两个交点坐标分别为(,),(,),则封闭图形的面积为本题选择D选项.点睛:(1)用微积分基本定理求定积分,关键是求出被积函数的原函数.此外,如果被积函数是绝对值函数或分段函数,那么可以利用定积分对积分区间的可加性,将积分区间分解,代入相应的解析式,分别求出积分值相加.(2)根据定积分的几何意义可利用面积求定积分.(3)若y=f(x)为奇函数,则=0.22、曲线及直线所围成封闭图形的面积=;而不等式组所确定区域的面积所以该点落在区域内的概率=.故选D.【方法点睛】本题題主要考查定积分的几何意义及“面积型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与体积有关的几何概型问题关鍵是计算问题题的总面积以及事件的面积积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本裏件对应的区域测度把握不准导致错误;(3)利用几何概型的概率公式时 , 忽视验证事件是否等可能性导致错误.23、,而函数是奇函数,它在和的积分值大小相等,符号相反,故,而表示圆与轴围成的半圆的面积,即24、试题分析:由题意知,函数的图象与轴所围成的封闭图形的面积为,故选A.考点:1.分段函数;2.定积分25、由题意积分区间为,对应的函数为,,∴阴影部分的面积用定积分表示为,故选B.26、试题分析:根据定积分的意义,可知所求的封闭图像的面积为,故选C.考点:利用定积分求面积.27、试题分析:由几何概型可知,所求概率为.考点:几何概型、定积分.28、试题分析:试题解析:联立方程得到两曲线的交点(4,2),因此曲线,直线y=x−2及y轴所围成的图形的面积为:S= ==.故选C.点睛:将不规则图形的的边界线用曲线方程表示出来,定积分的上下限就是曲线的端点.用上边界曲线的定积分减去下边界曲线的定积分就是面积!29、当0⩽x⩽时,cos x⩾0,当π⩽x⩽时,cos x⩽0,∴所求面积S=d x=x d x+d x=sin−sin+sin=1+1+1=3,故选:D.30、,故选B.31、原问题等价于直线y=x与函数f(x)=x3围成封闭图形的面积∵曲线y=x3和曲线y=x的交点为A(1,1)、原点O和B(﹣1,﹣1)∴由定积分的几何意义,可得所求图形的面积为S=2=2故选:C32、如下图,我们可知概率为两个面积比.选D.【点睛】解几何概型问题的关键是确定“测度”,常见的测度有长度、面积、体积等,若题中只有一个变量,可考虑利用长度模型,若题中由两个变量,可考虑利用面积模型.33、将函数的图象位于轴下方的部分对称到轴的上方,而轴上方的部分不变,得函数的图象,可得曲线,直线和轴围成的封闭图形的面积,恰好等于函数在上的图象投影到轴所成的面积,如图中的阴影部分,所以所求的阴影部分面积,故选B.34、如图圆的方程为,由圆方程,直线方程,抛物线方程知,.整个密闭区域的面积为,满足条件的区域面积为.由几何概型知所求概率为.故本题答案选.35、由定积分的意义可得直线与曲线所围成的封闭图形的面积是,应选答案C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定积分的简单应用(较难)1、由直线,,曲线及轴所围成的封闭图形的面积是()A. B.C. D.2、已知,,则展开式中,项的系数为()A. B. C. D.3、的值为( )A.0 B. C.2 D.44、设则多项式的常数项是()A.-332. B.332 C.166 D.-1665、由直线,曲线及轴所围图形的面积为()A. B. C. D.积是()A. B. C. D.7、函数的图象与轴所围成的封闭图形的面积为()A. B. C. D.8、设,则多项式的常数项()A. B. C. D.9、曲线在点(1,)处的切线与坐标轴围成的三角面积为()A. B. C. D.10、的值为A.0 B. C.2 D.4积是()A.1 B. C. D.212、设下列关系式成立的是()A. B. C. D.13、设,则的值为()A. B. C. D.14、A. B. C. D.15、若S1=dx,S2=dx,S3=dx,则S1,S2,S3的大小关系为( ) A.S1<S2<S3 B.S2<S1<S3C.S2<S3<S1 D.S3<S2<S116、由曲线,直线及y轴所围成的图形的面积为()A. B.4 C. D.617、下列等于1的积分是()A. B.C. D.18、下列计算错误的是()A. B.C. D.19、由曲线所围成的封闭图形的面积为A. B. C. D.20、如图,阴影部分的面积是( )A.2 