2021学年高一数学下学期期中试题

合集下载

辽宁省大连市第二十四中学2021-2022学年高一下学期期中考试数学试题

辽宁省大连市第二十四中学2021-2022学年高一下学期期中考试数学试题

辽宁省大连市第二十四中学2021-2022学年高一下学期期中考试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.sin 240=A B .12C .D .12-2.已知边长为ABC 的外接圆圆心为O ,则AOC ∠所对的劣弧长为()A .πB .2πC .3πD .4π3.已知向量(1,1)a = , b a 与b 的夹角为5π6,则||a b += ()AB .2CD .144.设函数()sin()(,0,0,||)2f x A x x R A πωϕωϕ=+∈>><的部分图象如图所示,若12,63x x ππ⎛⎫∈- ⎪⎝⎭,且()()12f x f x =,则()12f x x +=()A .12B .2C .2D .15.已知O 为ABC 的外心,4AB =uuu r ,则AO AB ⋅=()A .8B .10C .12D .146.若sin 7a π=,3cos 7b π=,tan 7c π=,则a 、b 、c 之间的大小关系为()A .a b c<<B .b a c<<C .b<c<a D .a c b<<7.已知ABC 中,若sin 2cos A A -=tan A =()A .3-B .3C .3-或13D .3或13-8.已知函数()()2sin 0f x x ωω=>在区间,43ππ⎡⎤-⎢⎥⎣⎦上是增函数,若函数()f x 在0,2π⎡⎤⎢⎥⎣⎦上的图像与直线2y =有且仅有一个交点,则ω的最小值为()A .43B .34C .32D .1二、多选题9.已知向量()1,sin θ=a ,(cosb θ= ,则下列命题正确的是()A .存在θ,使得λa b=B .当tan 2θ=时,a 与b 垂直C .对任意θ,都有a b≠r rD .当a b ⋅a 在b 10.下列论述中正确的是()A .已知平面向量a ,b 的夹角为3π,且1a b ==r r ,c a b =- ,则c 与a 的夹角等于3πB .若a b a c ⋅=⋅ ,且0a ≠,则b c=C .在四边形ABCD 中,()6,8AB DC == ,且AB AD ACAB AD AC +=,则BD = D .在ABC 中,若OA OB OA OC OB OC ⋅=⋅=⋅uur uuu r uur uuu r uuu r uuu r,则O 是ABC 外心11.已知函数π()sin()(0,0,||)2f x A x A ωϕωϕ=+>><条对称轴之间的距离为2π,且()f x 的图象关于点(,0)12π-对称,则下列结论正确的是()A .函数()f x 的图象关于直线512x π=对称B .当[,]66x ππ∈-时,函数()f x 的最小值为2-C .若()65f πα-=,则44sin cos αα-的值为45-D .要得到函数()f x的图象,只需要将()cos 2g x x 的图象向右平移6π个单位12.在锐角三角形ABC 中,下列命题成立的是()A .sin A tan 3B =,则A B <B .tan tan 1A B ⋅<C .sin sin cos cos A B A B+>+D .sin sin 1A B +>三、填空题13.已知α,β为锐角,4sin 5α=,()cos 5αβ+=-,则cos 2β=______.14.已知(),2a λ= ,()3,5b =- ,且a 与b的夹角为锐角,则λ的取值范围是_________________.15.已知函数()22sin cos 24f x x x π⎛⎫=+ ⎪⎝⎭,,42x ππ⎡⎤∈⎢⎥⎣⎦,则()f x 的值域为______.四、双空题16.设tan θ=2,则tan (4πθ+=________,sin cos sin cos θθθθ-+=________.五、解答题17.已知2= a ,b = ()()239a b b a +⋅-=(1)求a 与b的夹角θ;(2)在ABC 中,若AB a=,AC b = ,求BC 边的长度.18.已知1sin cos 2αα+=,0απ<<.(1)求sin cos αα的值.(2)求sin cos αα-的值.(3)-的值.19.已知以角B 为钝角的ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,()sin ,2sin m A B =,)sin n A =-,且m n ⊥.(1)求角B 的大小;(2)求cos cos A C +的最大值.20.在①函数()()1sin 0,22f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的图像向右平移12π个单位长度得到()g x 的图像,()g x 图像关于原点对称;②函数()1sin 2sin 2226f x x x ππωω⎡⎤⎛⎫⎛⎫=++- ⎪⎢⎥⎝⎭⎝⎭⎣⎦;③函数()()1cos sin 064f x x x πωωω⎛⎫=+-> ⎪⎝⎭这三个条件中任选一个,补充在下面问题中,并解答.已知______,函数()f x 的图像相邻两对称中心之间的距离为2π.(1)求函数()f x 的最小正周期和单调递增区间;(2)若06πθ<<,且()310f θ=,求cos 2θ的值.21.已知函数()2cos sin 4f x x a x a =-++-,[]0,x π∈.(1)求()f x 的最小值()g a ;(2)若()f x 在[]0,π上有零点,求a 的取值范围.22.设O 为坐标原点,定义非零向量(),a M b O =的“相伴函数”为()()sin cos f x a x b x x =+∈R ,向量(),a M b O =称为函数()sin cos f x a x b x =+的“相伴向量”.(1)设函数()2sin cos 36h x x x ππ⎛⎫⎛⎫=--+ ⎪ ⎪⎝⎭⎝⎭,求()h x 的“相伴向量”;(2)记()0,2OM =的“相伴函数”为()f x ,若函数()()1g x f x x =+-,[]0,2x π∈与直线y k =有且仅有四个不同的交点,求实数k 的取值范围;(3)已知点(),M a b 满足22340a ab b -+<,向量OM的“相伴函数”()f x 在0x x =处取得最大值.当点M 运动时,求0tan 2x 的取值范围.参考答案:1.C【详解】试题分析:00sin 240sin 60=-=C .考点:诱导公式2.D【分析】根据等边三角形的性质可得AOC ∠,再根据弧长公式求解即可【详解】因为边长为的等边ABC 的外接圆圆心为O ,则O 为等边ABC 的中心,故23AOC π∠=,且6OA OC ==,故AOC ∠所对的劣弧长为2643ππ⨯=故选:D 3.A【分析】首先计算a r 和a b ⋅,再代入+= a b ,即可求得答案.【详解】 (1,1)a =,a == 又= b a 与b 的夹角为56π∴cos 32θ⎛⎫⋅=⋅=-=- ⎪ ⎪⎝⎭ a b ab +=== a b 故选:A.4.C【分析】根据图像求出()sin(2)3f x x π=+,由12()()f x f x =得到126x x π+=,代入即可求解.【详解】根据函数()sin()(,0,0,||)2f x A x x R A πωϕωϕ=+∈>><的部分图象,可得:A =1;因为236T πππω⎛⎫==-- ⎪⎝⎭,2ω∴=,结合五点法作图可得2(06πϕ-+= ,3πϕ∴=,()sin(2)3f x x π=+.如果12,(,)63x x ππ∈-,且12()()f x f x =,结合2(0,)3x ππ+∈,可得122(23322x x πππ+++=,126x x π∴+=,12()()sin()6332f x x f πππ∴+===5.A【分析】根据平面向量数量积的几何意义,结合外心的性质求解即可【详解】取AB 中点D ,因为O 为ABC 的外心,故OD AB ⊥,故cos 248AO AB AO AB OAB AD AB ⋅=⋅⋅∠=⋅=⨯=uuu r uuu r uuu r uuu r uuu r uuu r故选:A 6.B【分析】根据诱导公式,结合正弦函数的单调性判断,a b ,再根据正弦与正切的关系判断,a c 即可【详解】由题,3cos cos sin sin 7214147b a πππππ⎛⎫==-=<= ⎪⎝⎭,又sin7tan sin 77cos 7c a ππππ==>=,故b a c <<故选:B 7.A【分析】由10sin 2cos 2A A -=,利用同角三角函数间的基本关系求出1tan 3A =或3-,再分类即可求解.【详解】10sin 2cos 2A A -=()22222sin 2cos 5tan 4tan 45sin cos 2tan 12A A A A A A A --+∴=⇒=⇒++1tan 3A =或3-,10sin 2cos 0sin 2cos 2A A A A -=⇒> tan 2(cos 0)A A ⇒>>或tan 0(cos 0)A A <<,tan 3A ∴=-,8.D【分析】结合函数()f x 图像的对称性,及()f x 在区间,43ππ⎡⎤-⎢⎥⎣⎦上的单调性,可知232T π≤,又()f x 的图像与直线2y =的交点的横坐标为()2Z 2k x k ππωω=+∈,从而得2222ππππωωω≤<+,进而可求出ω的取值范围.【详解】解:因为函数()2sin (0)f x x ωω=>的图像关于原点对称,并且在区间,43ππ⎡⎤-⎢⎥⎣⎦上是增函数,所以24323T T ππ≤⇒≥,又20T πωω⎧=⎪⎨⎪>⎩,得302ω<≤,令()2sin 2f x x ω==,得()2Z 2k x k ππωω=+∈,所以()f x 在()0,∞+上的图像与直线2y =的第一个交点的横坐标为2πω,第二个交点的横坐标为22ππωω+,所以2222ππππωωω≤<+,解得15ω≤<,综上所述,312ω≤≤,故ω的最小值为1故选:D 9.BD【分析】利用向量平行得关系验证可判断A;利用商数关系可得cos θ=θ,在判断0a b ⋅=是否成立,即可判断B ;通过向量的模得求法求解θ即可判断C ;利用向量数量积的坐标表示结合平方关系求得2cos θ,a 在b 方向上的投影向量的模长即为a 在b方向上的投影的绝对值,再根据向量的投影的定义即可判断D.【详解】解:对于A ,若λa b =,则a b ∥,sin cos 0θθ-=,即1sin 22θ=,所以sin θ=又[]sin 21,1θ∈-,所以不存在θ,使得λa b =,故A 错误;对于B,当tan 2θ=-时,则cos θ=θ,则cos 0a b θθ⋅==,所以a 与b 垂直,故B 正确;对于C,若a b ==r r 若a b =r r,则221sin cos 2θθ+=+,则22cos sin 1θθ-=-,即cos 21θ=-,所以22k θππ=+,所以,Z 2k k πθπ=+∈,即存在,Z 2k k πθπ=+∈,使得a b =r r ,故C 错误;对于D,cos in a b θθ⋅==,则223cos 2sin cos θθθθ+=+,即()2222cos 2sin cos cos sin 3θθθθθθ+=++,化简得22sin cos 2cos 0θθθθ-+=,则2tan 20θ-θ+=,解得tan θ=,即22sin 2cos θ=θ,所以21cos 3θ=,a 在b方向上的投影向量的模长为a b b a b bb b⋅⋅⋅==D 正确.故选:BD.10.AC【分析】分别求出,a c c ⋅ ,再根据cos ,a ca c a c⋅=,即可判断A ;根据数量积的定义即可判断B ;易知四边形ABCD 是边长为10的菱形,且120BAD ∠=︒,从而可判断C ;由平面向量的数量积可知OA BC ⊥,,OB AC OC AB ⊥⊥,即可判断D.【详解】解:对于A ,()212a c a ab a a b ⋅=⋅-=-⋅= ,1c a b =-=,则1cos ,2a c a c a c ⋅== ,所以c 与a 的夹角为3π,故A 正确;对于B ,若a b a c ⋅=⋅,则cos ,cos ,a b a b a c a c =r r r r r r r r ,所以cos ,cos ,b a b c a c =,故B 错误;对于C ,因为()6,8AB DC == ,所以四边形ABCD 为平行四边形,且10AB DC ==,又AB AD ACAB AD AC+= ,所以四边形ABCD 为菱形,且120BAD ∠=︒,所以对角线BD =C 正确;对于D ,因为OA OB OA OC ⋅=⋅,所以()0OA OB OC OA CB ⋅-=⋅=uur uuu r uuu r uur uur,所以OA BC ⊥,同理,OB AC OC AB ⊥⊥,所以O 为ABC 的垂心,故D 错误.故选:AC.11.BD【分析】利用最值,半个周期,对称点,以及ϕ取值范围确定())6f x x π+,分别利用正弦函数的对称轴,整体法确定角度范围求最值,诱导公式和平方差公式,利用函数诱导公式变换表达式从而分析图像特点即可求解.【详解】 函数π()sin()(0,0,||)2f x A x A ωϕωϕ=+>><,其图象相邻的两条对称轴之间的距离为2π,∴A =1222ππω⋅=,2ω∴=,())f x x ϕ=+.又因为()f x 的图象关于点(,0)12π-对称,所以())0,126f ππϕ-=-+=所以,6k k Z πϕπ-+=∈,所以6,k k Z πϕπ=+∈.因为||2ϕπ<,所以6πϕ=.即())6f x x π=+.对选项5A,()012f ππ==≠A 错误.对选项B ,[,],2[,]66662x x πππππ∈-+∈-,当()2,66x f x ππ+=-时取得最小值B 正确.