2003河南中考数学试题
河南省中考数学试题及答案(word版)

河南省初中学业水平暨高级中等学校招生考试试卷数 学注意事项:1. 本试卷分试题卷和答题卡两部分。
试题卷共4页,三个大题,满分120分,考试时间100分钟.2. 试题卷上不要答题,请用0.5毫米黑色签字水笔直接把答案写在答题卡上,答在试题卷上的答案无效.3. 答题前,考生务必将本人姓名、准考证号填写在答题卡第一面的指定位置上.参考公式:二次函数y =ax 2+bx +c (a ≠0)图象的顶点坐标为)44,2(2ab ac a b --. 一、选择题 (每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的. 1. -2的相反数是( ) A . 2 B . 2-- C .21D . 21- 2.下列图形中,既是轴对称图形又是中心对称图形的是()3.方程(x-2)(x +3)=0的解是( )A . x =2B . x =3-C . x 1=2-,x 2=3D . x 1=2,x 2=3-4. 在一次体育测试中,小芳所在小组8人的成绩分别是:46,47,48,48,49,49,49,50.则这8人体育成绩的中位数是( )A . 47B . 48C . 48.5D . 495. 如图是正方体的一种展开图,其每个面上都标有一个数字,那么在原正方体中,与数字“2”相对的面上的数字是( )A . 1B . 4C . 5D . 66. 不等式组⎩⎨⎧>+≤122x x 的最小整数解为( )A . 1-B . 0C . 1D . 2第5题3 245 16 A BCD7. 如图,CD 是⊙O 的直径,弦AB ⊥CD 于点G ,直线EF 与 ⊙O 相切于点D ,则下列结论中不一定正确的是( ) A. AG =BG B. AB //EF C. AD //BC D. ∠ABC =∠ADC8. 在二次函数y =-x 2+2x +1的图象中,若y 随x 的增大而增大,则x 的取值范围是( ) A. x <1 B. x >1 C. x <-1 D. x >-1 二、填空题 (每小题3分,工21分) 9. 计算:._______43=--10. 将一副直角三角板ABC 和EDF 如图放置(其中∠A =60°,∠F =45°),使点E 落在AC 边上,且 ED //BC ,则∠CEF 的度数为_________. 11. 化简:._________)1(11=-+x x x 12. 已知扇形的半径为4 cm ,圆心角为120°,则此扇形的弧长是_________cm.13. 现有四张完全相同的卡片,上面分别标有数字-1,-2,3,4. 把卡片背面朝上洗匀,然后从中随机抽取两张,则这两张卡片上的数 字之积为负数的概率是_________. 14. 如图,抛物线的顶点为P (-2,2),与y 轴交于点A (0,3). 若平移该抛物线使其顶点 P 沿直线移动到点P ′(2,-2),点A 的对应 点为A ′,则抛物线上P A 段扫过的区域 (阴影部分)的面积为_________. 15. 如图,矩形ABCD 中,AB =3,BC =4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B ′处,当△CEB ′为直 角三角形时,BE 的长为_________.三、解答题 (本大题共8个小题,满分75分)16.(8分)先化简,再求值:(x +2)2+(2x +1)(2x -1)-4x (x +1),其中2-=x .E CDBA第15题B ′POA第14题xy A′P ′EO FCD B G A 第7题EFC DBA第10题17.(9分)从2013年1月7日起,中国中东部大部分地区持续出现雾霾天气. 某市记者为了了解“雾霾天气的主要成因”,随机调查了该市部分市民,并对调查结果进行整理,绘制了如下尚不完整的统计图表.组别 观点频数(人数)A 大气气压低,空气不流动 80B 地面灰尘大,空气湿度低m C 汽车尾部排放 n D 工厂造成污染120 E其他60请根据图表中提供的信息解答下列问题;(1)填空:m =________,n =_______,扇形统计图中E 组所占的百分比为_________%. (2)若该市人口约有100万人,请你估计其中持D 组“观点”的市民人数;(3)若在这次接受调查的市民中,随机抽查一人,则此人持C 组“观点”的概率是多少?18.(9分)如图,在等边三角形ABC 中,BC =6cm. 射线AG //BC ,点E 从点A 出发沿射线AG以1cm/s 的速度运动,同时点F 从点B 出发沿射线BC 以2cm/s 的速度运动,设运动时间为t (s).(1)连接EF ,当EF 经过AC 边的中点D 时,求证:△ADE ≌△CDF ;ED AECDB A 调查结果扇形统计图 20%10%(2)填空:①当t 为_________s 时,四边形ACFE 是菱形;②当t 为_________s 时,以A 、F 、C 、E 为顶点的四边形是直角梯形.19.(9分)我国南水北调中线工程的起点是丹江口水库,按照工程计划,需对原水库大坝进行混凝土培厚加高,使坝高由原来的162米增加到176.6米,以抬高蓄水位. 如图是某一段坝体加高工程的截面示意图,其中原坝体的高为BE ,背水坡坡角∠BAE =68°,新坝体的高为DE ,背水坡坡角∠DCE =60°. 求工程完工后背水坡底端水平方向增加的宽度AC (结果精确到0.1米. 参考数据:sin68°≈0.93,cos68°≈0.37,tan68°≈2.50,3≈1.73).E C D BA图68°60°20.(9分)如图,矩形OABC 的顶点A 、C 分别在x 轴和y 轴上,点B 的坐标为(2,3).双曲线)0(>=x xky 的图象经过BC 的中点D ,且与AB 交于点E ,连接DE . (1)求k 的值及点E 的坐标;(2)若点F 是OC 边上一点,且△FBC ∽△DEB ,求直线FB 的解析式.EOF C D BA第20题xy21.(10分)某文具商店销售功能相同的A、B两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需156元;购买3个A品牌和1个B品牌的计算器共需122元.(1)求这两种品牌计算器的价格;(2)学校毕业前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的八折销售,B品牌计算器5个以上超出部分按原价的七折销售. 设购买x个A品牌的计算器需要y1元,购买x个B品牌的计算器需要y2元,分别求出y1、y2关于x 的函数关系式;(3)小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过5个,购买哪种品牌的计算器更合算?请说明理由.22.(10分)如图1,将两个完全相同的三角形纸片ABC 和DEC 重合放置,其中∠C =90°,∠B =∠E =30°. (1)操作发现如图2,固定△ABC ,使△DEC 绕点C 旋转,当点D 恰好落在AB 边上时,填空: ①线段DE 与AC 的位置关系是_________;②设△BDC 的面积为S 1,△AEC 的面积为S 2,则S 1与S 2的数量关系是_________________. (2)猜想论证当△DEC 绕点C 旋转到图3所示的位置时,小明猜想(1)中S 1与S 2的数量关系仍然成立,并尝试分别作出了△BDC 和△AEC 中BC 、CE 边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC =60°,点D 是其角平分线上一点,BD =CD =4,DE //AB 交BC 于点E (如图4).若在射线BA 上存在点F ,使S △DCF =S △BDE , 请直接写出....相应的BF 的长.A (D )B (E ) C图 1ACB DE图 2 M图3AB C DENECD BA图423.(11分)如图,抛物线y =-x 2+bx +c 与直线221+=x y 交于C 、D 两点,其中点C 在y 轴上,点D 的坐标为)273(,. 点P 是y 轴右侧的抛物线上一动点,过点P 作PE ⊥x 轴于点E ,交CD 于点F .(1)求抛物线的解析式;(2)若点P 的横坐标为m ,当m 为何值时,以O 、C 、P 、F 为顶点的四边形是平行四边形?请说明理由.(3)若存在点P ,使∠PCF =45°,请直接写出....相应的点P 的坐标.PEOF CDBAxyOCDBA 备用图yx参考答案。
河南省2003年中考试卷

的中点,CD交OB于E,∠AOB=100°,∠OBC=55°,则∠OEC= ________度.
二、选择题(每小题3分,共15分.下列各小题均有四个答案,其 中只有一个是正确的,将正确答案的代号字母填入题后括号内)
13.已知数轴上的A点到原点的距离是2,那么在数轴上到A点的距
离是3的点所表示的数有( ).
