广州市白云区中考数学“一模”试题及答案
广东省广州市白云区太和中学2022-2023学年下学期九年级数学中考复习第一次模拟测试题

广东省广州市白云区太和中学2022-2023学年第二学期九年级数学中考复习第一次模拟测试题(附答案)一.选择题(满分30分)1.2022的相反数是()A.B.﹣C.2022D.﹣2022 2.2021年5月15日07时18分,我国首个火星探测器“天问一号”经过470000000公里旅程成功着陆在火星上,从此,火星上留下中国的脚印,同时也为我国的宇宙探测之路迈出重要一步.将470000000用科学记数法表示为()A.47×107B.4.7×107C.4.7×108D.0.47×1093.若分式有意义,则x的取值范围是()A.x>2B.x≤2C.x=2D.x≠24.一组数据:3,4,4,6,若添加一个数据6,则不发生变化的统计量是()A.平均数B.中位数C.众数D.方差5.如图,a∥b,∠1=43°,则∠2的度数是()A.137°B.53°C.47°D.43°6.如图,D、E为△ABC边上的点,DE∥BC,,△ADE的面积等于2,则四边形DBCE的面积等于()A.8B.9C.16D.257.如图,⊙O是Rt△ABC的外接圆,OE⊥AB交⊙O于点E,垂足为点D,AE,CB的延长线交于点F.若OD=3,AB=8,则FC的长是()A.10B.8C.6D.48.某工厂今年元月份的产量是50万元,3月份的产值达到了72万元.求2、3月份的产值平均增长率,设这两个月的产值平均月增长率为x,依题意可列方程()A.72(1+x)2=50B.50(1+x)2=72C.50(1﹣x)2=72D.72(1﹣x)2=509.将4个数a、b、c、d排成2行、2列,两边各加一条竖直线记成,定义=ad ﹣bc.例如=8×5﹣9×3=40﹣27=13.则方程=﹣9的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.只有一个实数根10.如图,点A是y轴正半轴上的一个定点,点B是反比例函数(x>0)图象上的一个动点,当点B的纵坐标逐渐增大时,△OAB的面积将()A.逐渐增大B.不变C.逐渐减小D.先增大后减小二.填空题(满分18分)11.分解因式:x2﹣9y2=.12.正五边形的一个内角是度.13.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.随机摸取一个小球然后不放回,再随机摸取一个小球,则两次取出的小球标号的和等于5的概率为.14.在同一坐标系中,图形a是图形b向上平移3个单位长度,再向左平移2个单位得到,如果图形a中A点的坐标为(4,﹣2),则图形b中与A点对应的A'点的坐标为.15.已知直线y1=x,,的图象如图,若无论x取何值,y总取y1、y2、y3中的最小值,则y的最大值为.16.如图,正方形ABCD中,AB=1,连接AC,∠ACD的平分线交AD于点E,在AB上截取AF=DE,连接DF,分别交CE,CA于点G,H,点P是线段GC上的动点,PQ⊥AC 于点Q,连接PH.下列结论:①CE⊥DF;②DE+DC=AC;③EA=AH;④PH+PQ的最小值是,其中所有正确结论的序号是.三.解答题(满分72分)17.计算:()﹣1+4cos45°﹣+(2023﹣π)0.18.解不等式组,并将其解集在数轴上表示出来.19.今年“五•一”期间,文昌市某旅行社接待文昌一日游和三日游的旅客共1500人,共收取旅游费50万元,其中一日游每人收费100元,三日游每人收费800元.该旅行社接待的一日游和三日游旅客各多少人?20.先化简,然后从﹣1,0,1,3中选一个合适的数代入求值.21.“五一”节期间,许多露营爱好者在我市郊区露营,为遮阳和防雨会搭建一种“天幕”,其截面示意图是轴对称图形,对称轴是垂直于地面的支杆AB,用绳子拉直AD后系在树干EF上的点E处,使得A,D,E在一条直线上,通过调节点E的高度可控制“天幕”的开合,AC=AD=2m,BF=3m.(1)天晴时打开“天幕”,若∠α=65°,求遮阳宽度CD(结果精确到0.1m);(2)下雨时收拢“天幕”,∠α从65°减少到45°,求点E下降的高度(结果精确到0.1m).(参考数据:sin65°≈0.90,cos65°≈0.42,tan65°≈2.14,≈1.41)22.如图,AB是⊙O的直径,点E是劣弧BD上一点,∠P AD=∠AED,且DE=,AE 平分∠BAD,AE与BD交于点F.(1)求证:P A是⊙O的切线;(2)若tan∠DAE=,求EF的长;(3)延长DE,AB交于点C,若OB=BC,求⊙O的半径.23.在△ABC中,点D,E分别是AB,AC边上的点,DE∥BC.基础理解:(1)如图1,若AD=4,BD=3,求的值;证明与拓展:(2)如图2,将△ADE绕点A逆时针旋转度,得到△AD1E1,连接BD1,CE1.①求证:=;②如图3,若∠BAC=90°,AB<AC,AD=6,△ADE在旋转过程中,点D1恰好落在DE上时,连接EE1,=,则△E1D1E的面积为.24.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(﹣2,0)、B(8,0)两点,与y轴交于点C(0,4),连接AC、BC.(1)求抛物线的表达式;(2)将△ABC沿AC所在直线折叠,得到△ADC,点B的对应点为D,直接写出点D的坐标,并求出四边形OADC的面积;(3)点P是抛物线上的一动点,当∠PCB=∠ABC时,求点P的坐标.参考答案一.选择题(满分30分)1.解:2022的相反数等于﹣2022,故选:D.2.解:470000000=4.7×108,故选:C.3.解:依题意得:x﹣2>0,解得x>2.故选:A.4.解:A、原来数据的平均数是,添加数字6后平均数为,故不符合题意;B、原来数据的中位数是4,添加数字6后中位数仍为4,故符合题意;C、原来数据的众数是4,添加数字6后众数为4和6,故不符合题意;D、原来数据的方差=[(3﹣)2+2×(4﹣)2+(6﹣)2]=,添加数字6后的方差=[(3﹣)2+2×(4﹣)2+2×(6﹣)2]=,故方差发生了变化,故不符合题意;故选:B.5.解:∵a∥b,∠1=43°,∴∠2=∠1=43°.故选:D.6.解:∵DE∥BC,∴△ADE∽△ABC,∵AD:AB=1:3,相似三角形的面积比是相似比的平方,∴S△ADE:S△ABC=1:9,∴△ADE的面积:四边形DBCE的面积=1:8,又∵△ADE的面积等于2,∴四边形DBCE的面积等于16.故选:C.7.解:由题知,AC为直径,∴∠ABC=90°,∵OE⊥AB,∴OD∥BC,∵OA=OC,∴OD为三角形ABC的中位线,∴AD=AB=×8=4,又∵OD=3,∴OA===5,∴OE=OA=5,∵OE∥CF,点O是AC中点,∴OE是三角形ACF的中位线,∴CF=2OE=2×5=10,故选:A.8.解:根据题意,得:50(x+1)2=72.故选:B.9.解:∵方程=﹣9,∴x2﹣6x=﹣9,∴x2﹣6x+9=0,∴Δ=(﹣6)2﹣4×1×9=0,∴方程=﹣9有两个相等的实数根,故选:B.10.解:根据反比例函数的增减性可知,反比例函数y=(x>0)图象y随x的增大而减小,所以OA不变,△OAB的高随着点B的纵坐标逐渐增大而减小,所以△OAB的面积将逐渐减小.故选:C.二.填空题(满分18分)11.解:原式=(x﹣3y)(x+3y).故答案为:(x﹣3y)(x+3y).12.解:(5﹣2)•180°=540°,540°÷5=108°,所以正五边形的一个内角的度数是108度.13.解:画树状图如下:共有12种等可能的结果,其中两次取出的小球标号和等于5的结果有4种,∴两次取出的小球标号和等于5的概率为=,故答案为:.14.解:∵图形a是图形b向上平移3个单位长度得到的,再向左平移2个单位得到,图形a中点A的坐标为(4,﹣2),∴设图形b中与点A对应的点A′的坐标为(x,y),则y+3=﹣2,x﹣2=4,解得y=﹣5,x=6∴点A′的坐标为(6,﹣5).故答案为:(6,﹣5).15.解:∵无论x取何值,y总取y1、y2、y3中的最小值,∴y的取值如图所示,∴y的最大值为直线y2与y3的交点的纵坐标,联立,解得,所以,当x=3时,y的值最大,为2.故答案为:2.16.解:∵正方形ABCD,∴CD=AD,∠CDE=∠DAF=90°,∴∠ADF+∠CDF=90°,在△CDE和△DAF中,,∴△CDE≌△DAF(ASA),∴∠DCE=∠ADF,∴∠DCF+∠CDF=90°,∴∠DGC=90°,∴CE⊥DF,故①正确;∵CE平分∠ACD,∴∠DCE=∠HCG,在△GCD和△GCH中,,∴△GCD≌△GCH(ASA),∴CD=CH,∠CDH=∠CHD,∵正方形ABCD,∴CD∥AB,∴∠CDF=∠AFD,∴∠CHD=∠AFD,∵∠CHD=∠AHF,∴∠AFD=∠AHF,∴AF=AH,∴AC=AH+CH=AF+CD=DE+CD,故②正确,设DE=AF=AH=a,∵∠AHF=∠DHC,∠CDF=∠AFH,∴△DHC∽△FHA,∴=,∴=,∴a=﹣1,∴DE=AF=AH=﹣1,∴AE=1﹣DE=2﹣,∴EA≠AH,故③错误;∵△GCD≌△GCH,∴DG=GH,∵CE⊥DF,∴CG垂直平分DH,∴DP=PH,当DQ⊥HC时,PH+PQ=DP+PQ有最小值,过点D作DM⊥HC,则DM的长度为PH+PQ的最小值,∵S△ADC==,∴DM=,故④正确.故答案为:①②④.三.解答题(满分72分)17.解:原式=2+4×﹣2+1=2+2﹣2+1=3.18.解:由①得:x≤1,由②得:x<6,∴不等式组的解集为x≤1,解集表示在数轴上,如图所示:.19.解:设接待1日游旅客x人,接待3日游旅客y人,根据题意得,解得,答:该旅行社接待1日游旅客1000人,接待3日游旅客500人.20.解:==,∵a2﹣1≠0,a≠0,∴a≠±1,a≠0,∴当a=3时,原式==.21.解:(1)由对称知,CD=2OD,AD=AC=2m,∠AOD=90°,在Rt△AOD中,∠OAD=α=65°,∴sinα=,∴OD=AD•sinα=2×sin65°≈2×0.90=1.80m,∴CD=2OD=3.6m,答:遮阳宽度CD约为3.6米;(2)如图,过点E作EH⊥AB于H,∴∠BHE=90°,∵AB⊥BF,EF⊥BF,∴∠ABF=∠EFB=90°,∴∠ABF=∠EFB=∠BHE=90°,∴EH=BF=3m,在Rt△AHE中,tan a=,∴AH=,当∠α=65°时,AH=≈≈1.40m,当∠α=45°时,AH==3,∴当∠α从65°减少到45°时,点E下降的高度约为3﹣1.40=1.6m.22.(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠ABD=90°,∵∠P AD=∠AED,∠AED=∠ABD,∴∠P AD=∠ABD,∴∠DAB+∠P AD=90°,即∠P AB=90°,∴AB⊥P A,∵AB是⊙O的直径,∴P A是⊙O的切线;(2)解:连接BE,如图:∵AB是⊙O的直径,∴∠AEB=90°,∵AE平分∠BAD,∴∠DAE=∠BAE,∴=,∠DAE=∠BAE=∠DBE,∴BE=DE=,tan∠DAE=tan∠BAE=tan∠DBE==,∴=,∴EF=1;(3)解:连接OE,如图:∵OE=OA,∴∠AEO=∠OAE,∵∠OAE=∠DAE,∴∠AEO=∠DAE,∴OE∥AD,∴=,∵OA=OB=BC,∴=2,∴=2,∵DE=,∴CE=2,CD=CE+DE=3设BC=OB=OA=R,∵∠BDC=∠BAE,∠C=∠C,∴△CBD∽△CEA,∴=,即=,∴R=2,∴⊙O的半径是2.23.(1)解:∵DE∥BC,AD=4,BD=3,∴;(2)①证明:∵将△ADE绕点A逆时针旋转度,得到△AD1E1,∴AD=AD1,AE=AE1,∠BAD1=∠CAE1,∵DE∥BC,∴,∴,∴△ABD1∽△ACE1,∴;②解:由①可知,△ABD1∽△ACE1,∴,∵将△ADE绕点A逆时针旋转度,得到△AD1E1,∴AD=AD1=6,∠D1AE1=∠DAE=90°,∴AE=AE1==8,DE=D1E=10,过点A作AM⊥DE于点M,则DM=D1M=AD×cos∠ADE=3.6,∴D1E=10﹣3.6×2=2.8,∴∠D1AE1=∠DAE=90°,∴∠DAD1=∠EAE1,∵AD=AD1,AE=AE1,∴∠ADE=∠AEE1,∴∠AED+∠AEE1=∠AED+∠ADE=90°,∴∠D1EE1=90°,∴EE1=9.6,∴△E1D1E的面积为=,故答案为:13.44.24.解:(1)∵抛物线y=ax2+bx+c(a≠0)与x轴交于A(﹣2,0)、B(8,0)两点,与y轴交于点C(0,4),∴,解得:.∴抛物线的表达式为y=﹣+x+4;(2)点D的坐标为(﹣8,8),理由:将△ABC沿AC所在直线折叠,得到△ADC,点B的对应点为D,如图,过点D作DE⊥x轴于点E,∵A(﹣2,0)、B(8,0),C(0,4),∴OA=2,OB=8,OC=4.∵,,∴.∵∠AOC=∠COB=90°,∴△AOC∽△COB,∴∠ACO=∠CBO.∵∠CBO+∠OCB=90°,∴∠ACO+∠OCB=90°,∴∠ACB=90°,∵将△ABC沿AC所在直线折叠,得到△ADC,点B的对应点为D,∴点D,C,B三点在一条直线上.由轴对称的性质得:BC=CD,AB=AD.∵OC⊥AB,DE⊥AB,∴DE∥OC,∴OC为△BDE的中位线,∴OE=OB=8,DE=2OC=8,∴D(﹣8,8);由题意得:S△ACD=S△ABC,∴四边形OADC的面积=S△OAC+S△ADC =S△OAC+S△ABC=OC•OA+AB•OC=4×2+10×4=4+20=24;(3)①当点P在BC上方时,如图,∵∠PCB=∠ABC,∴PC∥AB,∴点C,P的纵坐标相等,∴点P的纵坐标为4,令y=4,则﹣+x+4=4,解得:x=0或x=6,∴P(6,4);②当点P在BC下方时,如图,设PC交x轴于点H,∵∠PCB=∠ABC,∴HC=HB.设HB=HC=m,∴OH=OB﹣HB=8﹣m,在Rt△COH中,∵OC2+OH2=CH2,∴42+(8﹣m)2=m2,解得:m=5,∴OH=3,∴H(3,0).设直线PC的解析式为y=kx+n,∴,解得:.∴y=﹣x+4.∴,解得:,.∴P(,﹣).综上,点P的坐标为(6,4)或(,﹣).。