对选项C,()sin(2)cos 2625f ππααα--=,得到3cos 25α=.因为4422223sin cos (sin cos )(sin cos )cos 25ααααααα-=+-=-=-,故C 错误.对选项D ,把()2g x x =的图象向右平移6π个单位得到2())sin[(2)])63236y x x x x πππππ=-=-=+-+的图象,故D 正确,故选:BD .12.ACD【分析】根据三角恒等变换,逐个选项化简判断即可求解【详解】因为在锐角三角形中,所以,,,A B C 均为锐角对于A ,sin 5A =,得cos A =,tan 2tan A B =<,所以,A B <;所以,A 正确;对于B ,若tan tan 1A B ⋅<,整理得sin sin cos cos 0A B A B -<,化简得cos()0A B +>,所以,cos 0C <,C 为钝角,与题意不符,B 错误;对于C ,若sin sin cos cos A B A B +>+)sin()44A B ππ->-,化简得sin()sin()44A B ππ->-,因为,,A B C 均为锐角,所以,必有44A B ππ->-,得2A B π+>,符合,,A B C 均为锐角,所以,C 正确;对于D ,因为,,A B C 均为锐角,得2A B π+>,所以,2A B π>-,所以,sin sin sin()sin 2A B B B π+>-+cos sin B B >+4B π+≥1>,所以,sin sin 1A B +>成立,D 正确;故选:ACD13.35-##0.6-【分析】根据平方关系求出cos α,()sin αβ+,再根据()sin sin βαβα=+-⎡⎤⎣⎦求出sin β,再根据二倍角得余弦公式即可得解.【详解】解:因为α,β为锐角,则,0,2παβ⎛⎫∈ ⎪⎝⎭,则()0,αβπ+∈,又4sin 5α=,()cos αβ+=-所以3cos 5α=,()sin 5αβ+=,则()()()sin sin sin cos cos sin 5βαβααβααβα=+-=+-+=⎡⎤⎣⎦,所以23cos 212sin 5ββ=-=-.故答案为:35-.14.10635λλ<≠-且【详解】试题分析:因为向量a 与b 的夹角为锐角,所以0a b ⋅<且a 与b 不共线,所以3100λ-+>且56λ≠-,解之得:10635λλ<≠-且考点:向量夹角及坐标运算.15.[]2,3【分析】首先利用三角恒等变换公式将函数()f x 化简,再根据x 的取值范围,求出23x π-的范围,最后根据正弦函数的性质计算可得;【详解】解:函数2()2sin ()24f x x xπ=+-1cos(2)22x xπ=-+-sin 221x x =-+12sin 2212x x ⎛⎫=+ ⎪ ⎪⎝⎭2sin 213x π⎛⎫=-+ ⎪⎝⎭,即()2sin 213f x x π⎛⎫=-+ ⎪⎝⎭,又42ππx ≤≤∴22633x πππ≤-≤∴1sin(2),132x π⎡⎤-∈⎢⎥⎣⎦,∴[]2sin(2)1,23x π-∈,∴()[]2,3f x ∈;故答案为:[]2,316.-313【分析】由两角和的公式计算出tan(4πθ+,把它展开后切弦互化可得sin cos sin cos θθθθ-+.【详解】解:由tan θ=2,得tan (4πθ+=tan tan41tan tan4πθπθ+-=-3,sin cos sin cos θθθθ-+=tan 1tan 1θθ-+=13.故答案为:3-;13.17.(1)56π【分析】(1)先求出a b ⋅,再带入公式计算即可;(2)根据题意得到()22BC b a =- ,展开计算求解即可.(1)因为()()22222335232529a b b a a a b b a b +⋅-=--⋅+=-⨯-⋅+⨯= ,所以3a b ⋅=-,所以cos a b a b θ⋅==- []0,θπ∈,所以56πθ=.(2)因为BC AC AB b a =-=-,所以()2222=213BC b a b a b a =--⋅+= ,所以BC =18.(1)38-(3)43-【分析】(1)将已知平方结合平方关系即可得解;(2)由(1),可得sin 0,cos 0αα><,则sin cos αα-=(3=得符号去掉根号,化简,从而可求出答案.【详解】(1)解:因为1sin cos 2αα+=,所以()2221sin cos sin cos 2sin cos 12sin cos 4αααααααα+=++=+=,所以3sin cos 8αα=-;(2)解:因为0απ<<,3sin cos 8αα=-,所以sin 0,cos 0αα><,所以sin cos 2αα-=;(3)解:由(2)得sin 0,cos 0αα><,1sin 1cos cos sin αααα--=--()()sin 1sin cos 1cos sin cos αααααα-+-=-sin cos 1sin cos αααα+-=-11238-=--43=-.19.(1)23B π=【分析】(1)利用0m n ⋅= ,结合正弦定理,求出sin B =,B 为钝角,所以23B π=.(2)化简cos cos 3A C A π⎛⎫+=+ ⎪⎝⎭,由(1)知,0,3A π⎛⎫∈ ⎪⎝⎭,2,333A πππ⎛⎫+∈ ⎪⎝⎭,即可确定cos cos A C +的取值范围,(1)解:因为()sin ,2sin m A B =,)sin n A =- ,且m n ⊥.所以0m n ⋅=2sin sin 0A B A -=,因为()0,,sin 0A A π∈≠,所以sin 2B =,因为B 为钝角,所以23B π=.(2)解:因为1cos cos cos cos cos cos sin 3223A C A A A A A A ππ⎛⎫⎛⎫+=+-=++=+ ⎪ ⎪⎝⎭⎝⎭,由(1)知,0,3A π⎛⎫∈ ⎪⎝⎭,2,333A πππ⎛⎫+∈ ⎪⎝⎭,sin ,132A π⎛⎤⎛⎫+∈ ⎥ ⎪ ⎝⎭⎝⎦,故cos cos A C +的取值范围是32⎛ ⎝.所以cos cos A C +20.(1)最小正周期T π=,单调递增区间为,,36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;(2)310【分析】(1)依题意函数的最小正周期T π=,再根据所选条件及三角恒等变换公式化简,即可得到()f x 的解析式,再根据正弦函数的性质计算可得;(2)由(1)可得3sin 265πθ⎛⎫+= ⎪⎝⎭,再根据同角三角函数的基本关系求出cos 26πθ⎛⎫+ ⎪⎝⎭,最后根据两角差的余弦公式计算可得;(1)解:若选条件①,由题意可知,2T ππω==,2ω∴=,∴1()sin(2)2f x x ϕ=+,将()f x 的图像向右平移12π个单位长度得到1()sin(2)26g x x πϕ=+-,又函数()g x 的图象关于原点对称,∴6k πϕπ=+,Z k ∈, ||2ϕπ<,∴6πϕ=,∴1()sin(226f x x π=+,所以函数的最小正周期T π=,令222,262k x k k Z πππππ-+≤+≤+∈,解得,36k x k k Z ππππ-+≤≤+∈,所以函数的单调递增区间为,,36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;若选条件②,()1sin 2sin 2226f x x x ππωω⎡⎤⎛⎫⎛⎫=++- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦1cos 2sin 2cos cos 2sin 266x x x ππωωω⎛⎫=+- ⎪⎝⎭11cos 22222x x ωω⎛⎫=+ ⎪ ⎪⎝⎭1sin 226x πω⎛⎫=+ ⎪⎝⎭又22T ππω==,1ω∴=,∴1()sin(2)26f x x π=+.所以函数的最小正周期T π=,令222,262k x k k Z πππππ-+≤+≤+∈,解得,36k x k k Z ππππ-+≤≤+∈,所以函数的单调递增区间为,,36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;若选条件③,11()cos sin()cos (sin cos cos sin 64664f x x x x x x πππωωωωω=+-=+-211cos cos 224x x x ωω=+-12cos 244x x ωω=+1112cos 2)sin(2)2226x x x πωωω=+=+即()1sin(2)26f x x πω=+,又22T ππω==,1ω∴=,∴1()sin(2)26f x x π=+.所以函数的最小正周期T π=,令222,262k x k k Z πππππ-+≤+≤+∈,解得,36k x k k Z ππππ-+≤≤+∈,所以函数的单调递增区间为,,36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;(2)解:因为1()sin(2)26f x x π=+且()310f θ=,所以()13sin 22610f πθθ⎛⎫=+= ⎪⎝⎭,所以3sin 265πθ⎛⎫+= ⎪⎝⎭,因为06πθ<<,所以2662πππθ<+<,所以4cos 265πθ⎛⎫+== ⎪⎝⎭,所以cos2cos 266θθππ⎡⎤⎛⎫=+-⎪⎢⎥⎝⎭⎣⎦43132cos sin 2sin 666652520cos 1ππππθθ⎛⎫⎛=⎫+++=⨯+⨯=⎪ ⎪⎝⎭⎝⎭21.(1)()23,03,20442a a ag a a a a ⎧->⎪⎪⎪=-+--≤≤⎨⎪⎪<-⎪⎩,(2)3a ≥【分析】(1)化简函数()22sin 324a a f x x a ⎛⎫=+-- ⎝⎭,根据[0,]x π∈,所以sin [0,1]x ∈,分类讨论,即可求解函数的最小值;(2)由()0f x =,可得2sin 3(1sin )x x a +=-⋅,当sin 1x ≠,2sin 31sin x a x+=-,令sin [0,1)t x =∈,则231t a t+=-,利用单调性,即可求解.(1)由题意,函数()222sin cos 4sin 324a a f x a x x a x a ⎛⎫=-+-=+-+- ⎪⎝⎭,因为[0,]x π∈,所以sin [0,1]x ∈,当<02a-时,即0a >时,则sin 0x =时,()f x 取得最小值()3g a a =-;当012a ≤-≤时,即20a -≤≤时,则sin 2ax =-时,所以()f x 取得最小值()234a g a a =-+-;当12a->时,即2a <-时,则sin 1x =时,()f x 取得最小值()4g a =.综上可得,()23,03,20442a a ag a a a a ⎧->⎪⎪⎪=-+--≤≤⎨⎪⎪<-⎪⎩,.(2)∵[0,]x π∈,∴sin [0,1]x ∈,由()0f x =,可得2sin 3(1sin )x x a +=-⋅,当sin 1x =时,此等式不成立.故有sin 1x ≠,2sin 31sin x a x+=-,令sin [0,1)t x =∈,则231t a t +=-,令()[)()230,11+=∈-t F t t t,()()()()2311--+'=-t t F t t ,当[)0,1∈t 时,()0F t '>,()F t 单调递增,所以()3≥F t ,故3a ≥.【点睛】本题主要考查了正弦函数的值域,三角函数的基本关系式的应用,以及二次函数的图象与性质的应用,其中解答中利用三角函数的基本关系式,转化为关于sin x 的二次函数,熟练应用二次函数的图象与性质求解是解答的关键,着重考查了转化思想,以及推理与运算能力,属于中档试题.22.(1)12OM ⎛=- ⎝⎭(2)[)1,3(3)3,4⎛⎫-∞- ⎪⎝⎭【分析】(1)依题意,将ππ()2sin()cos()36h x x x =--+可化为()1sin 2h x x x =-+进而根据题意得答案;(2)去绝对值得函数的单调性及最值,利用交点个数求得k 的范围(3)由())f x x ϕ=+可求得02+,Z 2x k k ππϕ=-∈时,f (x )取得最大值,其中0tan ax b=,换元求得a b 的范围,再利用二倍角的正切可求得0tan 2x 的范围.(1)解:111()2sin sin sin 222h x x x x x x x ⎫⎛⎫=---=-⎪ ⎪⎪ ⎪⎝⎭⎝⎭∴()h x 的“相伴向量”为12OM ⎛=- ⎝⎭.(2)解:由题知:()0sin 2cos 2cos f x x x x =⋅+⋅=.4sin 1,06()2cos 14cos 1,23x x g x x x x x πππππ⎧⎛⎫+- ⎪⎪⎪⎝⎭=+-=⎨⎛⎫⎪+-< ⎪⎪⎝⎭⎩可求得()g x 在03π⎛⎫⎪⎝⎭,单调递增,3,ππ⎛⎫ ⎪⎝⎭单调递减,53ππ⎛⎫⎪⎝⎭,单调递增,523ππ⎛⎫ ⎪⎝⎭,单调递减且5(0)1,3()33(2,),,133g g g g g ππππ⎛⎫⎛⎫===-== ⎪ ⎪⎝⎭⎝⎭∵()g x 图像与y k =有且仅有四个不同的交点13k ∴≤<所以,实数k 的取值范围为[)1,3(3)解:()sin cos sin()f x a x b x x ϕ=++其中cos sin tan baϕϕϕ===Rx ∈ ∴当2,Z 2x k k πϕπ+=+∈即022x k πϕπ=-+时,()f x 取得最大值.此时022tan tan 2tan(2)tan 21tan x ϕπϕϕϕ=-=-=--令tan b m a ϕ==,则由22430a ab b -+<知:23410m m -+<,解之得113m <<0222tan 211m x m m m=-=--,因为1y m m=-在1(,1)3m ∈上单调递增,所以0222tan 211m x m m m=-=--在1(,1)3m ∈上单调递减,从而03tan 2,4x ⎛⎫∈-∞- ⎪⎝⎭。