三、(第18、19小题各5分,第20、21小题各6分,共22分) 18.计算.
19.如图,木工师傅要把一块矩形木板ABCD的四个角锯成半径为5
cm,并且与两边相切的圆弧形.请你帮助师傅设计一种方案,并在木 板上把一个角的圆弧线画出来(保留画图痕迹,写出画法).
20.如图是某校初三年级部分学生做引体向上的成绩进行整理后, 分成五组,画出的频率分布直方图.已知从左到右前四个小组的频率分 别是0.05,0.15,0.25,0.30,第五小组的频数是25,根据已知条件回答 下列问题:
四、(每小题7分,共14分) 22.原方程变形为 . 设,则原方程变形为 ,即.…………………………………………………………2分 解这个方程,得,.……………………………………………………
4分 当时,. 因为△, 所以此方程无实数根. ……………………………………………………………………5分 当时,, 解这个方程,得,.…………………………………………………… 6分 检验:把,分别代入原方程的分母,分母不等于0,所以它们都是 原方程的根. ∴ 原方程的根是,.…………………………………………………7 分 23.设EB=a,则AE=2a,AB=3a,CD=9a. ……………………………………1分 ∵ AB∥CD,∴ ∠F=∠BEM. ∵ M为BC的中点, ∴ BM=CM,又∠FMC=∠EMB, ∴ △FCM≌△EBM. ……………………………………………………………………4分 ∴ BE=FC=a. ∴ FD=FC+CD=10a. ………………………………………………………………5分 ∵ BE∥FD,∴ △BNE∽△DNF. …………………………………………………6分 ∴ .…………………………………………………………7分 五、(8分) 24.设甲原来每天做x件,则乙原来每天做(x-3)件,提高效率 后每天做(x-3)+5=(x+2)件. ………………………………………………………………………………… 1分 根据题意,得.………………………………………………………… 4分 去分母,整理,得.………………………………………………… 5 分 解这个方程,得,.……………………………………………… 7分 经检验,都是原方程的根.但负数不合题意,∴ 只取,∴ . 答:甲原来每天做8件防护服,乙原来每天做5件防护服.
河南省中考数学真题试题(含解析)

河南省中考数学试卷一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的。
1.(3分)﹣的绝对值是()A.﹣B.C.2 D.﹣2【分析】根据一个负数的绝对值是它的相反数进行解答即可.【解答】解:|﹣|=,故选:B.【点评】本题考查的是绝对值的性质,掌握一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0是解题的关键.2.(3分)成人每天维生素D的摄入量约为0.0000046克.数据“0.0000046”用科学记数法表示为()A.46×10﹣7B.4.6×10﹣7C.4.6×10﹣6D.0.46×10﹣5【分析】本题用科学记数法的知识即可解答.【解答】解:0.0000046=4.6×10﹣6.故选:C.【点评】本题用科学记数法的知识点,关键是很小的数用科学记数法表示时负指数与0的个数的关系要掌握好.3.(3分)如图,AB∥CD,∠B=75°,∠E=27°,则∠D的度数为()A.45°B.48°C.50°D.58°【分析】根据平行线的性质解答即可.【解答】解:∵AB∥CD,∴∠B=∠1,∵∠1=∠D+∠E,∴∠D=∠B﹣∠E=75°﹣27°=48°,故选:B.【点评】此题考查平行线的性质,关键是根据平行线的性质解答.4.(3分)下列计算正确的是()A.2a+3a=6a B.(﹣3a)2=6a2C.(x﹣y)2=x2﹣y2D.3﹣=2【分析】根据合并同类项法则,完全平方公式,幂的乘方与积的乘方的运算法则进行运算即可;【解答】解:2a+3a=5a,A错误;(﹣3a)2=9a2,B错误;(x﹣y)2=x2﹣2xy+y2,C错误;=2,D正确;故选:D.【点评】本题考查整式的运算;熟练掌握合并同类项法则,完全平方公式,幂的乘方与积的乘方的运算法则是解题的关键.5.(3分)如图①是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图②.关于平移前后几何体的三视图,下列说法正确的是()A.主视图相同B.左视图相同C.俯视图相同D.三种视图都不相同【分析】根据三视图解答即可.【解答】解:图①的三视图为:图②的三视图为:故选:A.【点评】本题考查了由三视图判断几何体,解题的关键是学生的观察能力和对几何体三种视图的空间想象能力.6.(3分)一元二次方程(x+1)(x﹣1)=2x+3的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【分析】先化成一般式后,在求根的判别式.【解答】解:原方程可化为:x2﹣2x﹣4=0,∴a=1,b=﹣2,c=﹣4,∴△=(﹣2)2﹣4×1×(﹣4)=20>0,∴方程由两个不相等的实数根.故选:A.【点评】本题运用了根的判别式的知识点,把方程转化为一般式是解决问题的关键.7.(3分)某超市销售A,B,C,D四种矿泉水,它们的单价依次是5元、3元、2元、1元.某天的销售情况如图所示,则这天销售的矿泉水的平均单价是()A.1.95元B.2.15元C.2.25元D.2.75元【分析】根据加权平均数的定义列式计算可得.【解答】解:这天销售的矿泉水的平均单价是5×10%+3×15%+2×55%+1×20%=2.25(元),故选:C.【点评】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.8.(3分)已知抛物线y=﹣x2+bx+4经过(﹣2,n)和(4,n)两点,则n的值为()A.﹣2 B.﹣4 C.2 D.4【分析】根据(﹣2,n)和(4,n)可以确定函数的对称轴x=1,再由对称轴的x=即可求解;【解答】解:抛物线y=﹣x2+bx+4经过(﹣2,n)和(4,n)两点,可知函数的对称轴x=1,∴=1,∴b=2;∴y=﹣x2+2x+4,将点(﹣2,n)代入函数解析式,可得n=﹣4;故选:B.【点评】本题考查二次函数图象上点的坐标;熟练掌握二次函数图象上点的对称性是解题的关键.9.(3分)如图,在四边形ABCD中,AD∥BC,∠D=90°,AD=4,BC=3.分别以点A,C 为圆心,大于AC长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD的长为()A.2B.4 C.3 D.【分析】连接FC,根据基本作图,可得OE垂直平分AC,由垂直平分线的性质得出AF=FC.再根据ASA证明△FOA≌△BOC,那么AF=BC=3,等量代换得到FC=AF=3,利用线段的和差关系求出FD=AD﹣AF=1.然后在直角△FDC中利用勾股定理求出CD的长.【解答】解:如图,连接FC,则AF=FC.∵AD∥BC,∴∠FAO=∠BCO.在△FOA与△BOC中,,∴△FOA≌△BOC(ASA),∴AF=BC=3,∴FC=AF=3,FD=AD﹣AF=4﹣3=1.在△FDC中,∵∠D=90°,∴CD2+DF2=FC2,∴CD2+12=32,∴CD=2.故选:A.【点评】本题考查了作图﹣基本作图,勾股定理,线段垂直平分线的判定与性质,全等三角形的判定与性质,难度适中.求出CF与DF是解题的关键.10.(3分)如图,在△OAB中,顶点O(0,0),A(﹣3,4),B(3,4),将△OAB与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,则第70次旋转结束时,点D的坐标为()A.(10,3)B.(﹣3,10)C.(10,﹣3)D.(3,﹣10)【分析】先求出AB=6,再利用正方形的性质确定D(﹣3,10),由于70=4×17+2,所以第70次旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O顺时针旋转2次,每次旋转90°,此时旋转前后的点D关于原点对称,于是利用关于原点对称的点的坐标特征可出旋转后的点D的坐标.【解答】解:∵A(﹣3,4),B(3,4),∴AB=3+3=6,∵四边形ABCD为正方形,∴AD=AB=6,∴D(﹣3,10),∵70=4×17+2,∴每4次一个循环,第70次旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O 顺时针旋转2次,每次旋转90°,∴点D的坐标为(3,﹣10).故选:D.【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.二、填空题(每小题3分,共15分。