2024年广东省广州市白云区中考数学一模试卷及答案解析

2024年广东省广州市白云区中考数学一模试卷一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)下列各数中,与﹣2024互为相反数的是()A.2024B.﹣2024C.D.2.(3分)一个几何体的三视图如图所示,则这个几何体是()A.B.C.D.3.(3分)下列运算正确的是()A.(m2)3=m6B.m2•m3=m6C.m﹣2=﹣m2D.m2÷m2=m24.(3分)某校举行“喜迎中国共产党建党105周年”党史知识竞赛,如图是10名决赛选手的成绩.对于这10名选手的成绩,下列说法中正确的是()A.方差是0B.中位数是95C.众数是5D.平均数是905.(3分)不等式组的解集在数轴上表示为()A.B.C.D.6.(3分)已知一次函数y=ax+b经过点(﹣2,﹣3),正比例函数y1=ax不经过第三象限,则反比例函数的图象位于()A.第一、第二象限B.第一、第三象限C.第二、第三象限D.第二、第四象限7.(3分)喜迎二十大,“龙舟故里”赛龙舟,小亮在龙舟竞渡中心广场点P处观看400米直道竞速赛,如图所示,赛道AB为东西方向,赛道起点A位于点P的北偏西30°方向上,终点B位于点P的北偏东60°方向上,AB=400米,求点P到赛道AB的距离()(结果保留整数,参考数据:)A.B.C.87D.1738.(3分)某校组织540名学生去外地参观,现有A,B两种不同型号的客车可供选择.在每辆车刚好满座的前提下,每辆B型客车比每辆A型客车多坐15人,单独选择B型客车比单独选择A型客车少租6辆.设A型客车每辆坐x人,根据题意可列方程()A.﹣=6B.﹣=6C.﹣=6D.﹣=69.(3分)如图,△ABC的内切圆⊙I与BC,CA,AB分别相切于点D,E,F,若⊙I的半径为r,∠FDE =α,则(AF+CD﹣AC)的值和∠A的大小分别为()A.0,180°﹣2αB.r,180°﹣αC.D.10.(3分)若,则关于x的方程x2﹣(2k﹣2)x+k2﹣1=0根的情况是()A.无实数根B.有两个相等的实数根C.有两个实数根D.有两个不相等的实数根二、填空题(本大题共6小题,每小题3分,满分18分.)11.(3分)2023年10月26日上午,神舟十七号载人飞船载着杨洪波、唐胜杰、江新林3名航天员奔赴“天宫”,从2003年的神舟五号到2023年的神舟十七号,20年中国载人航天工程共有20位航天员问鼎苍穹,截止到目前为止,我国航天员在太空的时间已累计达到近21200个小时,其中,数字21200用科学记数法表为.12.(3分)若点A(﹣1,y1),B,C(2,y3)在抛物线y=(x﹣2)2+k上,则y1,y2,y3的大小关系为(用“>”连接).13.(3分)2023年5月30日是第7个全国科技工作者日,某中学举行了科普知识手抄报评比活动,共有100件作品获得一、二、三等奖和优胜奖,根据获奖结果绘制如图所示的条形图若将获奖作品按四个等级所占比例绘制成扇形统计图,则“二等奖”对应扇形的圆心角度数为°.14.(3分)如图,正方形ABCD的边长为4,点E在边BC上,F为对角线BD上一动点,连接CF,EF,若CF+EF的最小值,则CE=.15.(3分)如图,已知AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,四边形AEDF 的面积为60,DF=5,则△ADE中AD边上的高为.16.(3分)如图,矩形ABCD中,AB=9,AD=12,点P从A出发以每秒3个单位长度的速度沿A→D→C→B→A运动一周到点A停止.当点P不与矩形ABCD的顶点重合时,过点P作直线PQ⊥AP,与矩形的边的另一交点为Q.若点P的运动时间为t,当8<t<10时,CQ长度的范围是.三、解答题(本大题共9小题,满分72分.解答应写出文字说明、证明过程或演算步骤.)17.(4分)解方程:x2+4x﹣12=0.18.(4分)已知:如图,在Rt△ABC中,∠ACB=90°,过点C作CD⊥AB,垂足为D.在射线CD上截取CE=CA,过点E作EF⊥CE,交CB的延长线于点F.求证:BC=FE.19.(6分)如图,在平面直角坐标系xOy中,点A(﹣2,0),所在圆的圆心为O,∠AOB=60°.将AB向右平移5个单位,得到(点A平移后的对应点为C).(1)点B的坐标是,所在圆的圆心坐标是;(2)在图中画出,求的长.20.(6分)给出6个整式:x+2,x﹣2,2x+1,2,x2+x﹣1,x2﹣x﹣11.(1)从上面的6个整式中选择2个合适的整式,组成一个分式;(2)从上面的6个整式中选择2个合适的整式进行乘法运算,使运算结果为一个不含有一次项的多项式,请你列出算式,并写出运算过程.21.(8分)甲、乙、丙三人各自随机选择到A,B两个献血站进行爱心献血.求这三人在同一个献血站献血的概率.22.(10分)某车间甲、乙两台机器共生产9200个零件,两台机器同时加工一段时间后,甲机器出现故障,维修一段时间后仍按原来的效率加工,已知甲机器每天加工150个零件,如图是表示未生产零件的个数y(个)与乙机器工作时间x(天)之间的函数图象.(1)乙机器每天加工个零件,甲机器维修了天;(2)求甲机器出现故障以后,未生产零件的个数y(个)与乙机器工作时间x(天)之间的函数关系式.23.(10分)【问题探究】(1)如图①,在四边形ABCD中,∠A=∠B=90°,在AB边上作点E为一点,连接CE,DE,使得CE⊥DE(画出一个点E即可,要求用尺规作图,保留作图痕迹,不要求写作图的证明);(2)如图②,在四边形ABCD中,AD∥BC,BC=CD,∠C=60°,点E为CD上一点,连接AE,BE,∠ABE=60°,试判断AD与CE之间的数量关系,并说明理由;【问题解决】(3)如图③,四边形ABCD是赵叔叔家的果园平面示意图,点E为果园的一个出入口(点E在边CD 上),AE,BE为果园内的两条运输通道(通道宽度忽略不计),经测量,AD∥BC,AB=AE,∠C=∠ABE=45°,AD=150米,赵叔叔计划在△BCE区域内种植某种果树,并沿CE修建一条安全栅栏,为提前做好修建安全栅栏的预算,请你帮赵叔叔计算出CE的长度.24.(12分)已知直线l:y=kx+b(k>0)经过点P(﹣1,2).(1)用含有k的式子表示b;(2)若直线l与x,y轴分别交于A,B两点,△AOB面积为S,求S的取值范围;(3)过点P的抛物线y=(x﹣k)2+n与y轴交点为E,记抛物线的顶点为C,该抛物线是否存在点F 使四边形BPEF为平行四边形?若存在,求此时顶点C的坐标;若不存在,请说明理由.25.(12分)如图,在四边形ABCD中,点N,M分别在边BC,CD上.连接AM,AN,MN,∠MAN=45°.(1)【实践探究】如图①,四边形ABCD是正方形.(Ⅰ)若CN=6,MN=10,求∠CMN的余弦值;(Ⅱ)若tan∠BAN=,求证:M是CD的中点;(2)【拓展】如图②,四边形ABCD是直角梯形,AD∥BC,∠C=90°,CD=12,AD=16,CN=12,求DM的长.2024年广东省广州市白云区中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.【分析】直接利用互为相反数的定义分析得出答案.【解答】解:﹣2024的相反数为2024,A选项正确.故选:A.【点评】本题考查了实数的性质,主要利用了互为相反数的定义,对各选项准确化简是解题的关键.2.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:根据主视图和左视图为矩形可判断出该几何体是柱体,根据俯视图是两个矩形可判断出该几何体为:故选:D.【点评】本题考查由三视图想象立体图形.做这类题时要借助三种视图表示物体的特点,从主视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状,综合分析,合理猜想,结合生活经验描绘出草图后,再检验是否符合题意.3.【分析】直接利用幂的乘方运算法则、同底数幂的乘除运算法则、负整数指数幂的性质分别化简,进而得出答案.【解答】解:A.(m2)3=m6,故此选项符合题意;B.m2•m3=m5,故此选项不合题意;C.m﹣2=,故此选项不合题意;D.m2÷m2=1,故此选项不合题意.故选:A.【点评】此题主要考查了幂的乘方运算、同底数幂的乘除运算、负整数指数幂的性质,正确掌握相关运算法则是解题关键.4.【分析】分别根据众数、中位数、算术平均数以及方差的定义与计算方法判断即可.【解答】解:由题意可知,这10名选手的成绩的众数是95,中位数是=95,平均数是(85×1+90×3+95×5+100×1)=93,方差是[(85﹣93)2+3×(90﹣93)2+5×(95﹣93)2+(100﹣93)2]=16,故选:B.【点评】本题考查条形统计图,中位数,众数,算术平均数以及方差,理解统计图中数量之间的关系是正确计算的前提,掌握中位数、方差的计算方法是得出正确答案的关键.5.【分析】先解出每个不等式的解集,然后即可得到不等式组的解集,再在数轴上表示出其解集即可.【解答】解:,解不等式①,得:x≤﹣1,解不等式②,得:x>﹣5,∴该不等式组的解集为﹣5<x≤﹣1,其解集在数轴上表示如下:故选:A.【点评】本题考查解一元一次不等式组、在数轴上表示不等式组的解集,解答本题的关键是明确解一元一次不等式的方法.6.【分析】根据正比例函数不经过第三象限得到a<0,再根据一次函数y=ax+b经过点(﹣2,﹣3)确定b值的正负,最后确定反比例函数图象的分布即可.【解答】解:∵正比例函数y1=ax不经过第三象限,∴a<0,∵一次函数y=ax+b经过点(﹣2,﹣3),∴b<0,∴反比例函数的图象位于第二、四象限.故选:D.【点评】本题考查了一次函数图象与系数的关系,熟练掌握反比例函数性质是解答本题的关键.7.【分析】过点P作PC⊥AB,垂足为P,设PC=x米,然后分别在Rt△APC和Rt△CBP中,利用锐角三角函数的定义求出AC,BC的长,再根据AB=400米,列出关于x的方程,进行计算即可解答.【解答】解:过点P作PC⊥AB,垂足为C,设PC=x米,在Rt△APC中,∠APC=30°,∴(米),在Rt△CBP中,∠CPB=60°,∴(米),∵AB=400米,∴AC+BC=400,∴,∴,∴PC=173米,∴点P到赛道AB的距离约为173米,故选:D.【点评】本题考查了解直角三角形的应用﹣方向角问题,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.8.【分析】根据题意,可以列出相应的分式方程,从而可以得到哪个选项是正确的.【解答】解:由题意可得:﹣=6,故选:B.【点评】本题考查由实际问题抽象出分式方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.9.【分析】连接IE、IF,根据切线长定理和切线的性质定理得AF=AE,CD=CE,AB⊥IF,AC⊥IE,则AF+CD=AF+CE=AC,所以AF+CD﹣AC=0,而∠FIE=2∠FDE=2α,则∠A=360°﹣∠AEI﹣∠AFI ﹣∠FIE=180°﹣2α,于是得到问题的答案.【解答】解:连接IE、IF,∵△ABC的内切圆⊙I与BC,CA,AB分别相切于点D,E,F,∠FDE=α,∴AF=AE,CD=CE,AB⊥IF,AC⊥IE,∴AF+CD=AF+CE=AC,∴AF+CD﹣AC=AC﹣AC=0,∵∠AEI=∠AFI=90°,∠FIE=2∠FDE=2α,∴∠A=360°﹣∠AEI﹣∠AFI﹣∠FIE=360°﹣90°﹣90°﹣2α=180°﹣2α,故选:A.【点评】此题重点考查三角形的内切圆的定义、切线的性质定理、切线长定理、圆周角定理、四边形的内角和等于360°等知识,正确地作出辅助线是解题的关键.10.【分析】先根据二次根式有意义的条件得到k≤2,再根据二次根式的性质计算得到|k﹣1|=﹣(k﹣1),则利用绝对值的意义得到k≤1,所以k的取值范围为k≤1,接着计算出根的判别式的值得到Δ=﹣8(k ﹣1),从而可判断Δ≥0,然后根据根的判别式的意义可对各选项进行判断.【解答】解:根据题意得2﹣k≥0,解得k≤2,∵,∴|k﹣1|﹣(2﹣k)=﹣1,即|k﹣1|=﹣(k﹣1),∴k﹣1≤0,解得k≤1,∴k的取值范围为k≤1,∵Δ=[﹣(2k﹣2)]2﹣4(k2﹣1)=﹣8(k﹣1)≥0,∴方程有两个实数解.故选:C.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.也考查了二次根式的化简求值.二、填空题(本大题共6小题,每小题3分,满分18分.)11.【分析】科学记数法的表现形式为a×10n的形式,其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n是正数,当原数绝对值小于1时n是负数;由此进行求解即可得到答案.【解答】解:21200=2.12×104,故答案为:2.12×104.【点评】本题主要考查了科学记数法,熟练掌握科学记数法是关键.12.【分析】根据二次函数的性质得到抛物线y=(x﹣2)2+k的开口向上,对称轴为直线x=2,然后根据三个点离对称轴的远近判断函数值的大小.