湖南师范大学附属中学2021-2022学年高一下学期期中数学试题含解析

湖南师范大学附属中学2021-2022学年高一下学期期中数学试题含解析

A.若 c 3 ,则 c c b 2
B. c b 1
C. t R ,有 b ta 3 2
D.若 c a 1 b , R ,则 3
6
三、填空题
试卷第 3 页,共 7 页
13.棉花的纤维长度是棉花质量的重要指标.在一批棉花中随机抽测了 60 根棉花的纤 维长度(单位:mm),按从小到大排序结果如下: 25 28 33 50 52 58 59 60 61 62 82 86 113 115 140 143 146 170 175 195 202 206 233 236 238 255 260 263 264 265 293 293 294 296 301 302 303 305 305 306 321 323 325 326 328 340 343 346 348 350 352 355 357 357 358 360 370 380 383 385
机会,从第Ti2 题开始继续答题;直到 3 道题目出完,挑战结束;
③选手初始分为 0 分,若挑战结束后,累计得分不低于 7 分,则选手挑战成功,否则挑 战失败.选手甲即将参与挑战,已知选手甲答对题库中任何一题的概率均为 3 ,各次作
4 答结果相互独立,且他不会主动放弃任何一次作答机会,求:
(1)挑战结束时,选手甲共答对 2 道题的概率 P1 ;
cos a,b 2 , 2

a,b
0,

a,b
3 4
,即
a
与b
的夹角为135
.
故选:D.
3.D
【分析】列举出抛掷两枚质地均匀的硬币的所有结果,再逐一分析各个选项即可判断作答.
【详解】抛掷两枚质地均匀的硬币的所有结果是:(正,正),(正,反),(反,正),(反,反),

镇江第一中学2021-2022学年高一下学期期中数学试题含解析

镇江第一中学2021-2022学年高一下学期期中数学试题含解析

得其直观图的面积为( )
A. 1
2
B. 3 4
C. 3 2 8
D. 3 2 4
5.在 ABC 中, A , B , C 的对边分别为 a ,b ,c ,cos2 A b c ,则 ABC 的 2 2c
形状一定是( )
A.正三角形
B.直角三角形
C.等腰三角形
D.等腰直角三角形
6.滕王阁,江南三大名楼之一,因初唐诗人王勃所作《滕王阁序》中的“落霞与孤鹜齐
π 6
________.
15.已知 G 是 ABC 的重心,若 AB 2 , AC 10 ,则 AG BC 的值为________.
四、双空题 16.设 ABC 内角 A, B,C 的对边分别为 a,b, c ,2a cosC 2b c ,点 M 在边 BC 上,AM 是 A 的平分线, AM 2 ,则 ABC 的面积的最小值为______, b 2c 的最小值为 ______.
江苏省镇江第一中学 2021-2022 学年高一下学期期中数学试 题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.已知向量 a (3, 4),b (sin,cos) ,且 a b ,则 tan ( )
A. 3 4
(1)求证: BD / / 平面 EFHG ;
(2)求证: EF / /GH .
20.如图,在菱形
ABCD
中,
BE
1 2
BC

CF
2FD

(1)若 EF x AB y AD ,求 3x 2y 的值; (2)若菱形 ABCD 的边长为 6, BAD 60 ,求 AC EF (3)若菱形 ABCD 的边长为 6,求 AE EF 的取值范围.

六安第一中学2021-2022学年高一下学期期中数学试题含解析

六安第一中学2021-2022学年高一下学期期中数学试题含解析

故选:A.
6.C
【分析】连接 EF,FG,EG,根据异面直线所成角的意义,在 EFG 中分情况计算作答.
【详解】连接 EF,FG,EG,如图,
依题意, EF / / AC, FG / /BD ,且 EF 1 AC 1, FG 1 BD 1,
2
2
因 AC 与 BD 所成的角为 60°,则 EFG 60 或 EFG 120 ,
试卷第 3 页,共 5 页
幕式的时长(单位: min )情况,样本数据按照40,50 ,50, 60 ,…,90,100 进行
分组,得到如图所示的频率分布直方图.
(1)求 a 的值并估计该校学生观看开幕式时长的平均数(每组数据以该组区间的中点值为
代表)和中位数;
(2)已知样本中有
2 3
的男生观看开幕式时长小于
球的表面积公式可求得结果.
【详解】 AB AC 3 , BAC 120 ,ABC 30 ,
3 2r ( r 是 ABC 的外接圆半径),解得: r 3 ; sin 30
2
R2
3 2
R
r2 3 R2 3 ,解得: R2 12 , 4
球 O 的表面积 S 4 R2 48 .
安徽省六安第一中学 2021-2022 学年高一下学期期中 数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.已知i 是关于 x 的方程 ax2 bx 2 0a,b R 的一个根,则 a b ( )
A.0
则这 20 位市民幸福感指数的方差为( )
A.1.75
B.1.85
C.1.95
D.2.05

黑龙江省鹤岗市第一中学2021-2022学年高一下学期期中考试数学试题

黑龙江省鹤岗市第一中学2021-2022学年高一下学期期中考试数学试题

鹤岗一中2021—2022学年度下学期期中考试高一数学试题一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知2i z =-,则()i z z +=()A.62i-B.42i-C.62i+D.42i+2.民间娱乐健身工具陀螺起源于我国,最早出土的石制陀螺是在山西夏县发现的新石器时代遗址.如图所示的是一个陀螺的立体结构图.已知.底面圆的直径16cm AB =,圆柱体部分的高8cm BC =,圆锥体部分的高6cm CD =,则这个陀螺的表面积是()A.2192m c πB.2252m c πC.2272m c πD.2336m c π3.用斜二测画法画水平放置的△ABC 的直观图,得到如图所示的等腰直角三角形A B C '''.已知点O '是斜边B C ''的中点,且1O A ''=,则△ABC 的面积为()A.B.C.D.4.下列结论中正确的是()A.各个面都是三角形的几何体是三棱锥B.以三角形的一边所在直线为旋转轴,其余两边旋转形成的曲面所围成几何体叫圆锥C.当正棱锥的侧棱长与底面多边形的边长相等时该棱锥可能是正六棱锥D.圆锥的顶点与底面圆周上的任一点的连线都是母线5.向量()2,1a =在向量()3,4b = 上的投影向量的坐标为()A.()6,8B.()6,8--C.68,55⎛⎫ ⎪⎝⎭D.68,55⎛⎫-- ⎪⎝⎭6.如图,某几何体平面展开图由一个等边三角形和三个等腰直角三角形组合而成,E 为BC 的中点,则在原几何体中,异面直线AE 与CD 所成角的余弦值为()A.6B.3C.3D.127.在△ABC 中,点M 是BC 上一点,且3BC BM =,P 为AM 上一点,向量(0,0)BP BA BC λμλμ=+>> ,则31λμ+的最小值为()A.16B.12C.8D.48.在边长为6的菱形ABCD 中,3A π∠=,现将ABD △沿BD 折起,当三棱锥A BCD-的体积最大时,三棱锥A BCD -的外接球的表面积为()A.60πB.30πC.70πD.50π二、多选题:本题共4小题,每小题5分,共20分。

2021-2022学年浙江省杭州市长河高级中学高一下学期期中数学试题(解析版)

2021-2022学年浙江省杭州市长河高级中学高一下学期期中数学试题(解析版)