2023年河南省中考数学试卷附解答

2023年河南省中考数学试卷一、选择题1. 下列各数中,最小的数是( ) A.-lB. 0C. 1D.2. 北宋时期的汝官窑天蓝釉刻花鹅颈瓶是河南博物院九大镇院之宝之一,具有极高的历史价值、文化价值.如图所示,关于它的三视图,下列说法正确的是( )A. 主视图与左视图相同B. 主视图与俯视图相同C. 左视图与俯视图相同D. 三种视图都相同3. 2022年河南省出版的4.59亿册图书,为贯彻落实党的二十大关于深化全民阅读活动的重要精神,建设学习型社会提供了丰富的图书资源.数据“4.59亿”用科学记数法表示为( ) A. 74.5910⨯ B. 845.910⨯ C. 84.5910⨯ D. 90.45910⨯4. 如图,直线AB ,CD 相交于点O ,若180∠=︒,230∠=︒,则AOE ∠的度数为( )A. 30︒B.50︒C. 60︒D. 80︒5. 化简11a a a-+的结果是( ) A. 0B. 1C. aD. 2a -6. 如图,点A ,B ,C 在O 上,若55C ∠=︒,则AOB ∠的度数为( )A. 95︒B. 100︒C. 105︒D. 110︒7. 关于x的一元二次方程280x mx+-=的根的情况是()A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根8. 为落实教育部办公厅、中共中央宣传部办公厅关于《第41批向全国中小学生推荐优秀影片片目》的通知精神,某校七、八年级分别从如图所示的三部影片中随机选择一部组织本年级学生观看,则这两个年级选择的影片相同的概率为()A. 12B.13C.16D.199. 二次函数2y ax bx=+的图象如图所示,则一次函数y x b=+的图象一定不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限10. 如图1,点P从等边三角形ABC的顶点A出发,沿直线运动到三角形内部一点,再从该点沿直线运动到顶点B.设点P运动的路程为x,PByPC=,图2是点P运动时y随x变化的关系图象,则等边三角形ABC的边长为( )A. 6B. 3C. D. 二、填空题11. 某校计划给每个年级配发n 套劳动工具,则3个年级共需配发______套劳动工具.12. 方程组⎩⎨⎧=+=+7353y x y x 的解为______.13. 某林木良种繁育试验基地为全面掌握“无絮杨”品种苗的生长规律,定期对培育的1000棵该品种苗进行抽测.如图是某次随机抽测该品种苗的高度x (cm )的统计图,则此时该基地高度不低于300cm 的“无絮杨”品种苗约有______棵.14. 如图,PA 与O 相切于点A ,PO 交O 于点B,点C 在PA 上,且CB CA =.若5OA =,12PA =,则CA 的长为______.15. 矩形ABCD 中,M 为对角线BD 的中点,点N 在边AD 上,且1AN AB ==.当以点D ,M ,N 为顶点的三角形是直角三角形时,AD 的长为______.三、解答题16. (1)计算:135--. (2)化简:()()224x y x x y ---.17. 蓬勃发展的快递业,为全国各地的新鲜水果及时走进千家万户提供了极大便利.不同的快递公司在配送、服务、收费和投递范围等方面各具优势.樱桃种植户小丽经过初步了解,打算从甲、乙两家快递公司中选择一家合作,为此,小丽收集了10家樱桃种植户对两家公司的相关评价,并整理、描述、分析如下: a .配送速度得分(满分10分): 甲:6 6 7 7 7 8 9 9 9 10 乙:6 7 7 8 8 8 8 9 9 10 b .服务质量得分统计图(满分10分):c .配送速度和服务质量得分统计表:根据以上信息,回答下列问题:(1)表格中的m =______.2s 甲______2s 乙(填“>”“=”或“<”).(2)综合上表中的统计量,你认为小丽应选择哪家公司?请说明理由.(3)为了从甲、乙两家公司中选出更合适的公司,你认为还应收集什么信息(列出一条即可)?18. 如图,ABC 中,点D 在边AC 上,且AD AB =.(1)请用无刻度的直尺和圆规作出A ∠的平分线(保留作图痕迹,不写作法). (2)若(1)中所作的角平分线与边BC 交于点E ,连接DE .求证:DE BE =. 19. 小军借助反比例函数图象设计“鱼形”图案,如图,在平面直角坐标系中,以反比例函数ky x=图象上的点)A 和点B 为顶点,分别作菱形AOCD 和菱形OBEF ,点D ,E 在x轴上,以点O 为圆心,OA 长为半径作AC ,连接BF .(1)求k 的值.(2)求扇形AOC 的半径及圆心角的度数. (3)请直接写出图中阴影部分面积之和.20. 综合实践活动中,某小组用木板自制了一个测高仪测量树高,测高仪ABCD 为正方形,30cm AB =,顶点A 处挂了一个铅锤M .如图是测量树高的示意图,测高仪上的点D ,A 与树顶E 在一条直线上,铅垂线AM 交BC 于点H .经测量,点A 距地面1.8m ,到树EG 的距离11m AF =,20cm BH =.求树EG 的高度(结果精确到0.1m ).21. 某健身器材专卖店推出两种优惠活动,并规定购物时只能选择其中一种.活动一:所购商品按原价打八折.活动二:所购商品按原价每满..300元减80元.(如:所购商品原价为300元,可减80元,需付款220元.所购商品原价为770元,可减160元,需付款610元)(1)购买一件原价为450元的健身器材时,选择哪种活动更合算?请说明理由.(2)购买一件原价在500元以下的健身器材时,若选择活动一和选择活动二的付款金额相等,求一件这种健身器材的原价.(3)购买一件原价在900元以下的健身器材时,原价在什么范围内,选择活动二比选择活动一更合算?设一件这种健身器材的原价为a 元,请直接写出a 的取值范围.22. 小林同学不仅是一名羽毛球运动爱好者,还喜欢运用数学知识对羽毛球比赛进行技术分析,下面是他对击球线路的分析.如图,在平面直角坐标系中,点A ,C 在x 轴上,球网AB 与y 轴的水平距离3m OA =,2m CA =,击球点P 在y 轴上.若选择扣球,羽毛球的飞行高度()m y 与水平距离()m x 近似满足一次函数关系0.4 2.8y x =-+.若选择吊球,羽毛球的飞行高度()m y 与水平距离()m x 近似满足二次函数关系()21 3.2y a x =-+.(1)求点P 的坐标和a 的值.(2)小林分析发现,上面两种击球方式均能使球过网.要使球的落地点到C 点的距离更近,请通过计算判断应选择哪种击球方式.23. 李老师善于通过合适的主题整合教学内容,帮助同学们用整体的、联系的、发展的眼光看问题,形成科学的思维习惯.下面是李老师在“图形的变化”主题下设计的问题,请你解答.(1)观察发现:如图1,在平面直角坐标系中,过点()4,0M 的直线ly 轴,作ABC 关于y轴对称的图形111A B C △,再分别作111A B C △关于x 轴和直线l 对称的图形222A B C △和333A B C △,则222A B C △可以看作是ABC 绕点O 顺时针旋转得到的,旋转角的度数为______.333A B C △可以看作是ABC 向右平移得到的,平移距离为______个单位长度. (2)探究迁移:如图2,▱ABCD 中,()090BAD αα∠=︒<<︒,P 为直线AB 下方一点,作点P 关于直线AB 的对称点1P ,再分别作点1P 关于直线AD 和直线CD 的对称点2P 和3P ,连接AP ,2AP ,请仅就图2的情形解决以下问题: ①若2PAP β∠=,请判断β与α的数量关系,并说明理由. ②若AD m =,求P ,3P 两点间的距离.(3)拓展应用:在(2)的条件下,若60α=︒,AD =15PAB ∠=︒,连接23P P .当23P P 与▱ABCD 的边平行时,请直接写出AP 的长.2023年河南省中考数学试卷答案一、选择题1. A2. A3. C4. B5. B6. D7. A8. B9. D 10. A【详解】解:如图,令点P 从顶点A 出发,沿直线运动到三角形内部一点O ,再从点O 沿直线运动到顶点B .结合图象可知,当点P 在AO 上运动时,1PBPC=∴PB PC =,AO =又∵ABC 为等边三角形 ∴60BAC ∠=︒,AB AC = ∴()SSS APB APC △≌△ ∴BAO CAO ∠=∠ ∴30BAO CAO ∠=∠=︒当点P 在OB 上运动时,可知点P 到达点B 时的路程为∴OB =即AO OB ==∴30BAO ABO ∠=∠=︒ 过点O 作OD AB ⊥∴AD BD =,则cos303AD AO =⋅︒= ∴6AB AD BD =+=即:等边三角形ABC 的边长为6 故选:A .