【解答】解:y=(x﹣2)2+k,∵a=1>0,∴抛物线开口向上,对称轴为直线x=2,∵点A(﹣1,y1)离直线x=2的距离最远,C(2,y3)在直线x=2上,∴y1>y2>y3.故答案无:y1>y2>y3.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.13.【分析】根据直方图中的数据,可以计算出a的值,然后即可计算出“一等奖”对应扇形的圆心角度数.【解答】解:由条形统计图可得,a=100﹣10﹣50﹣10=30,“一等奖”对应扇形的圆心角度数为:360°×=108°,故答案为:108.【点评】本题考查条形统计图、扇形统计图,解答本题的关键是明确题意,利用数形结合的思想解答.14.【分析】连接AF,AE,推出CF+EF的最小值,就是AE的长,再利用勾股定理求出BE,进而求出CE的长.【解答】解:连接AF,AE,∵四边形ABCD是正方形,∴点A与点C关于直线BD对称,∴AF=CF,∴CF+EF=AF+EF≥AE,∵CF+EF的最小值,∴AE=,在Rt△ABE中,∵AB=4,AE=,∴由勾股定理,得BE===2,∴CE=BC﹣BE=4﹣2=2,故答案为:2.【点评】本题考查轴对称﹣最短路线问题,正方形的性质,勾股定理,两点之间线段最短,能将两线段和的最小值用一条线段表示是解题的关键.15.【分析】先证△AED≌△AFD,可得DE=DF=5,已知四边形AEDF的面积为60,可得△ADE的面积,可求得AE、AD的长,再根据面积公式可得△ADE中AD边上的高的长度.【解答】解:∵DE,DF分别是△ABD和△ACD的高,∴∠AED=∠AFD=90°,∵AD是△ABC的角平分线,∴∠EAD=∠FAD,∵AD=AD,∴△AED≌△AFD(AAS),∴DE=DF=5,△AED的面积=△AFD的面积,∵四边形AEDF的面积为60,=30,∴S△ADE=×DE×AE,∵S△ADE∴AE=12,AD==13,∴△ADE中AD边上的高==,故答案为:.【点评】本题考查了角平分线的性质,关键是掌握角平分线的性质以及全等三角形的判定条件.16.【分析】先判断出P点所在位置,连接AQ,根据三角形相似的判定与性质,用t表示出CQ,从而求出DQ,在根据二次函数的最值求出DQ的取值范围,最后根据勾股定理求出AQ的取值范围即可.【解答】解:由题意可知,当t=8时,点P的运动路程为3×8=24,当t=10时,点P的运动路程为3×10=30,∵AD+CD=21,AD+CD+BC=33,∴当8<t<10时,点P在线段BC上,∴CP=3t﹣21,BP=33﹣3t,∵∠APQ=90°,∴∠CPQ +∠APB =90°,∵∠PAB +∠APB =90°,∴∠PAB =∠CPQ ,∴△CPQ ∽△BAP ,∴=,∴CQ =(t ﹣7)(11﹣t )=﹣(t ﹣9)2+4,∵8<t <10,∴3<CQ ≤4.故答案为:3<CQ ≤4.【点评】本题主要考查了勾股定理的应用,结合相似三角形的判定与性质以及二次函数最值问题来解答是本题解题的关键.三、解答题(本大题共9小题,满分72分.解答应写出文字说明、证明过程或演算步骤.)17.【分析】方程左边的多项式利用十字相乘法分解因式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:分解因式得:(x ﹣2)(x +6)=0,可得x ﹣2=0或x +6=0,解得:x 1=2,x 2=﹣6.【点评】此题考查了解一元二次方程﹣因式分解法,利用此方法解方程时,首先将方程左边化为积的形式,右边化为0,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.18.【分析】根据题意,先得出∠E =∠ACB ,再用两角夹边判定即可.【解答】证明:∵CD ⊥AB ,∴∠A +∠ACD =90°,∵∠ACB =90°,∴∠ACD +∠ECF =90°,∴∠A =∠ECF ,∵EF ⊥CE ,∴∠E =90°,∴∠E =∠ACB ,在△ACB 和△CEF 中,,∴△ACB≌△CEF(ASA),∴BC=FE.【点评】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定和性质是解题的关键.19.【分析】(1)根据等边三角形的判定与性质可得点B的坐标,根据题意可得所在圆的圆心坐标;(2)由平移的性质画出,再根据弧长公式计算即可.【解答】解:(1)如图,连接OB,AB,作BP⊥OA于点P,∵OA=OB,∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=2,故BP=AB•sin60°==,OP=OA=1,∴点B的坐标是(﹣1,);所在圆的圆心坐标是(0,0).故答案为:(﹣1,),(0,0);(2)如图所示:==.【点评】本题考查了图象的平移、弧长的计算等,掌握平移的性质以及弧长公式是解答本题的关键.20.【分析】(1)根据分式的定义即可写出,答案不唯一;(2)根据多项式乘多项式的运算法则进行运算即可.【解答】解:(1)写出的分式有:等,答案不唯一;(2)从6个整式:x+2,x﹣2,2x+1,2,x2+x﹣1,x2﹣x﹣11中选择2个整式进行乘法运算,使运算结果为一个不含有一次项的多项式:(x+2)(x﹣2)=x2﹣4.【点评】本题考查了分式的定义及整式的混合运算,分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式叫做分式,A叫做分式的分子,B叫做分式的分母.多项式乘多项式法则:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.21.【分析】首先根据题意画树状图,然后根据树状图即可求得所有等可能的结果和满足条件的结果数,再根据概率公式求解即可.【解答】解:画树状图得:共8种等可能情况,其中这三人在同一个献血站献血的有2种结果,所以这三人在同一个献血站献血的概率为=.【点评】此题考查了树状图法求概率.注意树状图法适合两步或两步以上完成的事件,树状图法可以不重不漏的表示出所有等可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.22.【分析】(1)设乙机器每天加工a个零件,根据甲、乙两台机器10天共生产(9200﹣5200)个零件列出方程,求出a得到乙机器每天加工250个零件;根据甲机器维修的时间即为乙机器单独工作的时间,结合图象根据工作时间=工作总量÷工作效率即可求出甲机器维修的天数;(2)分两种情况:①当10<x≤18时;②当18<x≤26时;利用待定系数法即可求解.【解答】解:(1)设乙机器每天加工a个零件,由题意得:10(150+a)=9200﹣5200,解得:a=250,即乙机器每天加工250个零件;甲机器维修的天数为=8(天).故答案为:250,8;(2)设未生产零件的个数y(个)与乙机器工作时间x(天)之间的函数关系式为y=kx+b.①当10<x≤18时,把(10,5200),(18,3200)代入,得:,解得:,∴y=﹣250x+7700(10<x≤18);②当18<x≤26时,把(18,3200),(26,0)代入,得:,解得:,∴y=﹣400x+10400(18<x≤26);综上所述,甲机器出现故障以后,未生产零件的个数y(个)与乙机器工作时间x(天)之间的函数关系式为:y=.【点评】本题考查了一元一次方程的应用,一次函数的应用,工作时间、工作总量与工作效率之间关系的应用,利用数形结合以及分类讨论是解题的关键.23.【分析】(1)作出以CD为直径的圆,利用直径所对的圆周角为直角可得该圆与AB的交点即为所求;(2)连接BD,利用等边三角形的判定与性质和全等三角形的判定与性质解答即可得出结论;(3)过点A作AF⊥BC于点F,过点E作EH⊥BC,延长HE交AD的延长线于点G,利用矩形的判定与性质,等腰直角三角形的判定与性质,全等三角形的判定与性质得到EH的长度,再利用等腰直角三角形的性质即可得出结论.【解答】解:(1)1.作出线段CD的垂直平分线,2.以CD为直径画圆,交AB于点E,3.连接DE,CE,则点E为所求.如图,(2)AD与CE之间的数量关系为:AD=CE,理由:连接BD,如图,∵BC=CD,∠C=60°,∴△BCD为等边三角形,∴BD=BC,∠CBD=∠CDB=60°,∵∠ABE=60°,∴∠ABE=∠CBD,∴∠ABD=∠EBC.∵AD∥BC,∴∠ADB=∠CBD=60°,∴∠ADB=∠C=60°.在△ABD和△EBC中,,∴△ABD≌△EBC(ASA),∴AD=EC;(3)过点A作AF⊥BC于点F,过点E作EH⊥BC,延长HE交AD的延长线于点G,如图,∵AD∥BC,AF⊥BC,EH⊥BC,∴四边形AFHG为矩形,∴AF=HG,∠G=∠FAG=90°.∵AB=AE,∠C=∠ABE=45°,∴∠ABE=∠AEB=∠C=45°,∴△ABE,△EHC为等腰直角三角形,∴∠BAE=90°,∠HEC=45°,∴∠GED=∠HEC=45°,∴△DEG为等腰直角三角形,∴DG=EG.∵∠BAE=∠FAG=90°,∴∠BAF=∠GAE.在△BAF和△EAG中,,∴△BAF≌△EAG(AAS),∴AF=AG,∴AG=GH,∴AG﹣DG=GH﹣GE,即:HE=AD=150(米),∴CE=EH=150(米).【点评】本题主要考查了尺规作图,梯形的性质,线段垂直平分线的判定与性质,圆的有关性质,圆周角定理,直角三角形的性质,等腰直角三角形的判定与性质,全等三角形的判定与性质,等边三角形的判定与性质,作出梯形的高线是解决此类问题常添加的辅助线.24.【分析】(1)将点P(﹣1,2)坐标代入y=kx+b即可得到b=k+2;(2)由(1)可知,直线y=kx+b=kx+k+2(k>0),可得A(﹣,0),B(0,k+2),根据面积公式和均值不等式求出S的取值范围即可;(3)先求出n与k的关系,然后用k表示出E,C的坐标,根据B和P的坐标关系,可以推出E和F 的坐标关系,从而得到F的坐标,代入抛物线解析式求得k值,即可求出C的坐标.【解答】解:(1)∵y=kx+b(k>0)经过点P(﹣1,2).∴﹣k+b=2,∴b=k+2(k>0).(2)由(1)可知,直线y=kx+b=kx+k+2(k>0),∴A(﹣,0),B(0,k+2),S==×(k+2)=×(4+k+),∵k>0,∴(﹣)2≥0,k﹣4+≥0,∴k+≥4,∴S=×(4+k+)≥×(4+4)=4,∴S的取值范围为:S≥4.(3)存在点F使四边形BPEF为平行四边形,理由如下:∵抛物线y=(x﹣k)2+n过点P(﹣1,2),∴2=(﹣1﹣k)2+n,∴n=﹣k2﹣2k+1,∴抛物线为y=(x﹣k)2﹣k2﹣2k+1(k>0),∴C(k,﹣k2﹣2k+1),当x=0,y=﹣2k+1,∴E(0,﹣2k+1),∵四边形BPEF为平行四边形,∴PB∥EF,PB=EF,∵点P向右平移1个单位长度、再向上平移k个单位长度得到点B,∴点E向右平移1个单位长度、再向上平移k个单位长度得到点F,∴F(0+1,﹣2k+1+k)即(1,﹣k+1),∵点F在抛物线上,∴(1﹣k)2﹣k2﹣2k+1=﹣k+1,解得:k=,∴C(,).【点评】本题主要考查了二次函数的性质,熟练掌握待定系数法求解一次和二次函数的解析式以及平行四边形的性质是本题解题的关键.25.【分析】(1)(Ⅰ)利用正方形的性质,勾股定理和直角三角形的边角关系定理解答即可;(Ⅱ)延长CB至点E,使BE=DM,连接AE,利用全等三角形的判定与性质得到EN=MN,设BN=m,DM=n,则MN=EN=m+n,利用直角三角形的边角关系定理得到CN=BC﹣BN=2m,CM=CD﹣DM=3m﹣n,利用勾股定理得到m,n的关系式3m=2n,从而CM=DM=n;(2)以AD为边作正方形ADEF,延长AN,交EF于点G,延长EF至点H,使FH=DM,连接AH,MG,延长CB交AF于点K,利用(1)(ii)的方法解答即可得出结论.【解答】(1)(Ⅰ)解:∵四边形ABCD是正方形,∴∠C=90°,∴CM===8,∴∠CMN的余弦值=;(Ⅱ)证明:延长CB至点E,使BE=DM,连接AE,如图,∵四边形ABCD是正方形,∴AB=AD,∠ABE=∠D=90°,在△ABE和△ADM中,,∴△ABE≌△ADM(SAS),∴EN=MN,设BN=m,DM=n,则MN=EN=m+n.∵tan∠BAN==,∴AB=3m,∴BC=CD=AB=3m,∴CN=BC﹣BN=2m,CM=CD﹣DM=3m﹣n.在Rt△CMN中,∵CN2+CM2=MN2,∴(2m)2+(3m﹣n)2=(m+n)2,∴3m=2n.∴CM=3m﹣n=2n﹣n=n,∵DM=n,∴CM=DM,∴M是CD的中点;(2)解:以AD为边作正方形ADEF,延长AN,交EF于点G,延长EF至点H,使FH=DM,连接AH,MG,延长CB交AF于点K,如图,∵四边形ADEF为正方形,∴AF=EF=DE=AD=16,∵四边形ABCD是直角梯形,AD∥BC,∠C=90°,∴四边形AKCD为矩形,∴CK=AD=16,AK=CD=12,∴KN=CK﹣CN=16﹣12=4,∵KN∥EF,∴△AKN∽△AFG,第15页(共15页)∴,∴,∴FG=.∴EG =EF ﹣FG =.在△AFH 和△ADM中,,∴△AFH ≌△ADM (SAS ),∴HG =MG .设DM =x ,则EM =16﹣x ,MG =HG =x ,∵EG 2+EM 2=MG 2,∴,解得:x =8.∴DM 的长为8.【点评】本题主要考查了正方形的性质,全等三角形的判定与性质,直角三角形的性质,勾股定理,直角三角形的边角关系定理,恰当的添加辅助线构造全等三角形是解题的关键。
白云区初中一模数学试卷