B.2- C. D.21、由曲线围成的封闭图形面积为()A. B. C. D.22、定积分的值为,则()A. B. C. D.23、的值为A.0 B.1 C. D.224、函数与的图象所围成的封闭图形的面积为()A. B. C. D.25、已知函数f(x)=x3+ax2+bx(a,b∈R)的图象如图所示,它与直线在原点处相切,此切线与函数图象所围区域(图中阴影部分)的面积为,则a的值为________.26、随机地向区域内投点,点落在区域的每个位置是等可能的,则坐标原点与该点连线的倾斜角不大于的概率是________________.27、若,则从小到大的顺序为 .28、曲线与直线所围成的封闭图形的面积为 .29、直线与曲线在第一象限内围成的封闭图形的面积为 .30、由直线,曲线及轴所围成的图形的面积是___________.31、函数在点(1,2)处的切线与函数围成的图形的面积等于__________.32、已知在区间上,,,对轴上任意两点,都有. 若,,,则的大小关系为_________.33、若一组数据的中位数为,则直线与曲线围成图形的面积为 .34、.给出下列命题:①已知线性回归方程,当变量增加2个单位,其预报值平均增加4个单位;②在进制计算中,;③若,且,则;④ “”是“函数的最小正周期为4”的充要条件;⑤设函数的最大值为M,最小值为m,则M+m=4027,其中正确命题的个数是个。

35、已知(为自然对数的底数),函数,则__________.36、如图1为某质点在4秒钟内作直线运动时,速度函数的图象,则该质点运动的总路程厘米.37、设函数,若,则.38、如图所示,抛物线与轴所围成的区域是一块等待开垦的土地,现计划在该区域内围出一块矩形地块ABCD作为工业用地,其中A、B在抛物线上,C、D在轴上.已知工业用地每单位面积价值为元,其它的三个边角地块每单位面积价值元.(1)求等待开垦土地的面积;(2)如何确定点C的位置,才能使得整块土地总价值最大.39、已知二次函数,直线,直线(其中为常数),若直线与函数的图象以及轴与函数的图象所围成的封闭图形(阴影部分)如图所示.(1)求的值;(2)求阴影面积关于的函数的解析式.40、已知函数的图象如图,直线在原点处与函数图象相切,且此切线与函数图象所围成的区域(阴影)面积为.(1)求的解析式;(2)若常数,求函数在区间上的最大值.41、已知.(Ⅰ)若在处的切线方程为,求与的值;(Ⅱ)求.42、(1)求定积分的值;(2)若复数且为纯虚数,求.43、给定可导函数,如果存在,使得成立,则称为函数在区间上的“平均值点”.(1)函数在区间上的平均值点为;(2)如果函数在区间上有两个“平均值点”,则实数的取值范围是.44、已知二次函数,直线,直线(其中为常数),若直线与函数的图象以及轴与函数的图象所围成的封闭图形(阴影部分)如图所示.(1)求的值;(2)求阴影面积关于的函数的解析式.45、如图,已知二次函数的图像过点和,直线,直线(其中,为常数);若直线与函数的图像以及直线与函数以及的图像所围成的封闭图形如阴影所示.(1)求;(2)求阴影面积关于的函数的解析式;(3)若过点可作曲线的三条切线,求实数的取值范围.46、已知.(1)求的单调区间;(2)求函数在上的最值.47、定义F(x,y)=(1+x)y,x,y∈(0,+∞).令函数f(x)=F(1,log2(x2-4x+9))的图象为曲线C1,曲线C1与y轴交于点A(0,m),过坐标原点O向曲线C1作切线,切点为B(n,t)(n>0),设曲线C1在点A,B之间的曲线段与线段OA,OB 所围成图形的面积为S,求S的值.48、下列说法:(1)命题“”的否定是“”;(2)关于的不等式恒成立,则的取值范围是;(3)对于函数,则有当时,,使得函数在上有三个零点;(4)(5)已知,且是常数,又的最小值是,则7.其中正确的个数是 .49、如下图,过曲线:上一点作曲线的切线交轴于点,又过作轴的垂线交曲线于点,然后再过作曲线的切线交轴于点,又过作轴的垂线交曲线于点,,以此类推,过点的切线与轴相交于点,再过点作轴的垂线交曲线于点(N).(1) 求、及数列的通项公式;(2) 设曲线与切线及直线所围成的图形面积为,求的表达式; (3) 在满足(2)的条件下, 若数列的前项和为,求证:N.