2021-2022学年浙江省杭州市长河高级中学高一下学期期中数学试题一、单选题1.已知复数2i1+iz=,则z的共轭复数z是()A.1-i B.1+i C.i D.-i 【答案】A【分析】根据复数的运算法则计算即可.【详解】∵2i1iz=+=()()()2i1i1i1i-+-=1i+,∴1iz=-,故选:A.2.如图,在ABC中,D为AB的中点,E为CD的中点,设,AB a AC b==,以向量,a b 为基底,则向量AE=()A.1142a b+B.12a b+C.12a b D.1124a b+【答案】A【分析】利用向量的加减法运算法则,化简求解即可.【详解】解:因为E为CD的中点,则1()2AE AD AC=+.因为D为AB的中点,则12AD AB=.所以1142AE AB AC=+,即1142AE a b=+.故选:A.包括( )A .一个圆台、两个圆锥B .一个圆柱、两个圆锥C .两个圆台、一个圆柱D .两个圆柱、一个圆台【答案】B【分析】画出简图,将等腰梯形分割成两个直角三角形和一个矩形,进而进行旋转,然后根据多面体的定义得到答案.【详解】将等腰梯形分割成两个直角三角形和一个矩形,如图所示:矩形绕其一边旋转一周得到圆柱,直角三角形绕其一条直角边旋转一周得到圆锥; 因此,将该等腰梯形绕它的较长的底边所在的直线旋转一周,可得几何体为:一个圆柱、两个圆锥. 故选:B.4.已知△ABC 的三个内角为A ,B ,C ,则“3A π<”是“3sin A <”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A【分析】结合三角函数的性质,利用充分性与必要性的定义,可得出答案. 【详解】A 是△ABC 的三个内角,()0,πA ∴∈当3sin A <时,由()0,πA ∈,可得π03A <<或2ππ3A <<,所以“3A π<”是“3sin A <”的充分不必要条件. 故选:A5.一海轮从A 处出发,以毎小时40海里的速度沿南偏东35︒的方向直线航行,30分钟后到达B 处,在C 处有一座灯塔,海轮在A 处观察灯塔,其方向是南偏东65︒,在B 处观察灯塔,其方向是北偏东70︒,那么B ,C 两点间的距离是( ) A .3 B .203C .102海里D .2【答案】C正弦定理可得到BC 的值. 【详解】解:如图,由已知可得,30BAC ∠=︒,3570105ABC ∠=︒+︒=︒,140202AB =⨯=, 从而1801803010545ACB BAC ABC ∠=︒-∠-∠=︒-︒-︒=︒. 在ABC 中,由正弦定理sin sin BC ABBAC ACB=∠∠,可得1sin30102sin 4522AB BC =⨯︒=︒海里. 故选:C .6.圆锥的高h 和底面半径r 之比:2:1h r =,且圆锥的体积18V π=,则圆锥的表面积为( ) A .185π B .9(15)π+ C .5π D .9(15)π+【答案】D【分析】根据圆锥的体积求出底面圆的半径r 和高h ,求出母线长,即可计算圆锥的表面积.【详解】圆锥的高h 和底面半径r 之比:2:1h r =, ∴2h r =,又圆锥的体积18V π=, 即32121833r r h πππ==, 解得3r =;母线长为22226335l h r =+=+=,则圆锥的表面积为2233539(15)S rl r πππππ=+=⋅⋅+⋅=+. 故选D .【点睛】本题考查圆锥的体积和表面积公式,考查计算能力,属于基础题.7.已知M 是ABC ∆内的一点,且23,30AB AC BAC ⋅=∠=,若,MBC MCA ∆∆和 MAB ∆的面积分别为1,,2x y ,则14x y+的最小值是A .20B .18C .16D .9【答案】B【详解】试题分析:利用向量的数量积的运算求得bc 的值,利用三角形的面积公式求得x+y 的值,进而把14x y +转化为利用基本不等式求得14x y+的最小值即可.因为C 23AB⋅A =,C 30∠BA =, 所以311123412222ABC bc bc S x y bcsin BAC x y ∆=∴=∴=++=∠=∴+=,,,,14144422525218y x y x x y x y x y x y x y ∴+=+⨯+=++≥+⨯=()()()(). 故选B . 【解析】平面向量;均值不等式8.攒尖是古代中国建筑中屋顶的一种结构形式依其平面有圆形攒尖、三角攒尖、四角攒尖、八角攒尖如图属重檐四角攒尖,它的上层轮廓可近似看作一个正四棱锥,若此正四棱锥的侧面积是底面积的2倍,则此正四棱锥的底面边长与内切球半径比为( )A 2B .22C 3D .3【分析】画出上层轮廓近似正四棱锥示意图,设2AB BC CD DA a ====,由正四棱锥中内切球球心与各面的关系可得OF POO E PE=',结合已知面积比求PE ,进而求得PO ',即可求内切球半径r ,最后可求正四棱锥的底面边长与内切球半径比.【详解】上层轮廓近似正四棱锥如下图示,若O '为底面中心,O 为内切球球心,OF ⊥面PCD 且E 为CD 中点,令内切球半径为r ,2AB BC CD DA a ====,∵正四棱锥的侧面积是底面积的2倍, ∴42PCDABCD S S =,即1422PE CD AD CD ⨯⨯⨯=⨯,故2PE a =,则3PO a '=,又∵OF PO O E PE =',即3r a ra -=, ∴3ar =:23CD r =故选:D【点睛】关键点点睛:依据正四棱锥中内切球的性质,得到相关线段的比例关系,设底面边长及内切球半径,进而确定它们之间的数量关系.二、多选题9.己知平面向量()1,0a =,()1,23b =,则下列说法正确的是( ) A .1a b +=B .()2a b a +⋅=C .向量a b +与a 的夹角为30°D .向量a b +在a 上的投影向量为2a【答案】BD【分析】根据向量坐标的线性运算和模的坐标表示即可判断A ,根据向量数量积的坐标表示即可判断B ,根据()cos ,a b a a b a a b a+⋅+=+即可判断C ,根据投影向量的定义即可判断D.【详解】2,23a b +=,则4124a b +=+=,故A 错误;()(2,23)(1,0)212302a b a +⋅=⋅=⨯+⨯=,故B 正确;()1cos ,2a b a a b a a b a+⋅+==+,又0,180a b a ︒≤+≤︒,所以向量a b +与a 的夹角为60°,故C 错误; 向量a b +在a 上的投影向量为()221a b a a a a aa+⋅⋅=⨯=,故D 正确. 故选:BD.10.如图,正方体1111ABCD A B C D -的棱长为1,P 是线段1BC 上的动点,则下列结论中正确的是( )A .1AC BD ⊥B .1A P 6C .1//A P 平面1ACDD .异面直线1A P 与1AD ,所成角的取值范围是,42ππ⎡⎤⎢⎥⎣⎦【答案】ABC【分析】建立空间直角坐标系,利用空间向量计算可得;【详解】解:如图建立空间直角坐标系,则()1,0,0A ,()0,1,0C ,()10,0,1D ,()11,0,1A ,()1,1,0B ,()10,1,1C ,所以()1,1,0AC =-,()11,1,1BD =--,()10,1,1A B =-,()11,0,1BC =-,所以10AC BD =,所以1AC BD ⊥,故A 正确; 因为P 是线段1BC 上一动点,所以1B B C P λ=()01λ≤≤,所以()()()110,1,11,0,1,1,1A P B B A P λλλ=+=-+-=--,所以()21221311222A P λλλ⎛⎫=+-+=-+ ⎪⎝⎭,当且仅当12λ=时m 1in 62A P=,故B 正确; 设平面1ACD 的法向量为(),,n x y z =,则1·0·0n AC n AD ⎧=⎪⎨=⎪⎩,即00x y x z -+=⎧⎨-+=⎩,令1x =,则1y z ==,所以()1,1,1n =,因为1110n P A λλ=-++-=,即1n A P ⊥,因为1A P ⊄平面1ACD ,所以1//A P 平面1ACD ,故C 正确;设直线1A P 与1AD 所成的角为θ,因为11//AD BC ,当P 在线段1BC 的端点处时,3πθ=,P在线段1BC 的中点时,2πθ=,所以,32ππθ⎡⎤∈⎢⎥⎣⎦,故D 错误; 故选:ABC11.在△ABC 中,a ,b ,c 分别为∠A ,∠B ,∠C 的对边,下列叙述正确的是( ) A .若cos cos a bB A=,则△ABC 为等腰三角形 B .若30A =︒,4b =,3a = ,则△ABC 有两解 C .若tan tan tan 0A B C ++<,则△ABC 为钝角三角形 D .若sin cos a b C c B =+,则4C π∠=【答案】BCD【分析】本题需要逐项分析,根据每个选项 所给的条件,具体分析得出结论. 【详解】对于A :cos cos a b B A=,由正弦定理得sin sin cos cos A BB A =,即sin 2sin 2A B =, 由于A 、B 为三角形的内角,∴22A B =或22A B π+=, 即A B =或2A B π+=,△ABC 为等腰三角形或直角三角形,故A 错误;对于B :∵30A =︒,4b =,3a =,由正弦定理得,341sin B =,即2sin 3B =,cos A =,cos B ==, ()()cos cos cos sin sin cos cos C A B A B A B A B π=-+=-+=-⎡⎤⎣⎦,若cos B =,B 是锐角,则12cos 023C =⨯=< ,C 是钝角,若cos B = ,B 是钝角,12cos 023C =⨯+=> ,C 是锐角,故B 有两角,故B 正确;对于C :若tan tan tan 0A B C ++<,∵()tan tan tan tan 1tan tan A BC A B A B+=-+=--,tan tan tan A B C +=-()1tan tan A B -,tan tan tan tan tan tan 0A B C A B C ++=< ,∴tan A ,tan B ,tan C 中必有一个值为负,即A ,B ,C 中必有一个为钝角,∴△ABC 为钝角三角形,故C 正确; 对于D :sin cos a b C c B =+,由正弦定理得:sin sin sin sin cos A B C C B =+, 即()sin sin sin sin cos B C B C C B +=+,即sin cos sin sin B C B C =, ∵sin 0C ≠,∴cos sin C C =,即tan 1C =,∵0C π<<,∴4C π,故D 正确;故选:BCD . 12.已知函数()()4e sin xf x bx +=,若存在实数a ,使得()y f x a =+是奇函数,则sin b 的值可能为( )A B C .D . 【答案】AC【分析】根据()y f x a =+是奇函数,可得()()f x a f x a =-+-+,由此可求出4a =-,,4k b k π=-∈Z ,对k 进行取值,由此即可求出结果. 【详解】因为函数()()4esin x f x bx +=,所以()()4sin x ay ebx f a ab x ++==++,若存在实数a ,使得()y f x a =+是奇函数, 所以()()f x a f x a =-+-+ 又()()4sin x af x a e bx ab -++=-+-+,所以()()()444sin sin sin x ax ax aebx ab e bx ab ebx ab ++++-++-+=--=-+,所以40a +=且,ab k k π=∈Z , 所以4a =-,,4k b k π=-∈Z , 所以sin sin ,4k b k π⎛⎫=-∈ ⎪⎝⎭Z , 当1k =时,sin sin 4b π⎛⎫=-= ⎪⎝⎭;当2k =时,2sin sin sin 142b ππ⎛⎫=-=-=- ⎪⎝⎭; 当3k =时,3sin sin 4b π⎛⎫=-= ⎪⎝⎭当4k =时,()sin sin 0b π=-=;当5k =时,55sin sin sin 44b ππ⎛⎫=-=-= ⎪⎝⎭当6k =时,63sin sin sin 142b ππ⎛⎫=-=-= ⎪⎝⎭; 所以sin b的值可能为1,1,022-. 故选:AC.三、填空题13.已知向量a ,b 是两个不共线的向量,且35=+OA a b ,47=+OB a b ,=+OC a mb ,若A ,B ,C 三点共线,则实数m =__________. 【答案】1【分析】由三点共线可令λμ=+OB OA OC 且1λμ+=,结合已知有47(35)()a b a b a mb λμ+=+++,即可求m 值.【详解】由A ,B ,C 三点共线,可令λμ=+OB OA OC 且1λμ+=, ∴47(35)()a b a b a mb λμ+=+++, 综上,34571m λμλμλμ+=⎧⎪+=⎨⎪+=⎩,可得32121m λμ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩.14.已知,,a b c 分别为ABC 内角,,A B C 的对边,22c ab =且1sin sin 2A C =,则cos A =__________.【答案】78【解析】由1sin sin 2A C =结合正弦定理可得2c a =,再利用22c ab =得到三边的关系,最后利用余弦定理可求cos A . 【详解】由正弦得sin ,sin 22a c A C R R ==,故1222a c R R=⨯(R 为外接圆的半径),故2c a =,又22c ab =,故2b a =,由余弦定理可得2222277cos 288b c a a A bc a +-===.