一、选择题(每题5分,共25分)1. 下列各数中,是负数的是()A. -3B. 0C. 3D. -2.52. 下列运算中,正确的是()A. (-2) × (-3) = 6B. (-2) × (-3) = -6C. (-2) ÷ (-3) = 2D. (-2) ÷ (-3) = -2/33. 若a > b,则下列不等式中正确的是()A. a - b > 0B. a + b < 0C. a - b < 0D. a + b > 04. 下列代数式中,表示a的2倍减去3的是()A. 2a - 3B. 3 - 2aC. 2a + 3D. 3 - 2a5. 在直角坐标系中,点A(2,3)关于y轴的对称点是()A. (-2,3)B. (2,-3)C. (-2,-3)D. (2,3)二、填空题(每题5分,共25分)6. 若x = -2,则2x + 5的值为______。
7. 若a = 3,b = -4,则a^2 - 2ab + b^2的值为______。
8. 若a + b = 7,a - b = 3,则a的值为______。
9. 若一个数的2倍减去5等于3,则这个数是______。
10. 在直角三角形ABC中,∠A = 90°,AC = 6cm,BC = 8cm,则AB的长度为______cm。
三、解答题(共50分)11. (15分)解下列方程:(1)2x - 5 = 3x + 1(2)5(x - 2) = 3(2x + 1)12. (15分)已知a、b、c是等差数列的前三项,且a + b + c = 18,a + c = 12,求b的值。
13. (20分)如图,矩形ABCD中,AB = 8cm,BC = 6cm,点E在BC上,AE = 4cm,求三角形AEC的面积。
四、附加题(共10分)14. (10分)若x^2 - 5x + 6 = 0,求x^3 - 3x^2 + 2x的值。
2021年广东省广州市白云区中考数学一模试卷(解析版)

2021年广东省广州市白云区中考数学一模试卷一、选择题(共10小题).1.﹣3的相反数是()A.B.﹣3C.D.32.在平面直角坐标系中,把点A(0,﹣1)向左平移2个单位长度,得到点B,点B的坐标为()A.(0,1)B.(0,﹣3)C.(2,﹣1)D.(﹣2,﹣1)3.下列运算正确的是()A.x8÷x2=x4(x≠0)B.(m+n)2=m2+n2C.3a+2b=5ab D.(y3)2=y64.如图所示的三棱柱,其俯视图的内角和为()A.180°B.360°C.540°D.720°5.如图,在Rt△ABC中,∠C=90°,AB=10,AC=8,D是AC上一点,AD=5,DE⊥AB,垂足为E,则AE=()A.2B.3C.4D.56.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如图所示,则这些运动员成绩的中位数为()A.160B.165C.170D.1757.如图摆放一副三角尺,∠B=∠EDF=90°,点E在AC上,点D在BC的延长线上,EF∥BC,∠A=30°,∠F=45°,则∠CED=()A.15°B.20°C.25°D.30°8.关于x的方程x2﹣2x+a=0(a为常数)无实数根,则点(a,a+1)在()A.第一象限B.第二象限C.第三象限D.第四象限9.菱形ABCD的对角线AC,BD相交于点O,且DE∥AC,CE∥DB,则四边形OCED是()A.梯形B.矩形C.菱形D.正方形10.设函数y1=,y2=﹣(k>0),当2≤x≤3时,函数的y1最大值是a,函数y2的最小值是a﹣4,则ak=()A.4B.6C.8D.10二、填空题(本大题共6小题,每小题3分,满分18分)11.=.12.分解因式:ax2﹣a=.13.方程组的解是.14.如图,把一张长方形的纸片对折两次,量出OA=1,OB=2,然后沿AB剪下一个△AOB,展开后得到一个四边形,则这个四边形的周长为.15.如图,从一块直径为6的圆形铁皮上裁出一个圆心角为90°的扇形,把这个扇形围成一个圆锥,则这个圆锥的底面半径是.16.如图,在平面直角坐标系中,有一个Rt△OAB,∠ABO=90°,∠AOB=30°,直角边OB在y轴正半轴上,点A在第一象限,且OA=1,将Rt△OBA绕原点O逆时针旋转30°,同时把各边长扩大为原来的2倍(即OA1=2OA),得到Rt△OA1B1,同理,将Rt△OA1B1绕原点O逆时针旋转30°,同时把各边长扩大为原来的2倍,得到Rt△OA2B2,…,依此规律,得到Rt△OA2021B2021,则点B2021的纵坐标为.三、解答题(本大题共9小题,满分72分,解答应写出文字说明、证明过程或演算步骤,)17.解不等式组:,并将其解集在数轴上表示出来.18.如图,已知BD平分∠ABC,∠A=∠C.求证:△ABD≌△CBD.19.已知M=(x+3)(x﹣2)+(x+1)2+5.(1)化简M;(2)x是面积为5的正方形边长,求M的值.20.某电影院按电影播放的时间段,把某部电影的票价设置为两种,记这两种票价对应的电影票分别为A票和B票.已知每张A票的票价比B票的票价少9元,且用312元购买A 票的张数与用420元购买B票的张数相等.求每张A票和B票的票价各是多少元?21.为落实白云区“数学提升工程”,提升学生数学核心素养,某校开展数学活动周,包括以下项目:①数学知识竞赛;②数学谜语;③数学手抄报;④数学计算接力赛;⑤数独游戏.为了解学生最喜爱的项目,随机抽取若干名学生进行调查,将调查结果绘制成两个不完整的统计图,如图:(1)本次随机抽查的学生人数为人,补全图(Ⅰ);(2)该校共有800名学生,可估计出该校学生最喜爱“①数学知识竞赛”的人数为人,图(Ⅱ)中扇形①的圆心角度数为度;(3)该校计划在“①,②,③,④”四项活动中随机选取两项参加区活动展示,请用列表或画树状图的方法,求恰好选中“①,④”这两项活动的概率.22.一次函数y=kx+b与反比例函数y=的图象都经过点(2,﹣1).(1)求b的值;(2)点(2a,y1),(a,y2),(3a,y3),a≠0,都在反比例函数图象上,根据图象比较y1,y2,y3的大小.23.如图,⊙O是四边形ABCD的外接圆,AC是⊙O的直径,BE⊥DC,交DC的延长线于点E,CB平分∠ACE.(1)求证:BE是⊙O的切线.(2)若=2,CE=1,求点B到AD的距离.24.抛物线G:y=x2﹣2ax﹣a+3(a为常数)的顶点为A.(1)用a表示点A的坐标;(2)经过探究发现,随着a的变化,点A始终在某一抛物线H上,若将抛物线G向右平移t(t>0)个单位后,所得抛物线顶点B仍在抛物线H上;①平移距离t是a的函数吗?如果是,求出函数解析式,并写出a的取值范围;如果不是,请说明理由;②若y=x2﹣2ax﹣a+3在x≥﹣4时,都有y随x的增大而增大,设抛物线H的顶点为C,借助图象,求直线AC与x轴交点的横坐标的最小值.25.不在射线DA上的点P是边长为2的正方形ABCD外一点,且满足∠APB=45°,以AP,AD为邻边作▱APQD.(1)如图,若点P在射线CB上,请用尺规补全图形;(2)若点P不在射线CB上,求∠PAQ的度数;(3)设AQ与PD交点为O,当△APO的面积最大时,求tan∠ADO的值.参考答案一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.﹣3的相反数是()A.B.﹣3C.D.3【分析】根据只有符号不同的两个数互为相反数,可得答案.解:﹣3的相反数是3,故选:D.2.在平面直角坐标系中,把点A(0,﹣1)向左平移2个单位长度,得到点B,点B的坐标为()A.(0,1)B.(0,﹣3)C.(2,﹣1)D.(﹣2,﹣1)【分析】根据向左平移横坐标减,可得结论.解:∵将点A(0,﹣1)向左平移2个单位长度,得到点B,∴点B的横坐标为0,纵坐标为﹣1﹣2=﹣3,∴B的坐标为(0,﹣3).故选:B.3.下列运算正确的是()A.x8÷x2=x4(x≠0)B.(m+n)2=m2+n2C.3a+2b=5ab D.(y3)2=y6【分析】根据同底数幂的除法法则对A进行判断;根据完全平方公式对B进行判断;根据合并同类项对C进行判断;根据幂的乘方对D进行判断.解:A、原式=x6,所以A选项不符合题意;B、原式=m2+2mn+n2,所以B选项不符合题意;C、3a与2b不能合并,所以C选项不符合题意;D、原式=x6,所以D选项符合题意.故选:D.4.如图所示的三棱柱,其俯视图的内角和为()A.180°B.360°C.540°D.720°【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解:从正三棱柱的上面看:可以得到一个正三角形,故其俯视图的内角和为180°.故选:A.5.如图,在Rt△ABC中,∠C=90°,AB=10,AC=8,D是AC上一点,AD=5,DE⊥AB,垂足为E,则AE=()A.2B.3C.4D.5【分析】通过证明△ADE∽△ABC,可得结论.解:∵∠A=∠A,∠AED=∠C=90°,∴△ADE∽△ABC,∴,∴,∴AE=4,故选:C.6.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如图所示,则这些运动员成绩的中位数为()A.160B.165C.170D.175【分析】根据中位数的定义直接解答即可.解:把这些数从小到大排列,中位数是第8个数,则这些运动员成绩的中位数为165cm.故选:B.7.如图摆放一副三角尺,∠B=∠EDF=90°,点E在AC上,点D在BC的延长线上,EF∥BC,∠A=30°,∠F=45°,则∠CED=()A.15°B.20°C.25°D.30°解:如图,∵∠EDF=90°,∠F=45°,∴∠DEF=45°,∵∠B=90°,∠A=30°,∴∠ACB=60°,∵EF∥BC,∴∠CEF=∠ACB=60°,∴∠CDE=∠CEF﹣∠DEF=15°.故选:A.8.关于x的方程x2﹣2x+a=0(a为常数)无实数根,则点(a,a+1)在()A.第一象限B.第二象限C.第三象限D.第四象限解:∵a=1,b=﹣2,c=a,∴△=b2﹣4ac=(﹣2)2﹣4×1×a=4﹣4a<0,解得:a>1,∴点(a,a+1)在第一象限,故选:A.9.菱形ABCD的对角线AC,BD相交于点O,且DE∥AC,CE∥DB,则四边形OCED是()A.梯形B.矩形C.菱形D.正方形解:∵DE∥AC,CE∥DB,∴四边形OCED是平行四边形,∵四边形ABCD为菱形,∴AC⊥BD,∴∠COD=90°,∴四边形OCED是矩形,故选:B.10.设函数y1=,y2=﹣(k>0),当2≤x≤3时,函数的y1最大值是a,函数y2的最小值是a﹣4,则ak=()A.4B.6C.8D.10解:∵k>0,2≤x≤3,∴y1随x的增大而减小,y2随x的增大而增大,∴当x=2时,y1取最大值,最大值为=a①;当x=2时,y2取最小值,最小值为﹣=a﹣4②;由①②得a=2,k=4,∴ak=8,故选:C.二、填空题(本大题共6小题,每小题3分,满分18分)11.=2.解:==×=2.12.分解因式:ax2﹣a=a(x+1)(x﹣1).解:ax2﹣a,=a(x2﹣1),=a(x+1)(x﹣1).13.方程组的解是.解:,①+②得:2x=4,即x=2,①﹣②得:2y=2,即y=1,则方程组的解为.故答案为:.14.如图,把一张长方形的纸片对折两次,量出OA=1,OB=2,然后沿AB剪下一个△AOB,展开后得到一个四边形,则这个四边形的周长为4.解:由题意,四边形是菱形,∵∠AOB=90°,OA=1,OB=2,∴AB===,∴四边形的周长为4,故答案为:4.15.如图,从一块直径为6的圆形铁皮上裁出一个圆心角为90°的扇形,把这个扇形围成一个圆锥,则这个圆锥的底面半径是.【分析】连接BC,根据圆周角定理得到BC为圆的直径,求出AC,根据弧长公式求出的长,根据圆锥的侧面展开图计算.解:连接BC,∵∠CAB=90°,∴BC为圆的直径,∴AC=AB=3,∴的长==,设圆锥的底面圆的半径为r,由题意得,2πr=π,解得,r=,即圆锥的底面圆的半径为,故答案为:.16.如图,在平面直角坐标系中,有一个Rt△OAB,∠ABO=90°,∠AOB=30°,直角边OB在y轴正半轴上,点A在第一象限,且OA=1,将Rt△OBA绕原点O逆时针旋转30°,同时把各边长扩大为原来的2倍(即OA1=2OA),得到Rt△OA1B1,同理,将Rt△OA1B1绕原点O逆时针旋转30°,同时把各边长扩大为原来的2倍,得到Rt△OA2B2,…,依此规律,得到Rt△OA2021B2021,则点B2021的纵坐标为3×22019.【分析】根据余弦的定义求出OB,根据题意求出OB n,根据题意找出规律,根据规律解答即可.解:在Rt△AOB中,∠AOB=30°,OA=1,∴OB=OA•cos∠AOB=,由题意得,OB1=2OB=×2,OB2=2OB1=×22,……OB n=2OB1=×2n=×2n﹣1,∵2021÷12=168……5,∴点B2021的纵坐标为:﹣×22020×cos60°=×22020×=3×22019,故答案为:3×22019.三、解答题(本大题共9小题,满分72分,解答应写出文字说明、证明过程或演算步骤,)17.解不等式组:,并将其解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解:解不等式x﹣2≤0,得:x≤2,解不等式3x+2>﹣1,得:x>﹣1,则不等式组的解集为﹣1<x≤2,将不等式组的解集表示在数轴上如下:18.如图,已知BD平分∠ABC,∠A=∠C.求证:△ABD≌△CBD.【分析】根据AAS证明△ABD与△CBD全等.【解答】证明:∵BD平分∠ABC,∴∠ABD=∠CBD,在△ABD与△CBD中,,∴△ABD≌△CBD(AAS).19.已知M=(x+3)(x﹣2)+(x+1)2+5.(1)化简M;(2)x是面积为5的正方形边长,求M的值.