二、填空题11. 3n 12. 12x y =⎧⎨=⎩13. 280 14.10315. 21.【详解】解:当90MND ∠=︒时∵四边形ABCD 矩形 ∴90A ∠=︒,则∥MN AB 由平行线分线段成比例可得:AN BMND MD= 又∵M 为对角线BD 的中点 ∴BM MD = ∴1AN BMND MD== 即:1ND AN ==∴2AD AN ND =+= 当90NMD ∠=︒时∵M 为对角线BD 的中点,90NMD ∠=︒ ∴MN 为BD 的垂直平分线 ∴BN ND =∵四边形ABCD 矩形,1AN AB ==∴90A ∠=︒,则BN ==∴BN ND ==∴1AD AN ND =+=综上,AD 的长为21故答案为:21.三、解答题16. (1)15(2)24y17.(1)7.5,<(2)甲公司,理由见解析(3)还应收集甲、乙两家公司的收费情况.(答案不唯一,言之有理即可) 18. 【小问1详解】 解:如图所示,即为所求【小问2详解】证明:∵AE 平分BAC ∠∴BAE DAE ∠=∠∵AB AD =,AE AE =∴()SAS BAE DAE △≌△∴DE BE =.19. (1(2)半径为2,圆心角为60︒(3)23π 【小问1详解】解:将)A 代入k y x=中 得1=解得:k =【小问2详解】 解:过点A 作OD 的垂线,垂足为G ,如下图:()3,1A1,AG OG ∴==2OA ∴==∴半径为2. 12AG OA = ∴1sin 2AG AOG OG ∠== 30AOG ∴∠=︒由菱形的性质知:30AOG COG ∠=∠=︒60AOC ∴∠=︒∴扇形AOC 的圆心角的度数:60︒.【小问3详解】解:2OD OG ==1AOCD S AG OD ∴=⨯=⨯=菱形221122663AOC S r πππ=⨯=⨯⨯=扇形 如下图:由菱形OBEF 知,FHO BHO S S =2BHO kS ==2FBO S ∴==2233FBO AOCD AOC S S S S ππ∴=+-==阴影部分面积菱形扇形. 20. 树EG 的高度为9.1m .【详解】解:由题意可知,90BAE MAF BAD ∠=∠=∠=︒, 1.8m FG =则90EAF BAF BAF BAH ∠+∠=∠+∠=︒∴EAF BAH ∠=∠∵30cm AB =,20cm BH = 则2tan 3BH BAH AB ∠== ∴2tan tan 3EF EAF BAH AF ∠==∠= ∵11m AF =,则2113EF = ∴22m 3EF = ∴22 1.89.1m 3EG EF FG =+=+≈ 答:树EG 的高度为9.1m .21. (1)活动一更合算(2)400元(3)当300400a ≤<或600800a ≤<时,活动二更合算【小问1详解】解:购买一件原价为450元的健身器材时活动一需付款:4500.8360⨯=元,活动二需付款:45080370-=元∴活动一更合算.【小问2详解】设这种健身器材的原价是x 元则0.880x x =-解得400x =答:这种健身器材的原价是400元.【小问3详解】这种健身器材的原价为a 元则活动一所需付款为:0.8a 元活动二当0300a <<时,所需付款为:a 元当300600a ≤<时,所需付款为:()80a -元当600900a ≤<时,所需付款为:()160a -元①当0300a <<时,0.8a a >,此时无论a 为何值,都是活动一更合算,不符合题意 ②当300600a ≤<时,800.8a a -<,解得300400a ≤<即:当300400a ≤<时,活动二更合算.③当600900a ≤<时,1600.8a a -<,解得600800a ≤<即:当600800a ≤<时,活动二更合算综上:当300400a ≤<或600800a ≤<时,活动二更合算.22. (1)()0,2.8P ,0.4a =-(2)选择吊球,使球的落地点到C 点的距离更近.【小问1详解】解:在一次函数0.4 2.8y x =-+令0x =时, 2.8y =∴()0,2.8P将()0,2.8P 代入()21 3.2y a x =-+中,可得: 3.2 2.8a += 解得:0.4a =-.【小问2详解】∵3m OA =,2m CA =∴5m OC =选择扣球,则令0y =,即:0.4 2.80x -+=,解得:7x =即:落地点距离点O 距离为7m∴落地点到C 点的距离为752m -=选择吊球,则令0y =,即:()20.41 3.20x --+=,解得:1x =±(负值舍去)即:落地点距离点O 距离为()1m∴落地点到C 点的距离为()(514m -=-∵42-<∴选择吊球,使球的落地点到C 点的距离更近.23.(1)180︒,8(2)①2βα=,理由见解析.②2sin m α(3)【小问1详解】(1)∵ABC 关于y 轴对称的图形111A B C △,111A B C △与222A B C △关于x 轴对称 ∵222A B C △与ABC 关于O 点中心对称则222A B C △可以看作是ABC 绕点O 顺时针旋转得到的,旋转角的度数为180︒ ∵()1,1A -∴12AA =∵()4,0M ,13,A A 关于直线4x =对称∴131248A A AA +=⨯=即38AA =333A B C △可以看作是ABC 向右平移得到的,平移距离为8个单位长度. 故答案为:180︒,8.【小问2详解】①2βα=,理由如下连接1AP由对称性可得,112PAB P AB P AD P AD ∠=∠∠=∠,2112PAP PAB P AB P AD P AD ∠=∠+∠+∠+∠1122P AB P AD =∠+∠()112PAB PAD =∠+∠ 2BAD =∠∵2βα=∵连接113,PP PP 分别交,AB CD 于,E F 两点,过点D 作DG AB ⊥,交AB 于点G由对称性可知:113PE PE PF P F ==,且113PP AB PP CD ⊥⊥,∵四边形ABCD 为平行四边形∵AB CD ∥∵13P P P ,,三点共线∴311311222PP PE PE PF P F PE PF EF =+++=+= ∵113,,PP AB PP CD DG AB ⊥⊥⊥∵1190PFD PEG DGE ∠=∠=∠=︒ ∵四边形EFDG 是矩形∵DG EF =在Rt DAG △中,DAG α∠=,AD m = ∵sin DG DAG DA∠= ∴sin sin DG AD DAG m α=⋅∠=∴3222sin PP EF DG m α===【小问3详解】解:设AP x =,则12AP AP x ==依题意,12PP AD ⊥当23P P AD ∥时,如图所示,过点P 作1PQ AP ⊥于点Q∵12390PP P ∠=︒∵15PAB ∠=︒,60α=︒∵1320P PAP AB ∠=︒∠=,1245DAP DAP ∠=∠=︒∴2190P AP ∠=︒,则12PP = 在1APP 中,()111180752APP PAP ∠=︒-∠=︒ ∵213180457560P PP ∠=︒-︒-︒=︒,则13230PP P ∠=︒∵13212PP P P ==在Rt APQ △中,30PAQ ∠=︒,则1122PQ AP x ==,AQ x ==在1Rt PQP 中,11PQ AP AQ x x =-=12PP x ====∵3113PP PP PP x x =+=+= 由②可得32sin PP AD α= ∵AD =∴326PP =⨯=6x =解得:x =如图所示,若23P P DC ∥,则13290PP P ∠=︒∵21360P PP ∠=︒,则32130P P P ∠=︒则1312122PP PP x ==∵1PP x =,32PP x x x =+= ∵36PP =6x =解得:x =综上所述,AP 的长为或.。
2023年河南省中考数学试卷

2023年河南省中考数学试卷参考答案与试题解析一、选择题。
(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的。