故答案为:78.【点睛】三角形中共有七个几何量(三边三角以及外接圆的半径),一般地,知道其中的三个量(除三个角外),可以求得其余的四个量. (1)如果知道三边或两边及其夹角,用余弦定理;(2)如果知道两边即一边所对的角,用正弦定理(也可以用余弦定理求第三条边); (3)如果知道两角及一边,用正弦定理.15.如图,在棱长为1的正方体1111ABCD A B C D -中,点E ,F 分别是棱BC ,CC 1的中点,P 是底面ABCD (含边界)上一动点,满足1A P EF ⊥,则线段1A P 长度的取值范围是________.【答案】[2,3]【分析】先由垂直关系,找出点P 所在的直线,再判断线段1A P 长度的取值范围. 【详解】连接1BC ,1A D ,如图所求:可得1//EF BC ,11A D BC ⊥,1A D EF ∴⊥, 又DC EF ⊥,可得EF ⊥平面1A DC ,则1A C EF ⊥, ∴当P 在线段CD 上运动时,有1A P EF ⊥,当P 与D 重合时,1A P 有最小值为2,当P 与C 重合时,1A P 有最大值为3. ∴线段1A P 长度的取值范围是[2,3].故答案为:[2,3].16.窗花是贴在窗纸或户玻璃上的剪纸,是中国古老的传统民间艺术之一.每年新春佳节,我国许多地区的人们都有贴窗花的习俗,以此达到装点环境、渲染气氛的目的,并寄托着辞旧迎新、接福纳祥的愿望.图一是一张由卷曲纹和回纹构成的正六边形剪纸窗花,已知图二中正六边形ABCDEF 的边长为4,圆O 的圆心为正六边形的中心,半径为2,若点P 在正六边形的边上运动,MN 为圆O 的直径,则PM PN ⋅的取值范围是______.【答案】[]8,12【分析】先利用平面向量的线性运算,将PM 、PN 用向量PO 和OM 表示,整理成2PO 的形式,结合r PO R ≤≤即可求解.【详解】正六边形ABCDEF的内切圆半径为sin 604r OA === 外接圆的半径为4R =,()()2PM PN PO OM PO ON PO PO ON PO OM OM ON ⋅=+⋅+=+⋅+⋅+⋅ ()222224PO PO ON OM OM PO OM PO =+⋅+-=-=-,因为r PO R ≤≤,即4PO ≤, 所以21216PO ≤≤,可得28412PO ≤-≤, 故答案为:[]8,12.四、解答题17.在复平面内,复数1z ,2z 对应的点分别为(1,-2),(),1a ,a ∈R ,且21z z 为纯虚数.(1)求a 的值;(2)若1z 的共轭复数1z 是关于x 的方程20x px q ++=的一个根,求实数p ,q 的值. 【答案】(1)2a =;(2)2,5p q =-=.【分析】(1)首先利用复数的几何意义,求得12,z z ,再设21i z b z =,利用复数相等求a 的值;(2)将112i z =+代入方程,求实数p ,q 的值. 【详解】(1)由条件可知112i z =-,2i z a =+, 21i i 12iz a b z +==-,则()i i 12i 2i a b b b +=-=+, 所以21a b b =⎧⎨=⎩,解得:2a =;(2)112i z =+,由条件可知()()212i 12i 0p q ++++=, 得()()342i=0p q p -++++,则30420p q p -++=⎧⎨+=⎩,解得:2,5p q =-=.18.已知半圆圆心为O 点,直径2AB =,C 为半圆弧上靠近点A 的三等分点,若P 为半径OC 上的动点,以O 点为坐标原点建立平面直角坐标系,如图所示.(1)求点A 、B 、C 的坐标;(2)若3144PA CA CB =-,求PA 与CB 夹角的大小;(3)试求点P 的坐标,使PA PO ⋅取得最小值,并求此最小值. 【答案】(1)()1,0A -,()10B ,,132C ⎛- ⎝⎭(2)2π3(3)138P ⎛- ⎝⎭,最小值116-【分析】(1)利用任意角三角函数的定义易求A 、B 、C 的坐标; (2)利用平面向量的夹角公式求解即可;(3)设()01OP tOC t =≤≤,用t 表示P 点坐标,代数量积的坐标计算公式即可求解【详解】(1)因为半圆的直径2AB =,由题易知:又()1,0A -,()10B ,. 又1OC =,2π3BOC ∠=,则2π1cos 32C x ==-,2π3sin 3C y ==132C ⎛- ⎝⎭. (2)由(1)知,13,2CA ⎛=- ⎝⎭,33,2CB ⎛=⎝⎭, 所以3133,444PA CA CB ⎛=-=- ⎝⎭. 设PA 与CB 夹角为α,则314cos 2332PA CB PA CBα-⋅===-⋅⨯,又因为[]0,απ∈,所以2π3α=,即PA 与CB 的夹角为2π3. (3)设()01OP tOC t =≤≤,由(1)知,131322OP t t ⎛⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,13,2PO t ⎛⎫= ⎪ ⎪⎝⎭,131,2PA t ⎛⎫=- ⎪ ⎪⎝⎭,所以22211311112242416PA PO t t t t t t ⎛⎫⎛⎫⋅=-+=-=-- ⎪ ⎪⎝⎭⎝⎭,又因为01t ≤≤,所以当14t =时,PA PO ⋅有最小值为116-,此时点P 的坐标为18⎛- ⎝⎭.19.已知函数2(cos -4sin 1f x x x x +. (1)求函数()f x 的单调增区间;(2)在ABC 中,内角,,A B C 所对边分别为,,a b c ,2a =,若对任意的R x ∈不等式()()f x f A ≤恒成立,求ABC 面积的最大值.【答案】(1),()36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;(2)2 【分析】(1)利用二倍角公式和辅助角公式将函数()f x 进行化简,根据正弦函数的单调性可得答案;(2)由题意知当x A =时,()f x 取得最大值,可得6A π=,11sin 24ABCSbc A bc ==. 由余弦定理和基本不等式可得最大值.【详解】(1)2(cos -4sin 1f x x x x +22cos 22sin 22cos 21x x x x x +-=+-4sin(2)16x π=+-由222262k x k πππππ-≤+≤+解得()36k x k k Z ππππ-≤≤+∈所以函数()f x 的单调增区间为(),36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦.(2)由题意得当x A =时,()f x 取得最大值,则()2262A k k Z πππ+=+∈及(0,)A π∈解得6A π=,所以11sin 24ABCSbc A bc ==由余弦定理得222242cos 2b c bc A b c bc =+-=+≥即4(2bc ≤=,当b c =时取等号,所以,()max1·4(224ABC S ==20.在新型冠状病毒感染的肺炎治疗过程中,需要某医药公司生产的某种药品.此药品的年固定成本为200万元,每生产x 千件需另投入成本()C x ,当年产量不足60千件时,()21102C x x x =+(万元),当年产量不小于60千件时,()6400511000C x x x =+-(万元).每千件商品售价为50万元,在疫情期间,该公司生产的药品能全部售完. (1)写出利润()L x (万元)关于年产量 x (千件)的函数解析式;(2)该公司决定将此药品所获利润的10%用来捐赠防疫物资,当年产量为多少千件时,在这一药品的生产中所获利润最大?此时可捐赠多少万元的物资款?【答案】(1)()2140200,0602,1000N 6400800,60x x x L x x x x x *⎧-+-≤<⎪⎪=∈⎨⎛⎫⎪-+≥ ⎪⎪⎝⎭⎩; (2)当年产量为80千件时所获利润最大为640万元,此时可捐64万元物资款.【分析】(1)分060x ≤<、60x ≥两种情况讨论,结合利润=销售收入-成本,可得出年利润()L x (万元)关于年产量x (千件)的函数解析式;(2)利用二次函数的基本性质、基本不等式可求得函数()L x 的最大值及其对应的x 值,由此可得出结论.【详解】(1)由题意可知()()50200L x x C x =-+⎡⎤⎣⎦,当060x ≤<时,()221110200402500220L x x x x x x ⎛⎫+-=-+- ⎪⎝⎭=-,当60x ≥时,()6400640050511000200800L x x x x x x ⎛⎫⎛⎫=-+--=-+ ⎪ ⎪⎝⎭⎝⎭, 故有()2140200,0602,1000N 6400800,60x x x L x x x x x *⎧-+-≤<⎪⎪=∈⎨⎛⎫⎪-+≥ ⎪⎪⎝⎭⎩; (2)当060x ≤<时,()()21406006002L x x =-⋅-+≤,即40x =时,max 600y =,当60x ≥时,有()6400800800640L x x x ⎛⎫≤ ⎪⎝⎭=-+-, 当且仅当80x =时,max 640y =,因为640600>,所以80x =时,max 640y =,答:当产量为80千件时所获利润最大为640万元,此时可捐64万元物资款.21.如图,在四棱锥P ABCD -中,AD ⊥平面PDC ,AD BC ,PD PB ⊥,1AD =,3BC =,4CD =,2PD =.(I)求异面直线AP与BC所成角的余弦值;(II)求证:PD⊥平面PBC;(Ⅲ)求直线AB与平面PBC所成角的正弦值.【答案】(Ⅰ)55.(Ⅱ)见解析;(Ⅲ)55.【分析】(Ⅰ)由已知AD//BC,故DAP∠或其补角即为异面直线AP与BC所成的角,然后在Rt△PDA中求解即可;(Ⅱ)因为AD⊥平面PDC,所以AD⊥PD,PD⊥BC,又PD⊥PB,所以PD⊥平面PB C;(Ⅲ)过点D作AB的平行线交BC于点F,连结PF,则DF与平面PBC所成的角等于AB与平面PBC所成的角,且DFP∠为直线DF和平面PBC所成的角,然后在Rt△DPF中求解即可.【详解】解:(Ⅰ)如图,由已知AD//BC,故DAP∠或其补角即为异面直线AP与BC 所成的角.因为AD⊥平面PDC,所以AD⊥PD.在Rt△PDA中,由已知,得225AP AD PD=+=,故5 cos5ADDAPAP∠==.所以,异面直线AP与BC所成角的余弦值为5 5.(Ⅱ)证明:因为AD⊥平面PDC,直线PD⊂平面PDC,所以AD⊥PD. 又因为BC//AD,所以PD⊥BC,又PD⊥PB,BC PB B⋂=所以PD ⊥平面PB C.(Ⅲ)过点D 作AB 的平行线交BC 于点F ,连结PF , 则DF 与平面PBC 所成的角等于AB 与平面PBC 所成的角. 因为PD ⊥平面PBC ,故PF 为DF 在平面PBC 上的射影, 所以DFP ∠为直线DF 和平面PBC 所成的角. 由于AD //BC ,DF //AB ,故BF =AD =1, 由已知,得CF =BC –BF =2. 又AD ⊥DC ,故BC ⊥DC ,在Rt △DCF 中,可得DF在Rt △DPF 中,可得sin PD DFP DF ∠==所以,直线AB 与平面PBC 【解析】两条异面直线所成的角、直线与平面垂直、直线与平面所成的角【点睛】本小题主要考查两条异面直线所成的角、直线与平面垂直的证明、直线与平面所成的角,要求一定的空间想象能力、运算求解能力和推理论证能力.求两条异面直线所成的角,首先要借助平行线找出异面直线所成的角,证明线面垂直只需寻求线线垂直,求线面角首先利用转化思想寻求直线与平面所成的角,然后再计算即可. 22.已知函数()5f x x x=-,[]1,5x ∈,()221g x x a x a =--+. (1)求函数()f x 的值域;(2)若对任意的[]2,4x ∈,都有()g x a ≥恒成立,求实数a 的取值范围;(3)若对任意的[]01,5x ∈,都存在四个不同的实数1x ,2x ,3x ,4x ,使得()()0i g x f x =,其中1i =,2,3,4,求实数a 的取值范围. 【答案】(1)[]4,4-; (2)2a ≤; (3)4a >【分析】(1)利用基本函数的单调性即得;(2)由题可得()2121211x a x x x ≤=-++--恒成立,再利用基本不等式即求; (3)由题意可知对任意一个实数[]4,4t ∈-,方程()g x t =有四个根,利用二次函数的图像及性质可得[]()24,4,13a a a --+⊆+,即求.【详解】(1)∵函数()5f x x x=-,[]1,5x ∈, 所以函数()f x 在[]1,5上单调递增, ∴函数()f x 的值域为[]4,4-;(2)∵对任意的[]2,4x ∈,都有()g x a ≥恒成立,∴()221g x x a x a =--+a ≥,即2210x a x -⋅-≥,即有()2210x a x --≥,故有()2121211x a x x x ≤=-++--, ∵[]2,4x ∈,[]11,3x -∈, ∴()11241x x -++≥-,当且仅当111x x -=-,即2x =取等号, ∴24a ≤,即2a ≤,∴实数a 的取值范围为2a ≤; (3)∵函数()f x 的值域为[]4,4-,由题意可知对任意一个实数[]4,4t ∈-,方程()g x t =有四个根,又()2223,12,1x ax a x g x x ax a x ⎧-+≥=⎨+-<⎩,则必有1a >,令()11n g a ==+,()(){}{}222max ,max 3,3m g a g a a a a a a a =-=-+--=-+,故有[](),4,4m n -⊆,故有21434a a a +>⎧⎨-+<-⎩,可解得4a >,∴实数a 的取值范围为4a >.。