【分析】(1)先利用乘法公式展开,然后合并即可;(2)根据正方形的面积公式得到x=,然后把x的值代入(1)中化简的式子里计算即可.解:(1)M=x2+x﹣6+x2+2x+1+5=2x2+3x;(2)∵x是面积为5的正方形边长,∴x=,∴M=2×()2+3×=10+3.20.某电影院按电影播放的时间段,把某部电影的票价设置为两种,记这两种票价对应的电影票分别为A票和B票.已知每张A票的票价比B票的票价少9元,且用312元购买A 票的张数与用420元购买B票的张数相等.求每张A票和B票的票价各是多少元?【分析】设每张A票的票价是x元,则每张B票的票价为(x+9)元,根据“用312元购买A票的张数与用420元购买B票的张数相等”列出方程并解答.解:设每张A票的票价是x元,则每张B票的票价为(x+9)元,根据题意,得=.解得x=26.经检验x=26是所列方程的解,且符合题意,所以x+9=35.答:每张A票的票价是26元,则每张B票的票价为35元.21.为落实白云区“数学提升工程”,提升学生数学核心素养,某校开展数学活动周,包括以下项目:①数学知识竞赛;②数学谜语;③数学手抄报;④数学计算接力赛;⑤数独游戏.为了解学生最喜爱的项目,随机抽取若干名学生进行调查,将调查结果绘制成两个不完整的统计图,如图:(1)本次随机抽查的学生人数为60人,补全图(Ⅰ);(2)该校共有800名学生,可估计出该校学生最喜爱“①数学知识竞赛”的人数为200人,图(Ⅱ)中扇形①的圆心角度数为,90度;(3)该校计划在“①,②,③,④”四项活动中随机选取两项参加区活动展示,请用列表或画树状图的方法,求恰好选中“①,④”这两项活动的概率.【分析】(1)由②的人数除以所占百分比求出抽查的学生人数,即可解决问题;(2)由该校人数乘以最喜爱“①数学知识竞赛”的人数所占的比例得出该校学生最喜爱“①数学知识竞赛”的人数,再1由369°乘以最喜爱“①数学知识竞赛”的人数所占的比例即可;(3)画树状图,再由概率公式求解即可.解:(1)本次随机抽查的学生人数为:18÷30%=60(人),则喜爱⑤数独游戏的人数为:60﹣15﹣18﹣9﹣6=12(人),故答案为:60,补全图(Ⅰ)如下:(2)估计该校学生最喜爱“①数学知识竞赛”的人数为:800×=200(人),图(Ⅱ)中扇形①的圆心角度数为:360°×=90°,故答案为:200,90;(3)画树状图如图:共有12个等可能的结果,恰好选中“①,④”这两项活动的结果有2个,∴恰好选中“①,④”这两项活动的概率为=.22.一次函数y=kx+b与反比例函数y=的图象都经过点(2,﹣1).(1)求b的值;(2)点(2a,y1),(a,y2),(3a,y3),a≠0,都在反比例函数图象上,根据图象比较y1,y2,y3的大小.【分析】(1)将点(2,﹣1)代入解析式可求解;(2)分两种情况讨论,由反比例函数的性质可求解.解:(1)∵一次函数y=kx+b与反比例函数y=的图象都经过点(2,﹣1),∴k=2×(﹣1)=﹣2,﹣1=2k+b,∴b=3;(2)∵k=﹣2,∴y=的图象在第二、四象限,y随x的增大而增大,当a>0时,∴3a>2a>a,∴y3>y1>y2,当a<0时,∴3a<2a<a,∴y3<y1<y2.23.如图,⊙O是四边形ABCD的外接圆,AC是⊙O的直径,BE⊥DC,交DC的延长线于点E,CB平分∠ACE.(1)求证:BE是⊙O的切线.(2)若=2,CE=1,求点B到AD的距离.【分析】(1)连接OB,求出OB∥DE,推出EB⊥OB,根据切线的判定得出即可;(2)证明△OBC是等边三角形,即可解决问题.【解答】(1)证明:如图,连接OB,∵CB平分∠ACE.∴∠ACB=∠ECB,∵∠BCA=∠BDA,∴∠BCA=∠BAD,∵OB=OC,∴∠BCO=∠CBO,∴∠BCE=∠CBO,∴OB∥ED.∵BE⊥ED,∴EB⊥BO.∴BE是⊙O的切线;(2)解:如图,连接BD,∵AC是⊙O的直径,∴∠ABC=∠ADC=90°,∵∠OBE=∠E=90°,∴点B到AD的距离即为DE的长,∵=2,∴∠AOB=2∠COB,∴∠BOC=60°,∵OB=OC,∴△OBC是等边三角形,∴∠OBC=∠OCB=60°,∵BE是切线,∴OB⊥EB,∴∠EBO=90°,∴∠EBC=30°,∠BCE=60°,∴BC=2EC=2,AC=2BC=4,∴∠ACD=60°,∵AC是直径,∴∠ADE=90°,∴∠CAD=30°,∴CD=AC=2,∴DE=3.答:点B到AD的距离为3.24.抛物线G:y=x2﹣2ax﹣a+3(a为常数)的顶点为A.(1)用a表示点A的坐标;(2)经过探究发现,随着a的变化,点A始终在某一抛物线H上,若将抛物线G向右平移t(t>0)个单位后,所得抛物线顶点B仍在抛物线H上;①平移距离t是a的函数吗?如果是,求出函数解析式,并写出a的取值范围;如果不是,请说明理由;②若y=x2﹣2ax﹣a+3在x≥﹣4时,都有y随x的增大而增大,设抛物线H的顶点为C,借助图象,求直线AC与x轴交点的横坐标的最小值.【分析】(1)把抛物线的解析式化成顶点式即可;(2)①根据抛物线的平移可得出平移后的抛物线,并求出抛物线的顶点B,由抛物线的对称性可得出a和t之间的函数关系;②有题意可得抛物线G的对称轴x=a≤﹣4,并求出抛物线H的顶点C,联立,求出直线解析式,表达出直线AC与x轴的交点的横坐标,再求出它的最小值.解:(1)y=x2﹣2ax﹣a+3=(x﹣a)2﹣a2﹣a+3,∴顶点A(a,﹣a2﹣a+3);(2)由点A的坐标可知,抛物线H:y=﹣x2﹣x+3,抛物线G向右平移t个单位后,抛物线为:y=(x﹣a﹣t)2﹣a2﹣a+3,此时的定点B(a+t,﹣a2﹣a+3),①∵抛物线顶点B仍在抛物线H上,∴y=﹣(a+t)2﹣(a+t)+3=﹣a2﹣a+3,整理得t=﹣2a﹣1,∵t>0,∴﹣2a﹣1>0,即a<﹣,∴t是a的函数,t=﹣2a﹣1(a<﹣);②∵y=x2﹣2ax﹣a+3在x≥﹣4时,都有y随x的增大而增大,∴对称轴,x=a≤﹣4,∵抛物线H:y=﹣(x+)2+,∴C(﹣,),设直线AC的解析式为y=kx+b,代入点A,点C的坐标得,,解得,,∴y=(﹣a﹣)x﹣a+3,当y=0时,x==﹣+•,又a≤﹣4,∴当a=﹣4时,x有最小值﹣,∴直线AC与x轴交点的横坐标的最小值﹣.25.不在射线DA上的点P是边长为2的正方形ABCD外一点,且满足∠APB=45°,以AP,AD为邻边作▱APQD.(1)如图,若点P在射线CB上,请用尺规补全图形;(2)若点P不在射线CB上,求∠PAQ的度数;(3)设AQ与PD交点为O,当△APO的面积最大时,求tan∠ADO的值.解:(1)如图1,以B为圆心,AB长为半径作弧,交射线CB于点P;(2)如图2,连接QA,QC,QB,BD,∵四边形APQD是平行四边形,∴AP=DQ,PQ∥AD,AP∥QD,∴∠PAD+∠ADQ=180°,∴∠PAB=90°﹣∠ADQ,∴∠PAB=90°﹣∠ADQ=∠QDC,又∵AP=QD,AB=CD,∴△PAB≌△QDC(SAS),∴∠APB=∠DQC=45°,∵四边形ABCD是正方形,∴∠ABD=∠DBC=45°,∴∠CQD=∠CBD=45°,∴点B,点C,点D,点Q四点共圆,∴∠BCD=∠BQD=90°,∴∠BQD=∠BAD=90°,∴点B,点D,点A,点Q四点共圆,∴∠AQD=∠ABD=45°,∵AP∥QD,∴∠PAQ=∠AQD=45°;(3)∵四边形APQD是平行四边形,∴S△APO=S▱APQD,∴当▱APQD的面积最大时,△APO的面积取最大值,∵S▱APQD=AD×点P到AD的距离,∴当点P到AD的距离最大时,▱APQD的面积最大,如图3,以AB为斜边作等腰直角三角形ABE,以E为圆心,AE为半径作△ABP的外接圆,延长CB交⊙E于H,过点E作FE⊥BH,交⊙E于P,交DA的延长线于F,此时点P到AD的距离最大,∵EA=EB,∠AEB=90°,AB=2,∴∠EAB=45°,AE=,∴∠EAF=45°,∵EF⊥AF,∴∠EAF=∠FEA=45°,∴AF=EF=1,∴PF=1+,∴S▱APQD最大=AD•PF=2×(1+),∴S△APO最大=S▱APQD=,∴tan∠ADO==.。
【2020精品中考数学提分卷】广州白云区初三年级一模数学试卷+答案

【2020精品中考数学提分卷】广州白云区初三年级一模数学试卷+答案2020年广东省广州市白云区中考数学一模试卷一、单选题1. ( 2分 )|?6| 的值是()A. ?6B. 6C. 16D. ?162. ( 2分 ) 下面四幅图是在同一天同一地点不同时刻太阳照射同一根旗杆的影像图,其中表示太阳刚升起时的影像图是()A.B.C.D.3. ( 2分 ) 据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5300万美元,“5300万”用科学记数法可表示为()A. 5.3×103 B. 5.3×104 C. 5.3×107 D.5.3×108 4. ( 2分 ) 下列图形既是轴对称图形,又是中心对称图形的是()A. B. C. D.5. ( 2分) 如图,△ABC内有一点D,且DA=DB=DC,若∠DAB= 20°,∠DAC=30°,则∠BDC的大小是()A. 100°B. 80°C. 70°D. 50°6. ( 2分) 正六边形ABCDEF内接于⊙O,正六边形的周长是12,则⊙O的半径是()A. √3B. 2C. 2√2D. 2√37. ( 2分) 如图,P是反比例函数图象上第二象限内一点,若矩形PEOF的面积为3,则反比例函数的解析式是()A. y=?3xB. y=?x3C. y=x3D. y=3x8. ( 2分) 某初中毕业班的每一个同学都将自己的相片向全班其他同学各送一张表示留念,全班共送了2550张相片,如果全班有x名学生,根据题意,列出方程为()A. x(x+1)=2550B. x(x?1)=2550C. 2x(x+1)=2550D. x(x?1)=2550×29. ( 2分) 若1x >2,1x>-3,则x的取值范围()A. ?13<x<1< bdsfid="126" p=""></x<1<>2B. ?13<x1</x2C. x3或x>12D. 以上答案都不对10. ( 2分) 如图所示,△ABC为等腰直角三角形,∠ACB=90°,AC=BC=2,正方形DEFG边长也为2,且AC与DE在同一直线上,△ABC从C点与D点重合开始,沿直线DE向右平移,直到点A与点E重合为止,设CD的长为x,△ABC与正方形DEFG 重合部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是()A. B.C. D.二、填空题11. ( 1分) 分解因式(xy?1)2?(x+y?2xy)(2?x?y)=________.12. ( 2分) 如图,在矩形ABCD中,M为CD的中点,连接AM、BM,分别取AM、BM的中点P、Q,以P、Q为顶点作第二个矩形PSRQ,使S、R在AB上.在矩形PSRQ中,重复以上的步骤继续画图….若AM⊥MB,矩形ABCD的周长为30.则:(1)DC=________;(2)第n个矩形的边长分别是________.13. ( 1分) 不等式组{x?1<0x+2≥0的解集是________14. ( 1分) 把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=8cm,则圆形螺母的外直径是________.15. ( 1分) 如图是二次函数y1=ax2+bx+c(a≠0)和一次函数y2=kx+t的图象,当y1≥y2时,x的取值范围是________.16. ( 1分) 如图,点A,B分别在一次函数y=x,y=8x的图象上,其横坐标分别a,b(a>0,b>0).设直线AB的解析式为y=kx+m,若ba是整数时,k也是整数,满足条件的k值共有________个.三、解答题17. ( 5分) 计算:|?13|+(π?2017)0?2sin30°+3?1.18. ( 5分) 先化简,再求值:先化简x2?2x+1x?1÷(x?1x+1﹣x+1),然后从﹣2<x<√5的范围内选取一个合适的整数作为x的值代入求值.).19. ( 10分) 如图,一条公路的转弯处是一段圆弧(AB所在圆的圆心O;(要求保留作图痕迹,不写作法)(1)用直尺和圆规作出AB的中点C到弦AB的距离为20m,AB=80m,求AB?所在圆的半径.(2)若AB20. ( 7分) 中小学生每天在校体育活动时间不低于1小时” .为此,我区就“你每天在校体育活动时间是多少”的问题随机调查了区内300名初中学生.根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:A组:t<0.5? B组:0.5?≤t<1? C组:1?≤t<1.5? D组:t≥1.5?请根据上述信息解答下列问题:(1)C组的人数是________.(2)本次调查数据的中位数落在________组内;(3)若我区有5400名初中学生,请你估计其中达国家规定体育活动时间的人约有多少?21. ( 15分) 随着互联网的普及,某手机厂商采用先网络预定,然后根据订单量生产手机的方式销售,2015年该厂商将推出一款新手机,根据相关统计数据预测,定价为2200元,日预订量为20000台,若定价每减少100元,则日预订量增加10000台.(1)设定价减少x元,预订量为y台,写出y与x的函数关系式;(2)若每台手机的成本是1200元,求所获的利润w(元)与x (元)的函数关系式,并说明当定价为多少时所获利润最大;(3)若手机加工厂每天最多加工50000台,且每批手机会有5%的故障率,通过计算说明每天最多接受的预订量为多少?