1.(3分)(2023•河南)下列各数中最小的数是()A.﹣1B.0C.1D【考点】实数大小比较;算术平方根.【答案】A【分析】【解答】解:∵1<3<4,∴12,根据实数的大小可得:<<101所以﹣1最小.故选:A.【点评】本题主要考查了实数的大小的知识,难度不大,认真比较即可.2.(3分)(2023•河南)北宋时期的汝官窑天蓝釉刻花鹅颈瓶是河南博物院九大镇院之宝之一,具有极高的历史价值、文化价值.如图所示,关于它的三视图,下列说法正确的是()A.主视图与左视图相同B.主视图与俯视图相同C.左视图与俯视图相同D.三种视图都相同【考点】简单几何体的三视图.【答案】A【分析】根据三视图的定义求解即可.【解答】解:这个几何体的主视图与左视图相同,俯视图与主视图和左视图不相同.故选:A.【点评】此题主要考查了简单几何体的三视图,正确把握观察的角度是解题关键.3.(3分)(2023•河南)2022年河南省出版的4.59亿册图书,为贯彻落实党的二十大关于深化全民阅读活动的重要精神,建设学习型社会提供了丰富的图书资源.数据“4.59亿”用科学记数法表示为()A.4.59×107B.45.9×108C.4.59×108D.0.459×109【考点】科学记数法—表示较大的数.【答案】C【分析】将一个数表示为a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可得出答案.【解答】解:4.59亿=459000000=4.59×108.故选:C.【点评】本题主要考查了用科学记数法表示较大的数,掌握形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.4.(3分)(2023•河南)如图,直线AB,CD相交于点O,若∠1=80°,∠2=30°,则∠AOE的度数为()A.30°B.50°C.60°D.80°【考点】对顶角、邻补角.【答案】B【分析】由对顶角的性质得到∠AOD=∠1=80°,即可求出∠AOE的度数.【解答】解:∵∠AOD=∠1=80°,∴∠AOE=∠AOD﹣∠2=80°﹣30°=50°.【点评】本题考查对顶角,关键是掌握对顶角的性质:对顶角相等.5.(3分)(2023•河南)化简11aa a-+的结果是()A.0B.1C.a D.a﹣2【考点】分式的加减法.【答案】B【分析】根据分式的加法法则计算即可.【解答】解:原式11aa-+==1.故选:B.【点评】本题考查的是分式的加减法,熟知同分母的分式相加减,分母不变,把分子相加减是解题的关键.6.(3分)(2023•河南)如图,点A,B,C在⊙O上,若∠C=55°,则∠AOB的度数为()A.95°B.100°C.105°D.110°【考点】圆周角定理;圆心角、弧、弦的关系.【答案】D【分析】根据同弧所对的圆周角是圆心角的一半即可得到答案.【解答】解:∵∠AOB=2∠C,∠C=55°,∴∠AOB=110°,故选:D.【点评】本题考查圆周角定理的应用,解题的关键是掌握同弧所对的圆周角是圆心角的一半.7.(3分)(2023•河南)关于x的一元二次方程x2+mx﹣8=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【考点】根的判别式.【分析】根据一元二次方程根的判别式解答即可.【解答】解:∵Δ=m 2﹣4×1×(﹣8)=m 2+32>0,∴方程有两个不相等的实数根.故选:A .【点评】本题考查的是一元二次方程根的判别式,熟知一元二次方程ax 2+bx +c =0(a ≠0)中,当Δ>0时,方程有两个不相等的实数根是解题的关键.8.(3分)(2023•河南)为落实教育部办公厅、中共中央宣传部办公厅关于《第41批向全国中小学生推荐优秀影片片目》的通知精神,某校七、八年级分别从如图所示的三部影片中随机选择一部组织本年级学生观看,则这两个年级选择的影片相同的概率为()A .12B .13C .16D .19【考点】列表法与树状图法.【答案】B【分析】画树状图,共有9种等可能的结果,其中七、八年级选择的影片相同的结果有3种,再由概率公式求解即可.【解答】解:把三部影片分别记为A 、B 、C ,画树状图如下:共有9种等可能的结果,其中七、八年级选择的影片相同的结果有3种,∴这两个年级选择的影片相同的概率为3193,故选:B .【点评】此题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.9.(3分)(2023•河南)二次函数y =ax 2+bx 的图象如图所示,则一次函数y =x +b 的图象一定不经过()A .第一象限B .第二象限C .第三象限D .第四象限【考点】二次函数的性质;一次函数的性质;二次函数的图象.【答案】D【分析】根据图象确定a ,b 的符号,即可得到答案.【解答】解:由函数图象可得,a <0,2ba->0,∴b >0,∴y =x +b 的图象过一,二,三象限,不过第四象限,故选:D .【点评】本题考查二次函数,一次函数的图象与系数的关系,解题的关键是掌握二次函数,一次函数的图象及性质.10.(3分)(2023•河南)如图1,点P 从等边三角形ABC 的顶点A 出发,沿直线运动到三角形内部一点,再从该点沿直线运动到顶点B .设点P 运动的路程为PBx y PC=,,图2是点P 运动时y 随x 变化的关系图象,则等边三角形ABC 的边长为()A .6B .3C .D .【考点】动点问题的函数图象.【答案】A【分析】如图,令点P 从顶点A 出发,沿直线运动到三角形内部一点O ,再从点O 沿直线运动到顶点B ,结合图象可知,当点P 在AO 上运动时,PB =PC ,AO =,易知∠BAO =∠CAO =30°,当点P 在OB 上运动时,可知点P 到达点B 时的路程为可知AO =OB =,过点O 作OC ⊥AB ,解直角三角形可得AD =AO •cos30°,进而得出等边三角形ABC 的边长.【解答】解:如图,令点P 从顶点A 出发,沿直线运动到三角形内部一点O ,再从点O 沿直线运动到顶点B ,\结合图象可知,当点P 在AO 上运动时,1PBPC=,∴PB =PC ,AO =,又∵△ABC 为等边三角形,∴∠BAC =60°,AB =AC ,∴△APB ≌△APC (SSS ),∴∠BAO =∠CAO =30°,当点P 在OB 上运动时,可知点P 到达点B 时的路程为,∴OB =,即AO =OB =,∴∠BAO =∠ABO =30°,过点O 作OC ⊥AB ,垂足为D ,∴AD =BD ,则AD =AO •cos30°=3,∴AB =AD +BD =6,即等边三角形ABC 的边长为6.故选:A .【点评】本题考查了动点问题的函数图象,解决本题的关键是综合利用两个图形给出的条件.二、填空题。
1986--2002河南省中考试题集锦

河南省1986—2002年中考试题集锦鲁山县鲁阳中心校苗国利河南省一九八六年中招试题一填空(满分28分1-6题每空2分,7-10题每空3分) 1、最小的正整数是__2、当x=__时,分式 无意义。
3、n 是正整数,当n=__时为最简二次根式。
4、2log 2π=5、解高次方程的基本思路是通过__把高次方程化为一次方程二次方程:解分式方程的基本思路是通过__把分式方程化为整式方程。
6如果点1p (-2,0)与点2P(4,k )的距离是10,则k=___。
7、___边形的内角和为1800°。
8、等腰三角形的一边长等于9,另一边长等于4,它的周长是__。
9、直角三角形的两直角边的长分别为6㎝和4㎝,斜边上的中线长为__㎝。
10、“全等三角形一定是相似三角形”的逆否命题是___。
二选择题(每题2分,共10分) 1、下列四个命题中正确的是( )(A )相反数等于本身的实数只有零 . (B )倒数等于本身的实数只有1 .(C )绝对值等于本身的实数只有零 (D )算术平方根等于本身的实数只有12、一项工程,甲队做完需要m 天,乙队做完需要n 天。
若甲、乙两队合作,完成这项工程需要的天数为( ) (A )m+n (B )2m n + (C )m n mn + (D )mnm n+ 3、对角线相等的四边形是( )(A )矩形 (B ) 菱形 (C )正方形 (D )形状不能确定 4、已知点A (1,2),AC 垂直于Ox 轴,垂足是C, 则点C 的坐标是( ) (A )(0,0) (B )(1,0) (C )(2,0) (D )(2,1)5、一个三角形的一个内角等于其它两个内角的和,则这个三角形是( ) (A )锐角三角形 (B )钝角三角形(C )直角三角形(D )不能确定三、解下列各题(满分22分,1—4题每题4分,5题6分)1、a 、b 在数轴上的位置如图,且|a |》|b |,化简|a |-|a +b |-|b-a |2、计算:sin 600.16︒-- 0lg 0.0012--3、已知样本 3 ,2 ,1 ,3 ,1 求这个样本的方差4、解方程 3—5、用如图表示:A 四边形 B 梯形 C 平行四边形 D 矩形 E 菱形 F 正方形的关系,把这些图形的代号分别填入图中适当的位置‘四、 某工厂计划从1985年到1987年把某种产品的成本下降19%,求平均每年下降的百分数(6分)五、一只船向东航行。