2021-2022学年重庆市南开中学校高一下学期期中数学试题(解析版)

2021-2022学年重庆市南开中学校高一下学期期中数学试题(解析版)

2021-2022学年重庆市南开中学校高一下学期期中数学试题一、单选题 1.已知复数52iz =+(i 为虚数单位),则z 的虚部为( ) A .1- B .2 C .i - D .i【答案】A【分析】根据复数的概念及复数的除法即可求解. 【详解】()()()()52i 52i 52i 2i 2i 2i 5z --====-++-, 所以z 的虚部为1-. 故选:A.2.若向量a ,b 满足||2a =,||2b =,2a b ⋅=,则||a b -=( ) A .2 B .2C .23D .4【答案】B【分析】利用平面向量数量积的运算性质可求得a b -的值. 【详解】由题意可得()22222222222a b a b a a b b -=-=-⋅+=-⨯+=.故选:B.3.两个体积分别为1V ,2V 的几何体夹在两个平行平面之间,任意一个平行于这两个平面的平面截这两个几何体,截得的截面面积分别为1S ,2S ,则“12V V =”是“12S S ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】B【分析】由祖暅原理,再结合充分条件,必要条件的定义即可求解. 【详解】解:根据祖暅原理,①由12S S ,得到12V V =,∴必要性成立,②由12V V =,则1S ,2S 不一定相等,例如两个完全相同的棱锥,分别正置和倒置,∴充分性不成立,12V V ∴=是12S S 的必要不充分条件,故选:B .4.如图,在△ABC 中,3AB AD =,CE ED =,设AB a =,AC b =,则AE =( )A .1132a b +B .1142a b +C .1152a b +D .1162a b +【答案】D【分析】根据向量的加法法则,即可求解. 【详解】解:由题意得:11111112223262AE AD AC AB AC a b =+=⨯+=+, 故选:D.5.现将函数()sin 2f x x =的图象向右平移6π个单位长度,再将所得的图象上所有点的横坐标变为原来的2倍,纵坐标不变,得到函数()g x 的图象,则函数()g x 的解析式为( )A .sin 3x π⎛⎫- ⎪⎝⎭B .sin 6x π⎛⎫- ⎪⎝⎭C .sin 43x π⎛⎫- ⎪⎝⎭D .sin 46x π⎛⎫- ⎪⎝⎭【答案】A【分析】根据三角函数相位平移和周期变换特点得到函数解析式.【详解】()sin 2f x x =向右平移6π个单位长度得sin 2sin(2)63y x x ππ⎛⎫=-=- ⎪⎝⎭,再将所得图像上所有点横坐标变为原来倍,纵坐标不变,得:sin()3y x π=-,所以()sin()3g x x π=-故答案为:A6. ABC 中,2cos2cos22sin B C A ->,则 ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定【答案】C【分析】先利用二倍角公式化简得到化简得222sin sin sin +<B C A ,进而得到2220-+<c a b ,再利用余弦定理判断.【详解】解:因为在 ABC 中,2cos2cos22sin B C A ->,所以()2222cos 12cos 12sin --->C A B ,化简得222sin sin sin +<B C A , 即2220-+<c a b ,所以222cos 02-=+<a c b A bc, 因为,2A ππ⎛⎫∈ ⎪⎝⎭,所以 ABC 的形状为钝角三角形,故选:C7.已知函数()2sin 3f x x πω⎛⎫=- ⎪⎝⎭在区间[]0,2π上恰有3个零点,则正实数ω的取值范围是( )A .1723,1212⎡⎫⎪⎢⎣⎭B .1117,1212⎡⎫⎪⎢⎣⎭C .513,36⎫⎡⎪⎢⎣⎭D .75,63⎡⎫⎪⎢⎣⎭【答案】D【分析】根据0>ω,[]0,2x π∈,得,2333x πππωπω⎡⎤-∈--⎢⎥⎣⎦,结合正弦函数图像,确定23ππω-的位置范围即可求出ω的范围﹒【详解】∵0>ω,[]0,2x π∈,∴,2333x πππωπω⎡⎤-∈--⎢⎥⎣⎦, 函数()2sin 3f x x πω⎛⎫=- ⎪⎝⎭在区间[]0,2π上恰有3个零点,则如图,2275363233ππωπωππωπ⎧-⎪⎪⇒<⎨⎪-<⎪⎩﹒故选:D .8.如图,正方体1111ABCD A B C D -中,E ,F 分别为棱AB ,BC 的中点,过1A ,E ,F 三点的平面将正方体分割成两部分,两部分的体积分别为1V ,()212V V V <,则12:V V =( )A .519B .524C .717D .724【答案】C【分析】结合台体体积公式、正方体体积公式求得正确答案. 【详解】由于11////EF AC AC ,所以11,,,E F C A 共面, 111BEFB AC ,所以111BEF B A C -是台体,设正方体的边长为2,111111117111122222322223BEF B A C V -⎛⎫=⨯⨯⨯+⨯⨯⨯⨯⨯+⨯⨯⨯= ⎪ ⎪⎝⎭, 所以127737172223V V ==⨯⨯-.故选:C二、多选题9.下列关于复数z 的运算结论,正确的有( ) A .2z z z ⋅= B .22z z = C .1212z z z z ⋅=⋅ D .1212z z z z +≤+【答案】ACD【分析】设出复数直接计算可得.【详解】记111222i i i z a b z a b z a b =+=+=+,,,则i z a b =- 则222(i)(i)=z z a b a b a b z ⋅=+-+=,A 正确; 因为2222(i)2i z a b a b ab =+=-+,故B 错误; 因为12112212121221(i)(i)=()i z z a b a b a a b b a b a b ⋅=++-++,所以2222222222121212122112122112()()z z a a b b a b a b a a a b a b b b ⋅=-++=+++ 又22222222222212112212122112()()z z a b a b a a a b a b b b ⋅=++=+++,故C 正确; 222222212121212121212()()22z z a a b b a a b b a a b b +=+++=+++++2222222221211221122()2()()z z a b a b a b a b +=++++++因为2222222222221122121221122()()2a b a b a a a b a b b b ++=+++ 22221212121212122222a a a a b b b b a a b b ≥++=+所以1212z z z z +≤+,D 正确. 故选:ACD10.如图,正四棱柱1111ABCD A B C D -中,1AB BC ==,12CC =,点E ,F ,G 分别为棱CD ,1DD ,1CC 的中点,则下列结论中正确的有( )A .11AB 与FG 共面 B .AE 与11AC 异面C .1AG ∥平面AEFD .该正四棱柱外接球的表面积为8π【答案】ABC【分析】证明11//A B FG 即可判断A ;连接11AC A C 、,证明AE 与11A C 分别是两个互相平行的平面里面的不平行直线即可判断B ;取1AA 的中点为H ,连接,HF HD AF CH AF HD I ⋂=、、、,连接IE ,证明1//A G //CH EI 即可判断C ;根据长方体外接球球心为体对角线中点即可计算长方体外接球半径,从而计算其外接球表面积,从而判断D .【详解】①1//DD 1CC ,且11,DD CC F =是1DD 中点,G 是1CC 中点, 1//FD ∴1GC ,且11FD GC =,∴四边形11C D FG 是平行四边形,//FG ∴1111,//C D C D 1111,//A B A B ∴11,FG A B ∴与FG 共面,故A 正确;②连接111,//AC AC AA 、111,,CC AA CC =∴四边形11ACC A 为平行四边形, 11//A C ∴AC ,ACAE A =,故AE 与11A C 不平行,而AE ⊂平面11,ABCD AC ⊂平面1111D C B A ,平面//ABCD 面1111D C B A , 11AC ∴和AE 互为异面直线,故B 正确;③取1AA 的中点为H ,连接,HF HD AF CH AF HD I ⋂=、、、,连接IE . 1//AA 111,,DD AA DD H =是1AA 中点,F 是1DD 中点,//AH ∴DF ,且,AH DF =∴四边形ADFH 是平行四边形, I ∴是DH 的中点,又E 是CD 中点,∴在CDH △中,//EI CH .1//AA 111,,CC AA CC H =是1AA 中点,G 是1CC 中点, 1//A H ∴1,,CG A H CG =∴四边形1A HCG 是平行四边形,//CH ∴1A G ,/EI /∴1,A G EI ⊂平面1,AEF AG ⊄平面1//,AEF A G ∴平面AEF ,故C 正确.④设该四棱柱外接球半径为R ,则22222(2)11246R R =++⇒=, 故该正四棱柱外接球的表面积为246R ππ=,故D 错误. 故选:ABC.11.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,则下列结论正确的有( )A .若4b =,3sin 4A =,3sin 5B =,则5a = B .若2bc a =,则3A π≥C .若4b =,60A =︒,5a =则△ABC 有唯一解 D.若a =23A π≤ 【答案】ACD【分析】根据正弦定理可解A ,根据余弦定理和基本不等式可判断BD ,根据余弦定理解三角形可判断C .【详解】A 选项:根据正弦定理得,43sin 53sin sin sin 45a b b a A A B B=⇒=⋅=⨯=,故A 正确;B 选项:根据余弦定理得,2222cos a b c bc A =+-,∵2bc a =, ∴22222cos a b c a A =+-,∴222222222221cos 2222b c a bc a a a A a a a +---===, ()0,A π∈,0,3A π⎛⎤∴∈ ⎥⎝⎦,故B 错误;C 选项:由余弦定理得,2222cos a b c bc A =+-,即212516242c c =+-⨯⋅⋅,即2490c c --=,方程Δ0>,设方程两根为12c c 、,∵1290c c =-<,124c c =,∴方程只有一个正根,即c 边有唯一取值,故三角形有唯一解,故C 正确; D 选项:根据余弦定理得,2222cos a b cbc A =+-,∵a = ∴2222cos b c bc A =+-⎝⎭, ∴22222222126261()cos 22()2222b c b c b c bc bc bc b c A bc bc b c bc bc bc +-++==--=-++,当且仅当b =c 时取等号,∵()0,A π∈,203A π∴<,故D 正确. 故选:ACD .12.已知平面向量满足1a =,2b =,22c b a b a --=-,则以下说法正确的是() A .2b a = B .13a b +≤≤C .若0a b ⋅=,则c a -的最大值是D .c a ⋅的取值范围是[]4,5- 【答案】BCD【分析】由题意当2b a =时,4=0c a -,由已知不能确定4=0c a -,判断A;利用绝对值不等式性质可判断B;建立直角坐标系,利用坐标运算表示出42c a -=结合三角函数性质,判断C;作图分析可得向量c 对应的点轨迹为圆,利用圆的性质,结合数量积的几何意义,可判断D.【详解】A 选项:当2b a =时, 22=0c b a b a --=-,即4=0c a -,由已知不能确定4=0c a -是否成立,故A 错误;B 选项:3a b a b ++=≤,||||||||1a b a b +≥-=,B 选项正确: 对于C,因为0a b ⋅=,故以向量a ,b 起点为坐标原点,a 方向为y 轴正方向,b 方向为x 轴正方向,建立坐标系,则()0,1a =,()2,0b =,设(),c x y =, 由()22c a b b a -+=-, 得()()22228x y -+-=,设2x θ=+,2y θ=+,[0,2]θπ∈ , ()(),12,1c a x y θθ-=-=++,则42c a -=其中2cos ))θθθθθϕ+=+=+,(sin ϕϕ== ,故θθ+≤2πθϕ+=时取等号,故410c a -≤C 选项正确;D 选项:以b ,2a 邻边作平行四边形OADB 为菱形,2,OA a OB b == , 2AB b a =-,2OD b a =+,设OC c = ,由题目条件,可知点C 的轨迹是以D 为圆心,2r b a AB =-=为半径的圆. 设AOD θ∠=,则4cos OD θ=,4sin AB θ=,所求的cos c c a θ⋅=,即为c 在a 上的投影, 如图所示,延长OA 交点C 的轨迹于F ,作DE AF ⊥ , 当C 为图中两条切线的切点时,取得最大值、最小值,()2maxcos 4cos 4sin c a OE BF OD r θθθ⋅=+=+=+22154sin sin 14(sin )524θθθ⎡⎤⎡⎤=-++=--+≤⎣⎦⎢⎥⎣⎦=,当1sin 2θ=时取等号, 同理,可得()22mincos 4cos 4sin 4sin 44sin c dOD r θθθθθ⋅-=-=-+=-2154(sin )424θ⎡⎤=-++≥-⎢⎥⎣⎦,当sin 1θ= 时取等号,故[]4,5c a ⋅∈-,故D 选项正确, 故选:BCD三、填空题13.在ABC 中,,,a b c 是角,,A B C 所对的边长,若sin :sin :sin 4:5:6A B C =,则cos C ________.【答案】18【分析】由正弦定理得到::4:5:6a b c =,设ABC 的三边分别为4,5,6,结合余弦定理,即可求解.【详解】由sin :sin :sin 4:5:6A B C =,由正弦定理可得::4:5:6a b c =, 可设ABC 的三边分别为4,5,6a b c ===,由余弦定理可得2222224561cos 22458a b c C ab +-+-===⨯⨯, 故答案为:18.14.如图,△ABC 中,90A ∠=︒,2AB AC ==,点M 为边BC 的中点,点N 为边AB 的中点,则AM CN ⋅=_________.【答案】-1【分析】用AB AC 、作为基底表示出AM CN 、即可根据数量积的运算律计算. 