按最大量接受预订时,每台售价多少元?22. ( 10分) 如图,在东西方向的海岸线MN上有A、B两艘船,均收到已触礁搁浅的船P 的求救信号,已知船P在船A的北偏东58°方向,船P在船B的北偏西35°方向,AP 的距离为30海里(参考数据:sin32°≈0.53,sin55°≈0.82).(1)求船P到海岸线MN的距离(精确到0.1海里);(2)若船A、船B分别以20海里/小时、15海里/小时的速度同时出发,匀速直线前往救援,试通过计算判断哪艘船先到达船P处.23. ( 15分 ) 如图, A(4,0),B(1,3) ,以OA 、OB 为边作平行四边形OACB ,反比例函数 y =kx 的图象经过点C .(1)求k 的值;(2)根据图象,直接写出 y <3 时自变量x 的取值范围;(3)将平行四边形OACB 向上平移几个单位长度,使点B 落在反比例函数的图象上.24. ( 10分 ) 如图 1,⊙O 的直径 AB =12,P 是弦BC 上一动点( 与点 B ,C 不重合 ),∠ABC =30° ,过点P 作PD ⊥OP 交⊙O 于点D .(1)如图2,当 PD//AB 时,求PD 的长;(2)如图3,当 DC=AC ? 时,延长AB 至点E ,使 BE =12AB ,连接DE .①求证:DE 是⊙O 的切线;②求PC 的长.25. ( 12分 ) 如图,在平面直角坐标系中,O 为坐标原点,已知直线 y =?43x +8 与x轴、y轴分别交于A、B两点.直线OD⊥直线AB于点D.现有一点P从点D出发,沿线段DO向点O运动,另一点Q从点O出发,沿线段OA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到O时,两点都停止.设运动时间为t秒.(1)点A的坐标为________ ;线段OD的长为________ .(2)设?OPQ的面积为S,求S与t之间的函数关系(不要求写出取值范围),并确定t为何值时S的值最大?(3)是否存在某一时刻t,使得?OPQ为等腰三角形?若存在,写出所有满足条件的t的值;若不存在,则说明理由.答案解析部分一、单选题1.【答案】B【考点】绝对值及有理数的绝对值【解析】【解答】解:|?6|=6,故答案为:B.【分析】本题考查绝对值的意义,根据负数的绝对值等于它的相反数,从而可得| ? 6 | = 6.2.【答案】C【考点】平行投影【解析】【解答】解:太阳东升西落,在不同的时刻,同一物体的影子的方向和大小不同,太阳从东方刚升起时,影子应在西方.故答案为:C.【分析】太阳从东方升起,故物体影子应在西方,所以太阳刚升起时,照射一根旗杆的影像图,应是影子在西方.3.【答案】C【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:5300万=5300×103万美元=5.3×107美元.故答案为:C.【分析】本题考查的用科学记数法表示绝对值大于1的数,科学记数法是指将一个数字表示成a×10n的形式,其中1≤|a|≤10,n是整数,这种记数方法叫科学记数法.n值的确定是个易错点,属于常考题型.4.【答案】D【考点】轴对称图形,中心对称及中心对称图形【解析】【解答】解:A.不是轴对称图形,是中心对称图形,不合题意;B.不是轴对称图形,不是中心对称图形,不合题意;C.是轴对称图形,不是中心对称图形,不合题意;D.是轴对称图形,也是中心对称图形,符合题意.故答案为:D.【分析】把一个图形沿着一条直线折叠,直线两旁的部分能完全重合的图形就是轴对称图形;把一个图形绕着某一点旋转180°后能与自身重合的图形就是中心对称图形,根据定义即可一一作出判断。
2020届广东省广州市白云区中考数学一模试卷(有答案)

广东省广州市白云区中考数学一模试卷一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)﹣的相反数是()A.B.2 C.﹣0.5 D.﹣22.(3分)下列各种图形中,可以比较大小的是()A.两条射线B.两条直线C.直线与射线D.两条线段3.(3分)下列代数式中,是4次单项式的为()A.4abc B.﹣2πx2y C.xyz2D.x4+y4+z44.(3分)已知一组数据:5,7,4,8,6,7,2,则它的众数及中位数分别为()A.7,8 B.7,6 C.6,7 D.7,45.(3分)用直接开平方法解下列一元二次方程,其中无解的方程为()A.x2﹣1=0 B.x2=0 C.x2+4=0 D.﹣x2+3=06.(3分)平面内三条直线a、b、c,若a⊥b,b⊥c,则直线a、c的位置关系是()A.垂直B.平行C.相交D.以上都不对7.(3分)某同学参加数学、物理、化学三科竞赛平均成绩是93分,其中数学97分,化学89分,那么物理成绩是()A.91分B.92分C.93分D.94分8.(3分)如图所示,直线AB⊥CD于点O,直线EF经过点O,若∠1=26°,则∠2的度数是()A.26°B.64°C.54°D.以上答案都不对9.(3分)在反比例函数y=的图象上有两点A(x1,y1),B(x2,y2),当x1<0<x2时,有y1<y2,则m的取值范围是()A.m>0 B.m<0 C.m>D.m<10.(3分)如图,两条宽度都是1的纸条,交叉重叠放在一起,且夹角为α,则重叠部分的面积为()A.B.C.tanαD.1二、填空题(本大题共6小题,每小题3分,满分18分)11.(3分)如图,点D、E分别是△ABC的边AC、BC上的点,AD=DE,AB=BE,∠A=80°,则∠BED=°.12.(3分)△ABC中,∠A、∠B都是锐角,且sinA=cosB=,则△ABC是三角形.13.(3分)若a3•a m=a9,则m=.14.(3分)已知,如图,△ABC中,∠A+∠B=90°,AD=DB,CD=4,则AB=.15.(3分)化简:=.16.(3分)如图,点C、D在线段AB上,且CD是等腰直角△PCD的底边.当△PDB∽△ACP 时(P与A、B与P分别为对应顶点),∠APB=°.三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤)17.(9分)解方程组:.18.(9分)AC是菱形ABCD的对角线,点E、F分别在边AB、AD上,且BE=DF.求证:△ACE≌△ACF.19.(10分)在一个纸盒里装有四张除数字以外完全相同卡片,四张卡片上的数字分别为1,2,3,4.先从纸盒里随机取出一张,记下数字为x,再从剩下的三张中随机取出一张,记下数字为y,这样确定了点P的坐标(x,y).(1)请你运用画树状图或列表的方法,写出点P所有可能的坐标;(2)求点P(x,y)在函数y=﹣x+4图象上的概率.20.(10分)如图,一条直线分别交x轴、y轴于A、B两点,交反比例函数y=(m≠0)位于第二象限的一支于C点,OA=OB=2.(1)m=;(2)求直线所对应的一次函数的解析式;(3)根据(1)所填m的值,直接写出分解因式a2+ma+7的结果.21.(12分)如图,△ABC中,D为BC边上的点,∠CAD=∠CDA,E为AB边的中点.(1)尺规作图:作∠C的平分线CF,交AD于点F(保留作图痕迹,不写作法);(2)连结EF,EF与BC是什么位置关系?为什么?(3)若四边形BDFE的面积为9,求△ABD的面积.22.(12分)我国实施的“一带一路”战略方针,惠及沿途各国.中欧班列也已融入其中.从我国重庆开往德国的杜伊斯堡班列,全程约11025千米.同样的货物,若用轮船运输,水路路程是铁路路程的1.6倍,水路所用天数是铁路所用天数的3倍,列车平均日速(平均每日行驶的千米数)是轮船平均日速的2倍少49千米.分别求出列车及轮船的平均日速.23.(12分)如图,⊙O的半径OA⊥OC,点D在上,且=2,OA=4.(1)∠COD=°;(2)求弦AD的长;(3)P是半径OC上一动点,连结AP、PD,请求出AP+PD的最小值,并说明理由.(解答上面各题时,请按题意,自行补足图形)24.(14分)二次函数y=x2+px+q的顶点M是直线y=﹣和直线y=x+m的交点.(1)若直线y=x+m过点D(0,﹣3),求M点的坐标及二次函数y=x2+px+q的解析式;(2)试证明无论m取任何值,二次函数y=x2+px+q的图象与直线y=x+m总有两个不同的交点;(3)在(1)的条件下,若二次函数y=x2+px+q的图象与y轴交于点C,与x的右交点为A,试在直线y=﹣上求异于M的点P,使P在△CMA的外接圆上.25.(14分)已知,如图,△ABC的三条边BC=a,CA=b,AB=c,D为△ABC内一点,且∠ADB=∠BDC=∠CDA=120°,DA=u,DB=v,DC=w.(1)若∠CBD=18°,则∠BCD=°;(2)将△ACD绕点A顺时针方向旋转90°到△AC'D',画出△AC'D',若∠CAD=20°,求∠CAD'度数;(3)试画出符合下列条件的正三角形:M为正三角形内的一点,M到正三角形三个顶点的距离分别为a、b、c,且正三角形的边长为u+v+w,并给予证明.广东省广州市白云区中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)﹣的相反数是()A.B.2 C.﹣0.5 D.﹣2【解答】解:﹣的相反数是,故选:A.2.(3分)下列各种图形中,可以比较大小的是()A.两条射线B.两条直线C.直线与射线D.两条线段【解答】解:A、射线没有长度,无法比较,故此选项错误;B、直线没有长度,无法比较,故此选项错误;C、直线与射线没有长度,无法比较,故此选项错误;D、两条线段可以比较大小.故选:D.3.(3分)下列代数式中,是4次单项式的为()A.4abc B.﹣2πx2y C.xyz2D.x4+y4+z4【解答】解:xyz2是4次单项式,故选C.4.(3分)已知一组数据:5,7,4,8,6,7,2,则它的众数及中位数分别为()A.7,8 B.7,6 C.6,7 D.7,4【解答】解:这组数据按照从小到大的顺序排列为:2、4、5、6、7、7、8,则众数为:7,中位数为:6.故选:B.5.(3分)用直接开平方法解下列一元二次方程,其中无解的方程为()A.x2﹣1=0 B.x2=0 C.x2+4=0 D.﹣x2+3=0【解答】解:A、方程x2﹣1=0的解为x=±1;B、方程x2=0的解为x=0;C、由方程x2+4=0可得x2=﹣4,方程无解;D、方程﹣x2+3=0的解为x=±,故选:C.6.(3分)平面内三条直线a、b、c,若a⊥b,b⊥c,则直线a、c的位置关系是()A.垂直B.平行C.相交D.以上都不对【解答】解:∵a⊥b,b⊥c,∴a∥b,故选B.7.(3分)某同学参加数学、物理、化学三科竞赛平均成绩是93分,其中数学97分,化学89分,那么物理成绩是()A.91分B.92分C.93分D.94分【解答】解:物理成绩是:93×3﹣97﹣89=93(分).故选:C.8.(3分)如图所示,直线AB⊥CD于点O,直线EF经过点O,若∠1=26°,则∠2的度数是()A.26°B.64°C.54°D.以上答案都不对【解答】解:∵∠1=26°,∠DOF与∠1是对顶角,∴∠DOF=∠1=26°,又∵∠DOF与∠2互余,∴∠2=90°﹣∠DOF=90°﹣26°=64°.故选B.9.(3分)在反比例函数y=的图象上有两点A(x1,y1),B(x2,y2),当x1<0<x2时,有y1<y2,则m的取值范围是()A.m>0 B.m<0 C.m>D.m<【解答】解:∵x1<0<x2时,y1<y2,∴反比例函数图象在第一,三象限,∴1﹣3m>0,解得:m<.故选D.10.(3分)如图,两条宽度都是1的纸条,交叉重叠放在一起,且夹角为α,则重叠部分的面积为()A.B.C.tanαD.1【解答】解:如图所示:过A作AE⊥BC,AF⊥CD于F,垂足为E,F,∴∠AEB=∠AFD=90°,∵AD∥C B,AB∥CD,∴四边形ABCD是平行四边形,∵纸条宽度都为1,∴AE=AF=1,∵平行四边形的面积=BC•AE=CD•AF,∴BC=CD,∴四边形ABCD是菱形.∴BC=AB,∵=sinα,∴BC=AB==,∴重叠部分(图中阴影部分)的面积=BC×AE=×1=.故选:A.二、填空题(本大题共6小题,每小题3分,满分18分)11.(3分)如图,点D、E分别是△ABC的边AC、BC上的点,AD=DE,AB=BE,∠A=80°,则∠BED=80°.【解答】解:在△ABD与△EBD中,,∴△ABD≌△EBD,∴∠BED=∠A=80°.故答案为80.12.(3分)△ABC中,∠A、∠B都是锐角,且sinA=cosB=,则△ABC是直角三角形.【解答】解:由△ABC中,∠A、∠B都是锐角,且sinA=cosB=,得∠A+∠B=90°,故答案为:直角.13.(3分)若a3•a m=a9,则m=6.【解答】解:由题意可知:3+m=9,∴m=6,故答案为:614.(3分)已知,如图,△ABC中,∠A+∠B=90°,AD=DB,CD=4,则AB=8.【解答】解:∵如图,△ABC中,∠A+∠B=90°,∴∠ACB=90°.∵AD=DB,∴CD是该直角三角形斜边AB上的中线,∴AB=2CD=8.故答案是:8.15.(3分)化简:=x+y+2.【解答】解:原式==,=x+y+2.故答案为:x+y+2.16.(3分)如图,点C、D在线段AB上,且CD是等腰直角△PCD的底边.当△PDB∽△ACP 时(P与A、B与P分别为对应顶点),∠APB=135°.【解答】解:∵△PDB∽△ACP,∴∠A=∠BPD,∵CD是等腰直角△PCD的底边,∴∠PCD=45°,∠CPD=90°,由三角形的外角的性质得∠A+∠APC=∠PCD=45°,∴∠APB=∠APC+∠PCD+∠BPD=∠APC+∠PCD+∠A=45°+90°=135°.故答案为:135.三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤)17.(9分)解方程组:.