2024年河南省中考真题数学试卷含答案解析

2024年河南省中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,数轴上点P表示的数是()A.1-B.0C.1D.2【答案】A【分析】本题考查了数轴,掌握数轴的定义是解题的关键.根据数轴的定义和特点可知,点P表示的数为1-,从而求解.【详解】解:根据题意可知点P表示的数为1-,故选:A.2.据统计,2023年我国人工智能核心产业规模达5784亿元,数据“5784亿”用科学记数法表示为()A.8⨯D.12⨯0.5784105.78410⨯C.11⨯B.105784105.784103.如图,乙地在甲地的北偏东50︒方向上,则∠1的度数为()A .60︒B .50︒C .40︒D .30︒【答案】B 【分析】本题主要考查了方向角,平行线的性质,利用平行线的性质直接可得答案.【详解】解:如图,由题意得,50BAC ∠=︒,AB CD ∥,∴150BAC ∠=∠=︒,故选:B .4.信阳毛尖是中国十大名茶之一.如图是信阳毛尖茶叶的包装盒,它的主视图为( )A .B .C .D .【答案】A【分析】本题主要考查简单几何体的三视图,根据主视图的定义求解即可. 从正面看,在后面的部分会被遮挡,看见的为矩形,注意有两条侧棱出现在正面.【详解】解:主视图从前往后看(即从正面看)时,能看得见的棱,则主视图中对应为实线,且图形为矩形,左右两边各有一个小矩形;故选A .5.下列不等式中,与1x ->组成的不等式组无解的是( )A .2x >B .0x <C .<2x -D .3x >-【答案】A 【分析】本题考查的是解一元一次不等式组,熟知“同大取大,同小取小,大小小大中间找,大大小小找不到”的原则是解题的关键.根据此原则对选项一一进行判断即可.【详解】根据题意1x ->,可得1x <-,A 、此不等式组无解,符合题意;B 、此不等式组解集为1x <-,不符合题意;C 、此不等式组解集为<2x -,不符合题意;D 、此不等式组解集为31x -<<-,不符合题意;故选:A6.如图,在ABCD 中,对角线AC ,BD 相交于点O ,点E 为OC 的中点,EF AB ∥交BC 于点F .若4AB =,则EF 的长为( )A .12B .1C .43D .2故选:B .7.计算3···a a a a ⎛⎫ ⎪ ⎪⎝⎭ 个的结果是( )A .5a B .6a C .3a a +D .3aa 【答案】D 【分析】本题考查的是乘方的含义,幂的乘方运算的含义,先计算括号内的运算,再利用幂的乘方运算法则可得答案.【详解】解:()()333···a a a a a a a a == 个,故选D8.豫剧是国家级非物质文化遗产,因其雅俗共赏,深受大众喜爱.正面印有豫剧经典剧目人物的三张卡片如图所示,它们除正面外完全相同.把这三张卡片背面朝上洗匀,从中随机抽取一张,放回洗匀后,再从中随机抽取一张,两次抽取的卡片正面相同的概率为( )A .19B .16C .15D .13【答案】D【分析】本题考查了树状图法或列表法求概率,解题的关键是正确画出树状图得到所有的等可能的结果数.根据题意,利用树状图法将所有结果都列举出来,然后根据概率公式计算解决即可.【详解】解:把3张卡片分别记为A 、B 、C ,画树状图如下:共有9种等可能的结果,其中两次抽取的卡片正面相同的结果有3种,9.如图,O 是边长为ABC 的外接圆,点D 是 BC的中点,连接BD ,CD .以点D 为圆心,BD 的长为半径在O 内画弧,则阴影部分的面积为( )A .8π3B .4πC .16π3D .16π∵O 是边长为43∴43B C =,A ∠=∴120BDC ∠=︒,∵点D 是 BC的中点,10.把多个用电器连接在同一个插线板上,同时使用一段时间后,插线板的电源线会明显发热,存在安全隐患.数学兴趣小组对这种现象进行研究,得到时长一定时,插线板电源线中的电流I 与使用电器的总功率P 的函数图象(如图1),插线板电源线产生的热量Q 与I 的函数图象(如图2).下列结论中错误的是( )A .当440W P =时,2A I =B .Q 随I 的增大而增大C .I 每增加1A ,Q 的增加量相同D .P 越大,插线板电源线产生的热量Q 越多【答案】C 【分析】本题考查了函数的图象,准确从图中获取信息,并逐项判定即可.【详解】解∶根据图1知:当440W P =时,2A I =,故选项A 正确,但不符合题意;根据图2知:Q 随I 的增大而增大,故选项B 正确,但不符合题意;根据图2知:Q 随I 的增大而增大,但前小半段增加的幅度小,后面增加的幅度大,故选项C 错误,符合题意;根据图1知:I 随P 的增大而增大,又Q 随I 的增大而增大,则P 越大,插线板电源线产生的热量Q 越多,故选项D 正确,但不符合题意;故选:C .二、填空题11.请写出2m 的一个同类项: .【答案】m (答案不唯一)【分析】本题考查的是同类项的含义,根据同类项的定义直接可得答案.【详解】解:2m 的一个同类项为m ,故答案为:m12.2024年3月是第8个全国近视防控宣传教育月,其主题是“有效减少近视发生,共同守护光明未来”.某校组织各班围绕这个主题开展板报宣传活动,并对各班的宣传板报进行评分,得分情况如图,则得分的众数为 分.【答案】9【分析】本题考查了众数的概念,解题的关键是熟知相关概念,出现次数最多的数叫做众数.根据众数的概念求解即可.【详解】解:根据得分情况图可知:9分数的班级数最多,即得分的众数为9.故答案为:9.13.若关于x 的方程2102x x c -+=有两个相等的实数根,则c 的值为 .14.如图,在平面直角坐标系中,正方形ABCD 的边AB 在x 轴上,点A 的坐标为()20-,,点E 在边CD 上.将BCE 沿BE 折叠,点C 落在点F 处.若点F 的坐标为()06,,则点E 的坐标为 .【答案】()3,10【分析】设正方形ABCD 的边长为a ,CD 与y 轴相交于G ,先判断四边形AOGD 是矩形,得出OG AD a ==,DG AO =,90EGF ∠=︒,根据折叠的性质得出BF BC a ==,CE FE =,在Rt BOF △中,利用勾股定理构建关于a 的方程,求出a 的值,在Rt EGF 中,利用勾股定理构建关于CE 的方程,求出CE 的值,即可求解.【详解】解∶设正方形ABCD 的边长为a ,CD 与y 轴相交于G ,则四边形AOGD 是矩形,∴OG AD a ==,DG AO =,90EGF ∠=︒,∵折叠,∴BF BC a ==,CE FE =,∵点A 的坐标为()20-,,点F 的坐标为()06,,∴2AO =,6FO =,∴2BO AB AO a =-=-,在Rt BOF △中,222BO FO BF +=,∴()22226a a -+=,解得10a =,∴4FG OG OF =-=,8GE CD DG CE CE =--=-,在Rt EGF 中,222GE FG EF +=,∴()22284CE CE -+=,解得5CE =,∴3GE =,∴点E 的坐标为()3,10,故答案为:()3,10.【点睛】本题考查了正方形的性质,坐标与图形,矩形的判定与性质,折叠的性质,勾股定理等知识,利用勾股定理求出正方形的边长是解题的关键.15.如图,在Rt ABC △中,90ACB ∠=︒,3CA CB ==,线段CD 绕点C 在平面内旋转,过点B 作AD 的垂线,交射线AD 于点E .若1CD =,则AE 的最大值为 ,最小值为 .则CD AE ⊥,∴90ADE CDE ∠=∠=︒,∴222231AD AC CD =-=-∵ AC AC =,∴45CED ABC ==︒∠∠,∵90CDE ∠=︒,则CD AE ⊥,∴90CDE ∠=︒,∴222231AD AC CD =-=-=∵四边形ABCE 为圆内接四边形,∴180135CEA ABC =︒-=︒∠∠,∴18045CED CEA =︒-=︒∠∠,∵90CDE ∠=︒,三、解答题16.(1(01;(2)化简:231124a a a +⎛⎫+÷ ⎪--⎝⎭.【答案】(1)9(2)2a +【分析】本题考查了实数的运算,分式的运算,解题的关键是:17.为提升学生体质健康水平,促进学生全面发展,学校开展了丰富多彩的课外体育活动.在八年级组织的篮球联赛中,甲、乙两名队员表现优异,他们在近六场比赛中关于得分、篮板和失误三个方面的统计结果如下.技术统计表队员平均每场得分平均每场篮板平均每场失误甲26.582乙26103根据以上信息,回答下列问题.(1)这六场比赛中,得分更稳定的队员是_________(填“甲”或“乙”);甲队员得分的中位数为27.5分,乙队员得分的中位数为________分.