参考答案1、A2、C3、C4、A5、C6、A7、B8、D9、A10、C11、B12、A13、14、A15、B16、A17、C18、D19、B20、C21、A22、C23、A24、C25、-3.26、27、28、29、30、.31、32、33、34、435、736、1137、38、(1);(2)点C的坐标为.39、(1)(2)40、(1)(2)详见解析.41、(Ⅰ),;(Ⅱ).42、(1);(2).43、(1)1;(2)44、(1)(2)45、(1);(2);(3).46、(1)函数的单调递增区间是,单调递减区间是;(2)在上的最大值是,最小值是.47、948、449、(1) ,,;(2) ;(3)见解析.【解析】1、试题分析:的范围为.所以,选A.考点:定积分.2、,,因此,项的系数为,选C.3、试题分析:原式等于,故选C.考点:定积分4、试题分析:∵,则多项式,故它的常数项为,故选:A.考点:1.二项式系数的性质;2.定积分.5、试题分析:由直线,曲线及轴所围图形为下图中的曲边梯形ABCD,其面积为,故选C.考点:定积分求面积.6、试题分析:函数与的交点为,则闭合图形的面积为考点:定积分7、试题分析:根据定积分的面积计算当时,与轴所围成的面积就是正方形的面积,减四分之一个圆的面积,即,当时,,当时,,面积相加等于.故选B.考点:1.分段函数;2.定积分的面积计算.8、试题分析:,多项式等于,常数项为,故选D.考点:1.定积分的计算;2.二项式定理指定项的求法.9、试题分析:,当时,,所以切线方程是,当时,,当时,,所以,都选考点:1.导数的几何意义;2.截距10、试题分析:根据定积分的计算公式,原式.考点:定积分的计算11、试题分析:,选B.考点:定积分的应用.12、试题分析:,..所以.故A正确.考点:1定积分;2三角函数值.13、试题分析:由已知得:,令,得:,知:曲线是以坐标原点为圆心,1为半径的圆处在x轴上方部分的半圆,由定积分的几何意义知:,又,故选A.考点:定积分.14、试题分析:由题,因为函数为奇函数,为偶函数,故考点:定积分15、S1=dx=x3=×23-=,S2=dx=ln x=ln 2,S3=dx=e x=e2-e=e(e-1),ln 2<ln e=1,且<2.5<e(e-1),所以ln 2<<e(e-1),即S2<S1<S3.16、解:根据定积分的定义,则可知由曲线,直线及y轴所围成的图形的面积为17、略18、略19、本题考查定积分的几何意义、定积分的计算。

由定积分的几何意义,几何图形,曲线所围成的封闭图形的面积。

20、试题分析:直线与抛物线,解得交点为和,抛物线与轴负半轴交点,设阴影部分的面积为,故选C.考点:定积分求解曲边形的面积.【方法点晴】本题主要考查了利用定积分求解曲边形的面积,体现了定积分的应用,解答中要注意分割,关键是要注意在轴下方的部分的定积分为负(定积分的几何意义强调代数和)属于基础题,解答中正确找到倍积函数,写出定积分式是解答问题的关键,着重考查了分析问题和解答问题的能力.21、考点:定积分在求面积中的应用.分析:要求曲线y=x2,y=x3围成的封闭图形面积,根据定积分的几何意义,只要求∫01(x2-x3)dx即可.解:由题意得:所求封闭图形的面积为∫01(x2-x3)dx═(x3-x4)|01=×1-×1=,故答案为:A.22、略23、略24、由得,,作出函数的图象,则所求封闭图形的面积为.25、试题分析:,由题意,,,易知,,所以.考点:导数的几何意义,定积分的几何意义.26、所求概率为几何概型,测度为面积,区域面积为,坐标原点与该点连线的倾斜角不大于的面积为,所以概率为27、试题分析:由题意得,,,,所以.考点:定积分的计算.28、试题分析:先根据题意画出图形,得到积分上限为1,积分下限为0,直线与曲线所围图形的面积而∴曲边梯形的面积是.考点:定积分29、试题分析:先根据题意画出图形,得到积分上限为,积分下限为,曲线与直线在第一象限所围成饿图形的面积是,即围成的封闭图形的面积为.考点:利用定积分求解曲边形的面积.30、试题分析:.考点:1、定积分的应用;2、微积分基本定理.31、因为,所以,,则函数在点(1,2)处的切线为,即,作出草图(如图所示),则所求阴影部分的面积为.32、试题分析:数形结合法,由已知可知f(x)的图象在过点A(a,f(a))和B(b,f(b))的直线的上方,过A点和B点做垂直于x轴的直线分别交x轴于C、D两点,过点A做直线BD的垂线交BD于点E,从而有为f(x)的图象与x=a、x=b、x轴围成的曲多边形的面积,而为直角梯形ABDC的面积,为矩形ACDE的面积,由图象可知.考点:定积分的几何意义33、试题分析:由中位数的定义知,即,由微积分基本定理可知该直线与曲线围成图形的面积为。

相关文档
最新文档