【解答】解:①﹣②,得(x+2y)﹣(x﹣4y)=﹣5﹣7,即6y=﹣12,解得y=﹣2,把y=﹣2代入②,可得:x﹣4×(﹣2)=7,得x=﹣1,∴原方程组的解为.18.(9分)AC是菱形ABCD的对角线,点E、F分别在边AB、AD上,且BE=DF.求证:△ACE≌△ACF.【解答】证明:∵AC是菱形ABCD的对角线,∴∠FAC=∠EAC,在△ACE和△ACF中,,∴△ACE≌△ACF(SAS).19.(10分)在一个纸盒里装有四张除数字以外完全相同卡片,四张卡片上的数字分别为1,2,3,4.先从纸盒里随机取出一张,记下数字为x,再从剩下的三张中随机取出一张,记下数字为y,这样确定了点P的坐标(x,y).(1)请你运用画树状图或列表的方法,写出点P所有可能的坐标;(2)求点P(x,y)在函数y=﹣x+4图象上的概率.【解答】解:(1)树状图如下:点P所有可能的坐标有:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)共12种;(2)∵共有12种等可能的结果,其中在函数y=﹣x+4图象上的点有2个,即(1,3),(3,1),=.∴点P(x,y)在函数y=﹣x+4图象上的概率为:P(点在图象上)=20.(10分)如图,一条直线分别交x轴、y轴于A、B两点,交反比例函数y=(m≠0)位于第二象限的一支于C点,OA=OB=2.(1)m=﹣8;(2)求直线所对应的一次函数的解析式;(3)根据(1)所填m的值,直接写出分解因式a2+ma+7的结果.【解答】解:(1)m=﹣2×4=﹣8;(2)∵OA=OB=2,∴A、B点的坐标分别为A(2,0)、B(0,2),设直线所对应的一次函数的解析为y=kx+b,分别把A、B的坐标代入其中,得,解得.∴一次函数的解析为y=﹣x+2;(3)由(1)m=﹣8,则a2+ma+7=a2﹣8m+7=(a﹣1)(a﹣7).故答案为:﹣8.21.(12分)如图,△ABC中,D为BC边上的点,∠CAD=∠CDA,E为AB边的中点.(1)尺规作图:作∠C的平分线CF,交AD于点F(保留作图痕迹,不写作法);(2)连结EF,EF与BC是什么位置关系?为什么?(3)若四边形BDFE的面积为9,求△ABD的面积.【解答】解:(1)如图,射线CF即为所求;(2)EF∥BC.∵∠CAD=∠CDA,∴AC=DC,即△CAD为等腰三角形;又CF是顶角∠ACD的平分线,∴CF是底边AD的中线,即F为AD的中点,∵E是AB的中点,∴EF为△ABD的中位线,∴EF∥BD,从而EF∥BC;(3)由(2)知EF∥BC,∴△AEF∽△ABD,∴,又∵AE=AB ,∴得=,把S 四边形BDFE =9代入其中,解得S △AEF =3,∴S △ABD =S △AEF +S 四边形BDFE =3+9=12,即△ABD 的面积为12.22.(12分)我国实施的“一带一路”战略方针,惠及沿途各国.中欧班列也已融入其中.从我国重庆开往德国的杜伊斯堡班列,全程约11025千米.同样的货物,若用轮船运输,水路路程是铁路路程的1.6倍,水路所用天数是铁路所用天数的3倍,列车平均日速(平均每日行驶的千米数)是轮船平均日速的2倍少49千米.分别求出列车及轮船的平均日速.【解答】解:设轮船的日速为x 千米/日,由题意,得×3=,解此分式方程,得x=392,经检验,x=392是原分式方程的解,2x ﹣49=735.答:列车的速度为735千米/日;轮船的速度为392千米/日.23.(12分)如图,⊙O 的半径OA ⊥OC ,点D 在上,且=2,OA=4.(1)∠COD= 30 °;(2)求弦AD 的长;(3)P 是半径OC 上一动点,连结AP 、PD ,请求出AP +PD 的最小值,并说明理由.(解答上面各题时,请按题意,自行补足图形)【解答】解:(1)∵OA ⊥OC ,∴∠AOC=90°,∵=2,∴∠AOD=2∠COD,∴∠COD=∠AOC=30°,故答案为:30;(2)连结OD、AD,如图1所示:由(1)知∠AOD=2∠COD=2×30°=60°,∵OA=OD,∴△AOD为等边三角形,∴AD=OA=4;(3)过点D作DE⊥OC,交⊙O于点E,连结AE,交OC于点P,则此时,AP+PD的值最小,延长AO交⊙O于点B,连结BE,如图2所示:∵根据圆的对称性,点E是点D关于OC的对称点,OC是DE的垂直平分线,即PD=PE,∴AP+PD最小值=AP+PE=AE,∵∠AED=∠AOD=30°,又∵OA⊥OC,DE⊥OC,∴OA∥DE,∴∠OAE=∠AED=30°,∵AB为直径,∴△ABE为直角三角形,由=cos∠BAE,AE=AB•cos30°=2×4×=,即AP+PD=,24.(14分)二次函数y=x2+px+q的顶点M是直线y=﹣和直线y=x+m的交点.(1)若直线y=x+m过点D(0,﹣3),求M点的坐标及二次函数y=x2+px+q的解析式;(2)试证明无论m取任何值,二次函数y=x2+px+q的图象与直线y=x+m总有两个不同的交点;(3)在(1)的条件下,若二次函数y=x2+px+q的图象与y轴交于点C,与x的右交点为A,试在直线y=﹣上求异于M的点P,使P在△CMA的外接圆上.【解答】解:(1)把D(0,﹣3)坐标代入直线y=x+m中,得m=﹣3,从而得直线y=x﹣3,由M为直线y=﹣与直线y=x﹣3的交点,得,解得,,∴得M点坐标为M(2,﹣1),∵M为二次函数y=x2+px+q的顶点,∴其对称轴为x=2,由对称轴公式:x=﹣,得﹣=2,∴p=﹣4;由=﹣1,=﹣1,解得,q=3.∴二次函数y=x2+px+q的解析式为:y=x2﹣4x+3;(2)∵M是直线y=﹣和y=x+m的交点,∴,解得,,∴M点坐标为M(﹣,),∴﹣=﹣、=,解得,p=,q=+,由,得x2+(p﹣1)x+q﹣m=0,△=(p﹣1)2﹣4(q﹣m)=(﹣1)2﹣4(+﹣m)=1>0,∴二次函数y=x2+px+q的图象与直线y=x+m总有两个不同的交点;(3)由(1)知,二次函数的解析式为:y=x2﹣4x+3,当x=0时,y=3.∴点C的坐标为C(0,3),令y=0,即x2﹣4x+3=0,解得x1=1,x2=3,∴点A的坐标为A(3,0),由勾股定理,得AC=3.∵M点的坐标为M(2,﹣1),过M点作x轴的垂线,垂足的坐标应为(2,0),由勾股定理得,AM=,过M点作y轴的垂线,垂足的坐标应为(0,﹣1),由勾股定理,得CM===2.∵AC2+AM2=20=CM2,∴△CMA是直角三角形,CM为斜边,∠CAM=90°.直线y=﹣与△CMA的外接圆的一个交点为M,另一个交点为P,则∠CPM=90°.即△CPM为Rt△,设P点的横坐标为x,则P(x,﹣).过点P作x轴垂线,过点M作y轴垂线,两条垂线交于点E,则E(x,﹣1).过P作PF⊥y轴于点F,则F(0,﹣).在Rt△PEM中,PM2=PE2+EM2=(﹣+1)2+(2﹣x)2=﹣5x+5.在Rt△PCF中,PC2=PF2+CF2=x2+(3+)2=+3x+9.在Rt△PCM中,PC2+PM2=CM2,得+3x+9+﹣5x+5=20,化简整理得5x2﹣4x﹣12=0,解得x1=2,x2=﹣.当x=2时,y=﹣1,即为M点的横、纵坐标.∴P点的横坐标为﹣,纵坐标为,∴P(﹣,).25.(14分)已知,如图,△ABC的三条边BC=a,CA=b,AB=c,D为△ABC内一点,且∠ADB=∠BDC=∠CDA=120°,DA=u,DB=v,DC=w.(1)若∠CBD=18°,则∠BCD=42°;(2)将△ACD绕点A顺时针方向旋转90°到△AC'D',画出△AC'D',若∠CAD=20°,求∠CAD'度数;(3)试画出符合下列条件的正三角形:M为正三角形内的一点,M到正三角形三个顶点的距离分别为a、b、c,且正三角形的边长为u+v+w,并给予证明.【解答】解:(1)在△BCD中,∠BDC=120°,∠CBD=18°,根据三角形的内角和得,∠BCD=180°﹣∠BDC﹣∠CBD=42°,故答案为42,(2)画图如图1所示,由旋转知∠DAD'=90°,∵∠CAD=20°,∴∠CAD'=∠DAD'﹣∠CAD=90°﹣20°=70°;(3)画图如图2,将△BDC绕点B按逆时针方向旋转60°,到△BEF的位置.连结DE,CF,由旋转可知,△BDE和△BCF均为等边三角形,∴DE=v,CF=a.∵∠ADB=120°,∠BDE=60°,即∠ADE=180°,则A、D、E三点共线(即该三点在同一条直线上).同理,∵∠BEF=∠BDC=120°,∠BED=60°,即∠DEF=180°,则D、E、F三点共线,∴A、D、E、F四点均在一条直线上.∵EF=DC=w,∴线段AF=u+v+w.以线段AF为边在点B一侧作等边△AFG,则△AFG即为符合条件的等边三角形,其中的点B即为点M.正三角形的边长为u+v+w已证,BA=c,BF=BC=a,下面再证BG=b.∵∠CFB=∠AFG=60°,即∠1+∠EFB=∠2+∠EFB=60°,∴∠1=∠2.在△AFC和△GFB中,∵FA=FG,∠1=∠2,FC=FB,∴△AFC≌△GFB(SAS),∴AC=GB,即BG=CA=b.从而点B(M)到等边△AFG三个顶点的距离分别为a、b、c,且其边长为u+v+w.。
中考数学-广东省广州市白云区年级中考第一次模拟考试数学试题(含解析)

广东省广州市白云区部分学校中考数学一模试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. ﹣2的绝对值是()A. ﹣2B. 2C.D. ﹣2. 已知∠α=35°,则∠α的余角的度数是()A. 55°B. 45°C. 145°D. 135°3. 16的算术平方根是()A. ±4B. ±8C. 4D. ﹣44. 不等式组的解集为()A. x<2B. x≥1C. ﹣1≤x<2D. 无解5. 菱形ABCD的周长为16,∠A=60°,则BD的长为()A. 8B. 4C. 2D. 46. 下列式子中是完全平方式的是()A. a2+2a+1B. a2+2a+4C. a2﹣2b+b2D. a2+ab+b27. 如图,△OAB绕点O顺时针旋转85°到△OCD,已知∠A=110°,若∠D=40°,则∠α的度数是()A. 30°B. 45°C. 55°D. 60°8. 若一次函数y=kx+b的函数值y随x的增大而减小,且图象与y轴的正半轴相交,那么对k和b的符号判断正确的是…………………………………………………()A、k>0, b>0_________B、k>0, b<0_________C、k<0, b>0D、k<0, b<09. 如图,AB为⊙O的直径,弦CD垂直平分半径OB,垂足为E,CD=6cm,则直径AB的长是()A. 10cmB. 3cmC. 4cmD. 4cm10. 把函数y=﹣2x+3的图象向左平移2个单位长度,再向下平移2个单位长度,可得到的图象的函数解析式是()A. y=﹣2x+7B. y=﹣2x﹣7C. y=﹣2x﹣3D. y=﹣2x二、填空题11. 已知点A(﹣2,4),则点A关于y轴对称的点的坐标为______.12. 等腰三角形的腰长是6,则底边长a的取值范围是______.13. 若反比例函数的图象经过点A(3,﹣2),则它的表达式是______.14. 已知△ABC∽△DEF,顶点D、E、F分别对应顶点A、B、C,且S△ABC:S△DEF=9:49,则AB:DE=______.15. 已知函数y=x2﹣4x+3,则函数值y随x的增大而减小的x的取值范围是______.16. 如图,矩形ABCD中,DE⊥AC于点E,∠EDC:∠EDA=1:3,且AC=12,则DE的长度是______(结果用根号表示).三、解答题17. 解方程组:18. 已知,如图,▱ABCD中,AE平分∠BAD,交BC于点E,CF平分∠DCB,交AD于点F.求证:△ABE≌△CDF.19. 已知a=3﹣,b=3+,试求的值.20. 某完全中学(含初、高中)篮球队12名队员的年龄情况如下:21. 年龄(单位:岁)1415161718人数14322td22. 在一个不透明的袋子中,放有四张质地完全相同的卡片,分别标有数字1,2,3,4.第一次从袋中随机地抽出一张卡片,把其上的数字记为横坐标x,然后把卡片放回袋中,搅匀后第二次再随机地从中抽出一张,把其上的数字记为纵坐标y.(1)用树状图或列表法把所有可能的点表示出来;(2)求所得的点在直线y=﹣x+5的点的概率.23. 如图,抛物线y=ax2﹣bx﹣4a交x轴于点A、B,交y轴于点C,其中点B、C的坐标分别为B(1,0)、C(0,4).(1)求抛物线的解析式,并用配方法把其化为y=a(x﹣h)2+k的形式,写出顶点坐标;(2)已知点D(m,1﹣m)在第二象限的抛物线上,求出m的值,并直接写出点D关于直线AC的对称点E的坐标.24. 已知,如图,△ABC中,∠C=90°,E为BC边中点.(1)尺规作图:以AC边为直径,作⊙O,交AB于点D(保留作图痕迹,标上相应的字母,可不写作法);(2)连结DE,求证:DE为⊙O的切线;(3)若AD=4,BD=,求DE的长.25. 如图,点A、B分别位于x轴负、正半轴上,OA、OB﹙OA<OB﹚的长分别是关于x的一元二次方程x2﹣4mx+m2+2=0的两根,C(0,3),且S△ABC=6.(1)求线段AB的长;(2)求∠ABC的度数;(3)过点C作CD⊥AC交x轴于点D,求点D的坐标;(4)y轴上是否存在点P,使∠PBA=∠ACB?若存在,请求出点P的坐标;若不存在,请说明理由.26. 如图,在△ABC中,BD平分∠ABC,∠A=2∠C.(1)若∠C=38°,则∠ABD=_________;(2)求证:BC=AB+AD;(3)求证:BC2=AB2+AB•AC.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】广东省广州市荔湾区广雅中学中考数学二模试卷一、选择题(本大题共10小题,共30.0分)1.