(2)请从得分方面分析:这六场比赛中,甲、乙两名队员谁的表现更好.(3)规定“综合得分”为:平均每场得分×1+平均每场篮板×1.5+平均每场失误()1⨯-,且综合得分越高表现越好.请利用这种评价方法,比较这六场比赛中甲、乙两名队员谁的表现更好.18.如图,矩形ABCD 的四个顶点都在格点(网格线的交点)上,对角线AC ,BD 相交于点E ,反比例函数()0k y x x=>的图象经过点A .(1)求这个反比例函数的表达式.(2)请先描出这个反比例函数图象上不同于点A的三个格点,再画出反比例函数的图象.(3)将矩形ABCD向左平移,当点E落在这个反比例函数的图象上时,平移的距离为________.(3)解:∵()6,4E 向左平移后,E 在反比例函数的图象上,∴平移后点E 对应点的纵坐标为4,当4y =时,64x=,解得32x =,∴平移距离为39622-=.故答案为:9.19.如图,在Rt ABC △中,CD 是斜边AB 上的中线,∥B E DC 交AC 的延长线于点E .(1)请用无刻度的直尺和圆规作ECM ∠,使ECM A ∠=∠,且射线CM 交BE 于点F (保留作图痕迹,不写作法).(2)证明(1)中得到的四边形CDBF 是菱形【答案】(1)见解析(2)见解析【分析】本题考查了尺规作图,菱形的判定,直角三角形斜边中线的性质等知识,解题的关键是:(2)证明:∵ECM A ∠=∠∴CM AB ∥,∵∥B E DC ,∴四边形CDBF 是平行四边形,∵在Rt ABC △中,CD 是斜边20.如图1,塑像AB 在底座BC 上,点D 是人眼所在的位置.当点B 高于人的水平视线DE 时,由远及近看塑像,会在某处感觉看到的塑像最大,此时视角最大.数学家研究发现:当经过A ,B 两点的圆与水平视线DE 相切时(如图2),在切点P 处感觉看到的塑像最大,此时APB ∠为最大视角.(1)请仅就图2的情形证明APB ADB ∠>∠.(2)经测量,最大视角APB ∠为30︒,在点P 处看塑像顶部点A 的仰角APE ∠为60︒,点P 到塑像的水平距离PH 为6m .求塑像AB 的高(结果精确到0.1m 1.73≈).则AMB APB ∠=∠.∵AMB ADB ∠>∠,∴APB ADB ∠>∠.(2)解:在Rt AHP 中,APH ∠∵tan AH APH PH∠=,答:塑像AB的高约为6.9m.21.为响应“全民植树增绿,共建美丽中国”的号召,学校组织学生到郊外参加义务植树活动,并准备了A,B两种食品作为午餐.这两种食品每包质量均为50g,营养成分表如下.(1)若要从这两种食品中摄入4600kJ热量和70g蛋白质,应选用A,B两种食品各多少包?(2)运动量大的人或青少年对蛋白质的摄入量应更多.若每份午餐选用这两种食品共7包,要使每份午餐中的蛋白质含量不低于90g,且热量最低,应如何选用这两种食品?【答案】(1)选用A种食品4包,B种食品2包(2)选用A种食品3包,B种食品4包【分析】本题考查了二元一次方程组的应用,一元一次不等式的应用,解题的关键是:(1)设选用A种食品x包,B种食品y包,根据“从这两种食品中摄入4600kJ热量和70g蛋白质”列方程组求解即可;(2)设选用A种食品a包,则选用B种食品()7-a包,根据“每份午餐中的蛋白质含量不低于90g”列不等式求解即可.【详解】(1)解:设选用A种食品x包,B种食品y包,根据题意,得7009004600, 101570.x yx y+=⎧⎨+=⎩解方程组,得4,2. xy=⎧⎨=⎩答:选用A种食品4包,B种食品2包.(2)解:设选用A种食品a包,则选用B种食品()7-a包,根据题意,得()1015790a a +-≥.∴3a ≤.设总热量为kJ w ,则()70090072006300w a a a =+-=-+.∵2000-<,∴w 随a 的增大而减小.∴当3a =时,w 最小.∴7734a -=-=.答:选用A 种食品3包,B 种食品4包.22.从地面竖直向上发射的物体离地面的高度()m h 满足关系式205h t v t =-+,其中()s t 是物体运动的时间,()0m /s v 是物体被发射时的速度.社团活动时,科学小组在实验楼前从地面竖直向上发射小球.(1)小球被发射后_________s 时离地面的高度最大(用含0v 的式子表示).(2)若小球离地面的最大高度为20m ,求小球被发射时的速度.(3)按(2)中的速度发射小球,小球离地面的高度有两次与实验楼的高度相同.小明说:“这两次间隔的时间为3s .”已知实验楼高15m ,请判断他的说法是否正确,并说明理由.23.综合与实践在学习特殊四边形的过程中,我们积累了一定的研究经验,请运用已有经验,对“邻等对补四边形”进行研究定义:至少有一组邻边相等且对角互补的四边形叫做邻等对补四边形.(1)操作判断用分别含有30︒和45︒角的直角三角形纸板拼出如图1所示的4个四边形,其中是邻等对补四边形的有________(填序号).(2)性质探究根据定义可得出邻等对补四边形的边、角的性质.下面研究与对角线相关的性质.如图2,四边形ABCD 是邻等对补四边形,AB AD =,AC 是它的一条对角线.①写出图中相等的角,并说明理由;②若BC m =,DC n =,2BCD θ∠=,求AC 的长(用含m ,n ,θ的式子表示).(3)拓展应用如图3,在Rt ABC △中,90B Ð=°,3AB =,4BC =,分别在边BC ,AC 上取点M ,N ,使四边形ABMN 是邻等对补四边形.当该邻等对补四边形仅有一组邻边相等时,请直接写出BN 的长.∵四边形ABCD 是邻等对补四边形,∴180ABC D ∠+∠=︒,∵180ABC ABE ∠+∠=︒,∴ABE D ∠=∠,∵AE AC =,∴()()1112222m n CF CE BC BE BC DC +==+=+=,∵2BCD θ∠=,∴ACD ACB θ∠=∠=,∴22218AM AB BM =+=,在Rt AMN 中22MN AM AN =-在Rt CMN 中22MN CM CN =-∴()()22218435AN AN -=---∵AM AM =,∵90MNC ABC ∠=∠=︒,C ∠∴CMN CAB ∽△△,∴CN MN BC AB=,即543CN CN -=解得20CN =,∵AM AM =,∴Rt Rt ABM ANM ≌,∴AN AB =,故不符合题意,舍去;。
2003年全国中考数学压轴题精选及解答-

2003年全国中考数学压轴题精选11、(2003年安徽省) (本题满分14分)如图,这些等腰三角形与正三角形的形状有差异,我们把这与正三角形的接近程度称为“正度”。
在研究“正度”时,应保证相似三角形的“正度”相等。
设等腰三角形的底和腰分别为a 、b ,底角和顶角分别为α、β。
要求“正度”的值是非负数。
同学甲认为:可用式子|a -b |来表示“正度”,|a -b |的值越小,表示等腰三角形越接近正三角形;同学乙认为:可用式子|α-β|来表示“正度”,|α-β|的值越小,表示等腰三角形越接近正三角形。
探究:(1)他们的方案哪个较合理,为什么?(2)对你认为不够合理的方案,请加以改进(给出式子即可); (3)请再给出一种衡量“正度”的表达式β ααb b第24题图(2003年安徽省)附加题:(共两小题,每小题10分,共20分)报考理科实验班的学生必做,不考理科实验班的学生不做)1、要将29个数学竞赛的名额分配给10所学校,每所学校至少要分到一个名额。
(1)试提出一种分配方案,使得分到相同名额的学校少于4所; (2)证明:不管怎样分配,至少有3所学校得到的名额相同;(3)证明:如果分到相同名额的学校少于4所,则29名选手至少有5名来自同一学校。
如图12所示,已知A、B两点的坐标分别为(28,0)和(0,28),动点P从A点开始在线段AO上以每秒3个长度单位的速度向原点O运动。
动直线EF从x轴开始以每秒1个长度单位的速度向上平行移动(即EF∥x轴),并且分别与y轴、线段AB交于E、F点。
连结EP,设动点P与动直线EF同时出发,运动时间为t秒。
(1)当t=1秒时,求梯形OPFE的面积。
t为何值时,梯形OPFE的面积最大,最大面积是多少?(2)当梯形OPFE的面积等于三角形APF的面积时.求线段PF的长;(3)设t的值分别取1t、2t时(1t≠2t),所对应的三角形分别为△AF1P1和△AF2P2。
试判断这两个三角形是否相似,请证明你的判断。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河南省2003年高级中等学校招生统一考试试卷:
数学
题号 一
二
三
四
五
六
七
总分
分数
一、填空题(每小题2分,共24分) 1.-5的相反数的倒数是_________.