【详解】()()()()111224AM CN AB AC CB CA AB AC AB AC AC ⋅=+⋅+=+⋅-- ()()()()()22211112||2|||414444AB AC AB AC AB AC AC =+⋅-=-=⨯-=⨯-=-. 故答案为:-1.15.某同学欲为台灯更换一种环保材料的灯罩,如图所示,该灯罩是一个有上底面无下底面的圆台.经测量,灯罩的上底面直径为18 cm ,下底面直径为34 cm ,灯罩的侧面展开图是一个圆心角为23π的扇环,则新灯罩所需环保材料的面积为_________2cm (结果保置π).【答案】705π【分析】作出圆台轴截面图像和侧面展开图,找到边长对应关系,根据扇形面积和圆的面积计算公式即可计算. 【详解】如图为圆台轴截面:如图为圆台侧面展开图:圆台上底面半径为19r =,下底面半径为217r =,1112323r l r ππ==,2222323r l r ππ==, 则扇环面积为:()()()222222112211213333179624r l rl r r r r r r ππππππ-=⋅-⋅=-=-=,则新灯罩所需环保材料的面积为:()22162462481705cm r πππππ+=+=.故答案为:705π.16.△ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,满足()2221cos cos 0A c ac C b a --+-=,点D 、E 分别在边AC 、BC 上,2AD CD =,若2BD =,则△ABC 的面积的最大值为_________. 33【分析】根据条件结合余弦定理和三角恒等变换得出角A ,在ABD △中由余弦定理求出AD AB ⋅的最大值,从而得出答案.【详解】由()2221cos cos 0A c ac C b a --+-=可得2222cos cos c b a ac C c A +-=+即22cos cos cos bc A ac C c A =+,即22sin sin cos sin sin cos sin cos B C A A C C C A =+ 由0C π<<则sin 0C ≠,所以()2sin cos sin cos sin cos sin sin B A A C C A A C B =+=+= 即2sin cos sin B A B =,由0B π<<则sin 0B ≠, 1cos 2A =, 又0A π<<,所以3A π=在ABD △中, 2222cos BD AB AD AB AD A =+-⋅⋅所以22222224233333AB AC AB AC AB AC AB AC AB AC ⎛⎫=+-⋅≥⋅⋅-⋅=⋅ ⎪⎝⎭所以6AB AC ⋅≤,当且仅当23AB AC =时等号成立. 由13333sin 62442ABCSAB AC A AB AC =⋅=⋅≤⨯=所以△ABC 的面积的最大值为332故答案为:332四、解答题17.已知z 为虚数,z 为z 的共轭复数,满足2i 3z z =⋅-,其中i 为虚数单位. (1)求z z ⋅ (2)若5mz -m 的值. 【答案】(1)5 (2)5m =【分析】(1)设()i ,z a b a b R =+∈,根据2i 3z z =⋅-,利用复数相等求解; (2)先化简5mz 5mz 为纯虚数求解. 【详解】(1)解:设()i ,z a b a b R =+∈,则i z a b =-, 由题意得:()()2i i i 3a b a b +=--,即22i 3i +=-+a b b a ,则232a b b a =-⎧⎨=⎩,解得21a b =-⎧⎨=-⎩, 所以()()2i 2i 5⋅=---+=z z ;(2)∵()552552i 2i ⎫⎫=--=--+⎪⎪⎪⎪⎝⎭⎝⎭mz m m m , 且5mz 为纯虚数, ∴252050m m ⎧-=⎪⎪⎨⎫⎪-≠⎪⎪⎪⎝⎭⎩,∴m =18.已知平面直角坐标系xOy 中,有三个不同的点A ,B ,C ,其中()0,2A ,()3,1B ,(),C x y . (1)若2AC BC =,求点C 的坐标;(2)若CA CB ⊥,且OC AB =,求OC AB ⋅. 【答案】(1)()6,0; (2)0﹒【分析】(1)根据向量线性运算的坐标表示即可列方程求解;(2)向量垂直,数量积为零,据此求出C 的坐标,再根据向量数量积坐标表示即可求解. 【详解】(1)∵(),2AC x y =-,()3,1BC x y =--,∴()()23622210x x x AC BC y y y ⎧=-=⎧⎪=⇒⇒⎨⎨-=-=⎪⎩⎩,即C 的坐标为()6,0C .(2)∵(),2CA x y =--,()3,1CB x y =--,由2222·0332010CACBx y x y OC AB x y ⎧=⎧+--+=⎪⇒⎨⎨=+=⎩⎪⎩, 解得:13x y =⎧⎨=⎩或31x y =⎧⎨=⎩,又∵A ,B ,C 为三个不同的点,13x y =⎧⎨=⎩,∴()1,3OC =,()3,1AB =-, ∴0OC AB ⋅=.19.已知平面向量()cos sin a x x x =-,()cos sin ,2cos b x x x =+,设函数()f x a b =⋅.(1)求函数()y f x =图象的对称轴;(2)若方程()f x m =在区间0,2π⎛⎫⎪⎝⎭上有两个不相等的实数根,求实数m 的取值范围.【答案】(1)()62k x k Z ππ=+∈ (2)()1,2m ∈【分析】(1)根据平面向量数量积的坐标表示及三角恒等变换公式将函数化简,再结合正弦函数的性质计算可得;(2)由x 的取值范围,求出26x π+的范围,即可求出函数的单调区间,依题意可得()y f x =与y m =在0,2π⎛⎫⎪⎝⎭上有两个不同的交点,即可得解;【详解】(1)解:因为()cos sin a x x x =-,()cos sin ,2cos b x x x =+,且()f x a b =⋅,所以()()()cos sin cos sin cos f x a b x x x x x x =⋅=-++22cos sin cos x x x x =-+cos 22x x =12cos 222x x ⎛⎫= ⎪ ⎪⎝⎭ 2sin 26x π⎛⎫=+ ⎪⎝⎭即()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,当()262x k k Z πππ+=+∈时,解得()62k x k Z ππ=+∈, 所以对称轴()62k x k Z ππ=+∈. (2)解:当02x π<<时,72666x πππ<+<, 令2662x πππ<+≤,解得06x π<≤,即函数在0,6π⎛⎤⎥⎝⎦上单调递增,令72266x πππ<+<,解得62x ππ<<,即函数在,62ππ⎛⎫ ⎪⎝⎭上单调递减,又()02sin 16f π⎛⎫== ⎪⎝⎭,2sin 22666f πππ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,2sin 22sin 12266f ππππ⎛⎫⎛⎫=⨯+=-=- ⎪ ⎪⎝⎭⎝⎭∵()f x m =在区间0,2π⎛⎫⎪⎝⎭上有两个不相等的实数根,即()y f x =与y m =有两个不同的交点, ∴()1,2m ∈.20.在△ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,已知sin 20a B A =. (1)求角B 的大小;(2)给出三个条件:①b =②3a c +=+③cos sin c C A =,从中选出两个作为已知条件,求△ABC 的面积. 【答案】(1)6B π=【分析】(1)由正弦定理统一为三角函数化简可得;(2)选①②利用余弦定理可求出ac ,再由面积公式求解;选①③由余弦定理及正弦定理转化为关于c 的方程求解即可得c ,再得出a ,由三角形面积公式求解;选②③由正弦定理转化为三角形边的方程,再联立已知即可求出ac ,由面积公式求解.【详解】(1)∵sin 2sin 0a B A =,∴2sin cos sin 0a B B A =∴2cos 0ab B =,从而()cos B 0πB =∈, ∴6B π=(2)若选①②:已知b =3a c +=+1)可知6B π=,由余弦定理可得22222cos 32a c b B a c ac +-==⇒+=∴()223a c ac +-=,即((2323ac +-=.解得ac =1sin 2ABCSac B ==若选①③:已知b =sin sin c C A =.由余弦定理可得22222cos 32a c b B a c ac +-==⇒+=∵sin sin c C A =,∴2c a =.∴43230c c +-=,即(30c c c +=∴c =∴3a =,∴1sin 2ABCSac B ==若选②③:已知3a c +=sin sin c C A = ∵sin sin c C A =,∴2c a =.23a c c a ⎧+=+⎪⎨=⎪⎩3c a ⎧=⎪∴⎨=⎪⎩∴1sin 2ABCSac B ==21.“方舱医院”原为解放军野战机动医疗系统中的一种,是可以移动的模块化卫生医疗平台,一般由医疗功能区、病房区、技术保障区等部分构成,具有紧急救治、外科处置、临床检验等多方面功能.某市有一块三角形地块,因疫情所需,当地政府现紧急划拨该地块为方舱医院建设用地.如图所示,2km AB BC AC ===,D 是BC 中点,E 、F 分别在AB 、AC 上,△CDF 拟建成技术保障区,四边形AEDF 拟建成病房区,△BDE 拟建成医疗功能区,DE 和DF 拟建成专用快速通道,90EDF ∠=︒,记CDF θ∠=(1)若30θ=︒,求病房区所在四边形AEDF 的面积;(2)当θ取何值时,可使快速通道E -D -F 的路程最短?最短路程是多少? 【答案】53(2)45θ=︒,最短路程326【分析】(1)根据已知条件中的几何关系可知,DCF 是直角三角形、BDE 是等边三角形 ,分别求出线段的长,再进行面积求解即可;(2)在△BDE 中和△CDF 中分别表示出DE 、DF ,表示出快速通道E -D -F 的路程,再运用三角恒等变换公式进行化简,最后从函数值域的角度求最值. 【详解】(1)30θ=︒,则Rt DCF △中,1DC =,12CF =,3DF =; BDE 为等边三角形,1BD DE BE ===,DE AC ∥,四边形AEDF 为直角梯形,其面积为:13353122AEDP S ⎛=+= ⎝⎭(2)在△BDE 中,由正弦定理:()()sin60sin 30sin 90DE BD BEθθ==︒︒+︒- 在△CDF 中,由正弦定理;()sin60sin sin 120DF CF CDθθ==︒︒-所以()()sin603sin 30DE θ︒==︒+()()sin603sin 120DF θ︒==- ()()()()33311sin 120sin 30E D F l θθ--⎫==+⎪⎪︒-︒+⎝⎭()()()()()31sin cos sin 120sin 303333sin cos 2sin 30sin 12022332sin cos sin21θθθθθθθθθθθ++⎫︒-+︒+++==⎪⎪︒+︒-⎛⎫⎝⎭++ ⎪⎝⎭sin cos 2sin 1,24t πθθθ⎛⎫⎡⎤=+=+∈ ⎪⎣⎦⎝⎭,则22sin cos 1t θθ=- ()23333122331122t l t t tθ++==-⎛⎫-+- ⎪-⎝⎭在1,2t ⎡⎤∈⎣⎦上单调递减,所以当2t =即45θ=︒时,取最小值326l =-.22.如图,圆柱1OO 的轴截面ABCD 为正方形,2AB =,EF 是圆柱上异于AD ,BC 的母线,P ,Q 分别为线段BF ,ED 上的点.(1)若P ,Q 分别为BF ,ED 的中点,证明://PQ 平面CDF ; (2)若1BP DQ CFPF QE DF==≤,求图中所示多面体FDQPC 的体积V 的最大值. 【答案】(1)证明见解析 (2)最大值12.【分析】(1)连接CE ,根据圆柱的性质可得四边形BEFC 为平行四边形,即可得到P 为CE 的中点,从而得到//PQ CD ,即可得证;(2)设CDF θ∠=,0,4πθ⎛⎤∈ ⎥⎝⎦,即可得到2sin CF θ=,2cos DF θ=,再根据比例关系,表示出DCF S △,PCF S △,表示出三棱锥Q CFD -与三棱锥Q PCF -的高,根据锥体的体积公式得到22tan 1sin 23tan 1(tan 1)CDFPQ Q CFD Q DCF V V V θθθθ--⎛⎫=+=+ ⎪++⎝⎭,令tan ,01x x θ=<≤,则1141132CDFPQx x V x x x x ++=⎛⎫⎛⎫+++ ⎪⎪⎝⎭⎝⎭,再令113u x x =++≥,根据函数的性质求出最大值;【详解】(1)证明:如图连接CE ,根据圆柱的性质可得//BC EF 且BC EF =,所以四边形BEFC 为平行四边形, 因为P 为BF 的中点,所以P 为CE 的中点,又Q 为ED 的中点,所以//PQ CD , 因为PQ ⊄平面CDF ,CD ⊂平面CDF , 所以//PQ 平面CDF ,(2)解:Rt CDF 中,设CDF θ∠=,0,4πθ⎛⎤∈ ⎥⎝⎦,则2sin CF θ=,2cos DF θ=,所以2sin tan 12cos BP DQ CF PF QE DF θθθ====≤, 所以12sin cos sin 22DCFS CF DF θθθ=⋅==, 1112sin 2sin 2tan 12tan 1tan 1PCFBCF SSθθθθθ=⋅=⨯⨯⨯=+++设三棱锥Q CFD -高为h ,设三棱锥Q PCF -高为s , 由比例关系,可知tan 2tan tan 1tan 1h EF θθθθ=⋅=++,21ta 1co n 1tan s s DF θθθ=⋅=++ 所以,12sin 2tan 33tan 1Q CFDCFD V S h θθθ-=⋅=+,()212sin 233tan 1Q PCF PCF V S s θθ-=⋅=+22tan 1sin 23tan 1(tan 1)CDFPQ Q CFD Q DCF V V V θθθθ--⎛⎫=+=+ ⎪++⎝⎭ ∵22tan sin 2tan 1θθθ=+∴()()222tan tan tan 1431tan (tan 1)CDFPQV θθθθθ++=++ ∵设tan ,01x x θ=<≤∴()()()222111441133112CDFPQ x x x x x V x x x x x x ++++==⎛⎫⎛⎫+++++ ⎪⎪⎝⎭⎝⎭, 令113u x x=++≥,当且仅当1x =时取等号,则()()244411311313CDFPQ u u V u u u u u===-+--又CDFPQ V 关于u 在[)3,+∞上单调递减,∴当3u =,即1x =,即45θ=︒时,CDFPQ V 取到最大值12.。