2.实数p 在数轴上的位置如图1所示, 化简=-+-2
2
)2()1(p p ______________.
3.如图2,直线L1//L2,AB ⊥L1,垂足为O ,BC 与L2相交于点 E ,若∠1=30°,则∠B=___.
1
图2
O E L1
L2
A B
C
4.函数
3
52
1---
-x x
x 的自变量x 的取值范围是_____________________________. 5.根据有关媒体报道,今年5月27日至6月1日全国“SARS ”患者治愈出院人数依次是:115,85,92,129,69,62,这组数据的平均数是________________________.
6.一商店把某商品按标价的九折出售仍可获得20%的利润率,若该商品的进价是每件30元,则标价是每件__________________元.
7.不等式组⎪⎪⎩⎪⎪⎨⎧+<->--213
12,22
1x x x x 的整数解是______________________________________. 8.如图3,在等腰梯形ABCD 中AD//BC ,AB=DC ,
CD=BC ,E 是BA 、CD 延长线的交点,∠E=40°, 则∠ACD=____________度.
9.如果多项式b y axy x -+-2
2
能用分组分解法分解因式,则符合条件的一组整数的值是a=_____,b=________.
10.如图4,为了测量河对岸的旗杆AB 的高度,在点C 处测得旗杆顶端A 的仰角为30°,沿CB 方向前进5 米到达D 处,在D 处测得旗杆顶端A 的仰角为45°, 则旗杆AB 的高度是______________米.
图3
E B
C
A
D
C D
A
B
图1
12
p
11.点P (m ,n )既在反比例函数)0(2
>-
=x x
y 的图象上,又在一次函数2--=x y 的图象上,则以m 、n 为根的一元一次方程为___________________. 12.如图5,某燃料公司的院内堆放着10个外 径为1米的空油桶,为了防雨需搭建简易防 雨蓬,这个防雨棚的高度最低应为___________ (3取1.73,结果精确到0.1米).
二、选择题(每小题3分,只有一个正确答案,共15分) 13.若单项式752222b a b a
m n n
m 与+-+是同类项,则m n 的值是( )
(A )-3 (B )-1 (C )1/3 (D )3
14.某专卖店在统计2003年第一季度的销售额时发现,二月份比一月份增加10%,三月份比二月份减少10%,那么三月份比一月份 ( ) (A) 增加10% (B )减少10% (C )不增不减 (D )减少1% 15.用两块完全重合的等腰三角形纸片拼下列图形:(1)平行四边形(不包含菱形、矩形、正方形);(2)矩形;(3)正方形;(4)等边三角形;(5)等腰直角三角形,一定能拼成的图形是( ) (A )(1)(2)(3) (B )(1)(3)(5) (C )(2)(3)(5) (D )(1)(3)(4)(5) 16.在学校对学生进行的晨检体温测量中,学生甲连续10天的体温与36°C ,的上下波动数据为0.2,0.3,0.1,0.1,0,0.2,0.1,0.1,0,0.1,在这十天中该学生的体温波动数据中不正确的是( )
(A )平均数为0.12 (B )众数为0.1 (C )中位数为0.1 (D )方差为0.02 17.已知如图6,ABCD 是⊙O 内接正方形,AB=4,
F 是BC 的中点,AF 的延长线交⊙O 于点E ,则AE
的长是( )
(A )
5512 (B )5
5
4 (C )5
5 (D )5
5
6
三、(第18、19小题各5分,第20、21小题各6分,共22分) 18.已知2
231-=x ,2
231+=
y ,求
4-+x
y
y x 的值.
图5
图6
F
O
B
D A C
E
19.已知,如图7是两个同心圆被两条半径截得的一个扇形图,请你画出一个以O 为对称中心的扇形的对称图(保留作图痕迹,写出画法)
图7
C
D
O
B A
20.已知关于x 的方程012)14(2
=-+++k x k x . (1)求证:该方程一定有两个不相等的实数根;
(2)若x 1、x 2是两个实数根,且32)2)(2(21-=--k x x ,求k 的值.
21.已知:如图8,在Rt △ABC 中,∠ACB=90°,AC=BC ,点D 是BC 的中点,CE ⊥AD ,垂足为点E ,BF//AC 交CE 的延长线于点F. 求证:AB 垂直平分DF.
图8
E
D
B
C
A
F
四、(每小题7分,共14分) 22.解方程31
23
422
2
=----x x x x .
23.已知:如图9,在直角梯形ABCD 中AB//CD ,AD ⊥AB ,以腰BC 为直径的半圆O 切AD 于点E ,连结点BE ,若BC=6,∠EBC=30°. 求梯形ABCD 的面积.
图9
B
O
C
E D
A
五、(8分)
24.在防治“SARS ”的战役中,为防止疫情扩散,某制药厂接到了生产240箱过氧乙酸消毒液的任务.在生产了60箱后,需要加快生产,每天比原来多生产15箱,结果6天就完成了任务.求加快速度后每天生产多少箱消毒液.
六、(8分)
25.已知:如图10,⊙O 1与⊙O 2相交,⊙O 1的弦AB 交⊙O 2于点C 、D ,O 1O 2⊥AB 于点F ,过点B 作⊙O 2切线BE ,切点为E ,连结EC 、DE.若BE=DE ,∠BED=30°,AC 、CE 的长是方程016102
=+-x x 的两个根,(AC<CE ). (1)求证:BC=EC ;
(2)求⊙O 2的半径.(该题是一个错题)
图10
F
D C
O1
O2
E
A B
七、(9分)
26.已知:如图11,在平面直角坐标系中,以BC 为直径的圆M 交x 轴于正半轴于点A 、B ,交y 轴于点E 、F ,过点C 作CD 垂直y 轴于点D ,连结AM 并延长交⊙M 于点P ,连结PE. (1)求证:∠FAO=∠EAM ;
(2)若二次函数q px x y ++-=2
的图象经过B 、C 、E 三点,且以点C 为顶点,当点B 的横坐标等于2时,四边形OECB 的面积是
4
11
,求这个二次函数的解析式. x
y B
A
E O
M
C
D E
P。