2021年高一下学期期中考试数学试卷+答案

2021年高一下学期期中考试数学试卷+答案

2020-2021学年度第二学期高一年级期中检测时间:120分钟 总分:150分注意事项:2021.41.答题前,考生先将自己的姓名、准考证号填写在答题卡上并检查试卷.2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整,笔迹清楚.3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.4.保持卡面清洁,不折叠,不破损. 一、单项选择题:本大题共8小题,每小题5分,共40分.1. 设a =log 0.20.3,b =log 20.3,则( )A .a +b <ab <0B .ab <a +b <0C .a +b <0<abD .ab <0<a +b2. 已知实数x ,y 满足⎩⎪⎨⎪⎧ 2x +y -2≥0,x -2y +4≥0,3x -y -3≤0,若y ≥k (x +1)-1恒成立,那么k 的取值范围是( )A. ⎣⎡⎦⎤12,3B. ⎝⎛⎦⎤-∞,43C. [3,+∞)D. ⎝⎛⎦⎤-∞,12 3. 在△ABC 中,A ,B ,C 的对边分别是a ,b ,c .若A =120°,a =1,则2b +3c 的最大值为( )A .3 B. 2213 C .3 2 D. 3524. 素数也叫质数,法国数学家马林·梅森是研究素数的数学家中成就很高的一位,因此后人将“2n -1”形式(n 是素数)的素数称为梅森素数.已知第20个梅森素数为P =24423-1,第19个梅森素数为Q =24253-1,则下列各数中与P Q最接近的数为(参考数据:lg 2≈0.3)( )A .1045B .1051C .1056D .10595. 在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,b cos A =c -12a ,点D 在AC 上,2AD =DC ,BD =2,则△ABC 的面积的最大值为( ) A. 332B. 3 C .4 D .6 6. 欧拉公式e i x =cos x +isin x (i 为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,根据欧拉公式可知,e πie π4i 表示的复数在复平面中位于( )A .第一象限B .第二象限C .第三象限D .第四象限 7. 如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则( )A .BM =EN ,且直线BM ,EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM ,EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线8. 定义在R 上的偶函数f (x )对任意实数都有f (2-x )=f (x +2),且当x ∈(-1,3]时,f (x )=⎩⎨⎧ 1-x 2,x ∈(-1,1],1-|x -2|,x ∈(1,3],则函数g (x )=5f (x )-|x |的零点个数为( ) A .5 B .6 C .10 D .12二、多项选择题:本大题共4题,每小题5分,共20分.9. 正五角星是一个非常优美的几何图形,且与黄金分割有着密切的联系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021学年高一数学下学期期中试题
(考试范围:必修5 考试时间:70分钟 卷面分值:100 适用班级:高一学年)
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一
项是符合题目要求的. 1.

a <
b <0,则
------------------------------------------------------------------------------------( )
A. 1a <1b
B. 0<a b <1
C. ab >b 2
D. b a >a b
2. 设集合
M ={x |x 2-3x -4<0},N ={x |0≤x ≤5},则M ∩N =
----------------------------( )
A. (0,4]
B. [0,4)
C. [-1,0)
D. (-1,0]
3. △ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若c =2,b =6,B =120°,则a 等于-----------------------------------------------------------------------------------------------( )
A. 6
B. 2
C. 3
D. 2 4.
(x

2y

1)(x

y -3)<0表示的平面区域为
-----------------------------------------------( )
5. 已知数列{a n }中的首项a 1=1,且满足a n +1=12a n +1
2n ,则此数列的第三项是-------( )
A. 1
B. 12
C. 34
D. 5
8
6. 在ABC ∆中,0
45=A ,0
105=C ,则a 与b 的比值为----------------------------( )
A. 2
B.2
C.
22 D.2
1
7. 在等差数列中,已知a =32,则数列前五项的和为----------------------------------( )
A. 10
B. 16
C. 20
D. 32
8. 已知ABC ∆中,如果B b A a cos cos =,则该三角形是---------------------------( )
A. 等腰三角形
B. 直角三角形
C. 等腰或直角三角形
D. 以上选项均不正确 9.










2




-----------------------------------------------------------( ) A.()5
,,05x y x R x x
=
+∈≠且 B.()1
lg ,110lg y x x x
=+
<< C.()33,x x y x R -=+∈ D.1sin ,0sin 2y x x x π⎛⎫=+
<< ⎪⎝⎭
10.





{}
n a 中,已

5
127=⋅a a ,则
=111098a a a a -------------------------------( )
A. 10
B. 25
C. 50
D. 75
11. 一元二次不等式ax 2
+bx +2>0的解集为(-12,13
),则a +b 的值是---------------( )
A. 10
B. -10
C. 14
D. -14
12. 等差数列{a n }的前4项和为24,最后4项和为136,所有项的和为240,则项数n 为
-------------------------------------------------------------------------------------------------( )
A. 10
B. 11
C. 12
D. 13
二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中的横线上.
13. 在ABC ∆中,0
60=A ,3=AC ,面积为
2
2
3,那么AB 等于 .
14. 若函数()f x =R ,则a 的取值范围为________.
15. 若x+2y =1,则24x y +的最小值为________.
16. 公差不为零的等差数列的第1项、第6项、第21项恰好构成等比数列,则它的公比为
________.
三、解答题:本大题共4小题,共24分.解答应写出必要的文字说明、证明过程或演算步骤. 17.(6分)
在ABC ∆中,已知7=a ,3=b ,5=c ,求最大角.
18.(6分)
已知数列}{n a 中,11=a ,且1n >时,n a a n n 21=--,求n a .
19.(6分)
方程()
()2
2
120x m x m +-+-=的一个根比1大,另一个根比-1小,求m 的范围.
20.(6分)
某汽车公司购买了4辆大客车,每辆200万元,用于长途客运,预计每辆车每年收入约100万元,每辆车第一年各种费用约为16万元,且从第二年开始每年比上一年所需费用要增加16万元.
(1)写出4辆车运营的总利润y(万元)与运营年数x(x∈N*)的函数关系式;
(2)这4辆车运营多少年,可使年平均运营利润最大?
哈32中2021~2021学年度高一下学期期中考试
数学试题答案
一、选择题: CBDCC BACCB DC 二、填空题:
13.
3
14. 01a ≤≤ 15. 16.3 三、 解答题:
17.[解析]最大角为A ,
2221
cos 22b c a A bc +-==-
0180A <<
120A ∴=
18.[解析]
12n n a a n --=
2132431468....2n n a a a a a a a a n -∴-=-=-=-=,,,, 21n a n n ∴=+-
19.[解析]
{
(1)0
(1)0f f <-<
20m ∴-<<
20.[解析]
(1)依题意,每辆车x 年总收入为100x 万元,
每辆车x 年总支出为200+16×(1+2+…+x )=200+1
2x (x +1)·16(万元).
∴y =4[100x -200-12
x (x +1)·16]=16(-2x 2+23x -50),(x ∈N *
).
(2)年平均利润为y x
=16(23-2x -50x
)=16[23-2(x +25
x
)].
又x ∈N *
, ∴x +25x
≥2
x ·25
x
=10,
当且仅当x =5时,等号成立,
此时y x
≤16×(23-20)=48.
∴运营5年可使年平均运营利润最大,最大利润为48万元.。

相关文档
最新文档