在实数|-3|,-2,0,π中,最小的数是()A. |−3|B. −2C. 0D.π2.有6个相同的小正方体搭成的几何体如图所示,则它的俯视图是()A.B.C.D.3.若一次函数y=kx+b的图象经过一、二、四象限,则一次函数y=-bx+k的图象不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限4.下列计算正确的是()A. π⋅π2=π3B. (π3)2=π5C. π+π2=π3D. π6÷π2=π35.有理数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A. π>−4B. ππ>0C. |π|>|π|D. π+π>06. 如图,圆锥底面半径为rcm ,母线长为5cm ,其侧面展开图是圆心角为216°的扇形,则r 的值为( )A. 3B. 4C. 5D. 67. 如图,在平面直角坐标系中,菱形ABCD 的顶点A ,B 在反比例函数y =ππ(k >0,x >0)的图象上,横坐标分别为1,4,对角线BD ∥x 轴.若菱形ABCD 的面积为452,则k 的值为( )A. 54B. 154 C. 4 D. 58. 已知抛物线y =x 2-4x +3与x 轴相交于点A ,B (点A 在点B 左侧),顶点为M .平移该抛物线,使点M 平移后的对应点M '落在x 轴上,点B 平移后的对应点B '落在y 轴上,则平移后的抛物线解析式为( )A. π=π2+2π+1B. π=π2+2π−1C. π=π2−2π+1D. π=π2−2π−19. 如图,在四边形ABCD 中,已知AB =CD ,M 、N 、P 分别是AD 、BC 、BD 的中点∠ABD =20°,∠BDC =70°,则∠NMP 的度数为( )A. 50∘B. 25∘C. 15∘D. 2010.⊙O是半径为1的圆,点O到直线L的距离为3,过直线L上的任一点P作⊙O的切线,切点为Q;若以PQ为边作正方形PQRS,则正方形PQRS的面积最小为()A. 7B. 8C. 9D. 10二、填空题(本大题共6小题,共18.0分)11.0.000000602用科学记数法可表示为______.12.若方程2π+π=-1的解是负数,则a的取值范围是______.π+213.如果从某个多边形的一个顶点出发的对角线共有3条,那么该多边形的内角和是______度.14.已知一个直角三角形的斜边与直角边相差8cm,有一条直角边长为12cm,斜边上的中线长为______.15.如图,已知正方形DEFG的顶点D、E在△ABC的边BC上,顶点G、F分别在边AB、AC上.如果BC=4,△ABC的面积是6,那么这个正方形的边长是______.16.在边长为4的等边三角形ABC中,P是BC边上的一个动点,过点P分别作PM⊥AB于M,PN⊥AC于N,连接PA,则下列说法正确的是______(填序号).①若PB=1,则ππ=√13;②若PB=2,则S△ABC=8S△BMP;③π四边形ππππ=2+2√3;④若0<PB ≤1,则S 四边形AMPN 最大值是3√3.三、计算题(本大题共1小题,共10.0分)17. 先化简,再求值:(x +1-3ππ2−π)÷(π2π−1-4),其中x =2cos30°四、解答题(本大题共8小题,共92.0分)18. 计算:√−0.12533+|√12-2|+tan60°-(-2)0+(−12)-219. 在平行四边形ABCD 中,E 为BC 边上的一点,连结AE .若AB =AE ,求证:∠DAE =∠D .20.张老师把微信运动里“好友计步榜”排名前20的好友一天行走的步数做了整理,绘制了如下不完整的统计图表:组别步数分组频率A x<60000.1B6000≤x<70000.5C7000≤x<8000mD x≥8000n合计1根据信息解答下列问题:(1)填空:m=______,n=______;并补全条形统计图;(2)这20名朋友一天行走步数的中位数落在______组;(填组别)(3)张老师准备随机给排名前4名的甲、乙、丙、丁中的两位点赞,请求出甲、乙被同时点赞的概率.21.如图,在△ABC中,∠ACB=90°,以点B为圆心,BC长为半径画弧,交线段AB于点D;以点A为圆心,AD长为半径画弧,交线段AC于点E,连结CD.(1)若∠A=28°,求∠ACD的度数.(2)设BC=a,AC=b.①线段AD的长是方程x2+2ax-b2=0的一个根吗?说明理由.②若AD=EC,求π的值.π22.某蔬菜经销商去蔬菜生产基地批发某种蔬菜,已知这种蔬菜的批发量在20千克~60千克之间(含20千克和60千克)时,每千克批发价是5元;若超过60千克时,批发的这种蔬菜全部打八折,但批发总金额不得少于300元.(1)根据题意,填写如表:蔬菜的批发量(千…25607590…克)所付的金额(元)…125300300360…(2)经调查,该蔬菜经销商销售该种蔬菜的日销售量y(千克)与零售价x(元/千克)是一次函数关系,其图象如图,求出y与x之间的函数关系式;(3)若该蔬菜经销商每日销售此种蔬菜不低于75千克,且当日零售价不变,那么零售价定为多少时,该经销商销售此种蔬菜的当日利润最大?最大利润为多少元?23.在边长为12的正方形ABCD中,P为AD的中点,连结PC,(1)作出以BC为直径的⊙O,交PC于点Q(要求尺规作图,不要求写作法,保留作图痕迹);(2)连结AQ,证明:AQ为⊙O的切线;(3)求QC的长与cos∠DAQ的值;24.已知AP是半圆O的直径,点C是半圆O上的一个动点(不与点A、P重合),联结AC,以直线AC为对称轴翻折AO,将点O的对称点记为O1,射线AO1交半圆O于点B,联结OC.(1)如图1,求证:AB∥OC;(2)如图2,当点B与点O1重合时,求证:ππ⏜=ππ⏜;(3)过点C作射线AO1的垂线,垂足为E,联结OE交AC于F.当AO=5,O1B=1时,求ππ的值.ππ25.已知抛物线C1:y=ax2+bx-3(a≠0)经过点A(1,0)和B(-3,0).2(1)求抛物线C1的解析式,并写出其顶点C的坐标.(2)如图1,把抛物线C1沿着直线AC方向平移到某处时得到抛物线C2,此时点A,C分别平移到点D,E处.设点F在抛物线C1上且在x轴的上方,若△DEF是以EF 为底的等腰直角三角形,求点F的坐标.(3)如图2,在(2)的条件下,设点M是线段BC上一动点,EN⊥EM交直线BF于点N,点P为线段MN的中点,当点M从点B向点C运动时:①tan∠ENM的值如何变化?请说明理由;②点M到达点C时,直接写出点P经过的路线长.答案和解析1.【答案】B【解析】解:在实数|-3|,-2,0,π中,|-3|=3,则-2<0<|-3|<π,故最小的数是:-2.故选:B.直接利用利用绝对值的性质化简,进而比较大小得出答案.此题主要考查了实数大小比较以及绝对值,正确掌握实数比较大小的方法是解题关键.2.【答案】A【解析】解:该几何体的俯视图为故选:A.俯视图有3列,从左到右正方形个数分别是2,2,1.本题考查了简单组合体的三视图,培养学生的思考能力和对几何体三种视图的空间想象能力.3.【答案】A【解析】解:一次函数y=kx+b过一、二、四象限,则函数值y随x的增大而减小,因而k<0;图象与y轴的正半轴相交则b>0,因而一次函数y=-bx+k的一次项系数-b<0,y随x的增大而减小,经过二四象限,常数项k<0,则函数与y轴负半轴相交,因而一定经过二三四象限,因而函数不经过第一象限.故选:A.根据一次函数y=kx+b图象在坐标平面内的位置关系先确定k,b的取值范围,再根据k,b的取值范围确定一次函数y=-bx+k图象在坐标平面内的位置关系,从而求解.本题考查了一次函数的图象与系数的关系.函数值y随x的增大而减小⇔k<0;函数值y随x的增大而增大⇔k>0;一次函数y=kx+b图象与y轴的正半轴相交⇔b>0,一次函数y=kx+b图象与y轴的负半轴相交⇔b<0,一次函数y=kx+b图象过原点⇔b=0.4.【答案】A【解析】解:A、a•a2=a3,正确;B、应为(a3)2=a3×2=a6,故本选项错误;C、a与a2不是同类项,不能合并,故本选项错误D、应为a6÷a2=a6-2=a4,故本选项错误.故选:A.根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数相除,底数不变指数相减,对各选项分析判断后利用排除法求解.本题考查同底数幂的乘法,幂的乘方的性质,同底数幂的除法,熟练掌握运算性质是解题的关键,合并同类项时,不是同类项的一定不能合并.5.【答案】C【解析】解:由数轴上点的位置,得a<-4<b<0<c<1<d.A、a<-4,故A不符合题意;B、bd<0,故B不符合题意;C、∵|a|>4,|b|<2,∴|a|>|b|,故C符合题意;D、b+c<0,故D不符合题意;故选:C.根据数轴上点的位置关系,可得a,b,c,d的大小,根据有理数的运算,绝对值的性质,可得答案.本题考查了实数与数轴,利用数轴上点的位置关系得出a,b,c,d的大小是解题关键.6.【答案】A【解析】解:∵圆锥底面半径为rcm,母线长为5cm,其侧面展开图是圆心角为216°的扇形,∴2πr=×2π×5,解得r=3.直接根据弧长公式即可得出结论.本题考查的是圆锥的计算,熟记弧长公式是解答此题的关键.7.【答案】D【解析】【分析】本题考查了菱形的性质、应用面积法构造方程,以及反比例函数图象上点的坐标与k之间的关系.根据题意,利用面积法求出AE,设出点B坐标,表示点A的坐标.应用反比例函数上点的横纵坐标乘积为k构造方程求k.【解答】解:连接AC,BD,AC与BD、x轴分别交于点E、F,由已知,A、B横坐标分别为1,4,∴BE=3,∵四边形ABCD为菱形,AC、BD为对角线,∴S菱形ABCD=4×AE·BE=,∴AE=,设点B的坐标为(4,y),则A点坐标为(1,y+),∵点A、B同在y=图象上,∴4y=1·(y+),∴y=,∴B点坐标为(4,),∴k=5,故选D.【解析】解:当y=0,则0=x2-4x+3,(x-1)(x-3)=0,解得:x1=1,x2=3,∴A(1,0),B(3,0),y=x2-4x+3=(x-2)2-1,∴M点坐标为:(2,-1),∵平移该抛物线,使点M平移后的对应点M'落在x轴上,点B平移后的对应点B'落在y轴上,∴抛物线向上平移一个单位长度,再向左平移3个单位长度即可,∴平移后的解析式为:y=(x+1)2=x2+2x+1.故选:A.直接利用抛物线与坐标轴交点求法结合顶点坐标求法分别得出A,B,M点坐标,进而得出平移方向和距离,即可得出平移后解析式.此题主要考查了抛物线与坐标轴交点求法以及二次函数的平移,正确得出平移方向和距离是解题关键.9.【答案】B【解析】解:∵在四边形ABCD中,M、N、P分别是AD、BC、BD的中点,∴PN,PM分别是△CDB与△DAB的中位线,∴PM=AB,PN=DC,PM∥AB,PN∥DC,∵AB=CD,∴PM=PN,∴△PMN是等腰三角形,∵PM∥AB,PN∥DC,∴∠MPD=∠ABD=20°,∠BPN=∠BDC=70°,∴∠MPN=∠MPD+∠NPD=20°+(180-70)°=130°,∴∠PMN==25°.故选:B.根据中位线定理和已知,易证明△PMN是等腰三角形,根据等腰三角形的性质和已知条件即可求出∠PMN的度数.本题考查了三角形中位线定理及等腰三角形的判定和性质,解题时要善于根据已知信息,确定应用的知识.10.【答案】B【解析】解:连结OQ、OP,作OH⊥l于H,如图,则OH=3,∵PQ为⊙O的切线,∴OQ⊥PQ,在Rt△POQ中,PQ==,当OP最小时,PQ最小,正方形PQRS的面积最小,而当OP=OH=3时,OP最小,所以PQ的最小值为=2,所以正方形PQRS的面积最小值为8.故选:B.连结OQ、OP,作OH⊥l于H,如图,则OH=3,根据切线的性质得OQ⊥PQ,利用勾股定理得到PQ==,根据垂线段最短,当OP=OH=3时,OP 最小,于是PQ的最小值为2,即可得到正方形PQRS的面积最小值为8.本题考查了切线的性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.11.【答案】6.02×10-7【解析】解:0.000000602=6.02×10-7.故答案为:6.02×10-7.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.【答案】a>-2且a≠4【解析】解:去分母得2x+a=-x-2,解得x=-,因为方程=-1的解是负数,所以-<0,解得a>-2,而x+2≠0,即-+2≠0,解得a≠4,所以a的范围为a>-2且a≠4.故答案为a>-2且a≠4.先去分母得到关于x的与一次方程吗,解方程得到x=-,利用方程=-1的解是负数得到-<0,加上分母不为零得-+2≠0,然后解两个不等式得到a的范围.本题考查了分式方程的解:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.13.【答案】720【解析】解:∵多边形的一个顶点出发的对角线共有(n-3)条,∴n-3=3,∴n=6,内角和=(6-2)×180°=720°故答案是:720.由多边形的一个顶点出发的对角线共有(n-3)条可求出边数,然后求内角和.本题运用了多边形的内角和定理,关键是要知道多边形的一个顶点出发的对角线共有(n-3)条.14.【答案】10cm或6.5cm【解析】解:①若直角三角形的斜边与12cm长的直角边相差8cm,则斜边长为20cm,∴斜边上的中线长为10cm;②若直角三角形的斜边与xcm长的直角边相差8cm,则斜边长为(x+8)cm,由勾股定理可得,122+x2=(x+8)2,解得x=5,∴斜边长为13cm,∴斜边上的中线长为6.5cm;故答案为:10cm或6.5cm.分两种情况讨论::①直角三角形的斜边与12cm长的直角边相差8cm,②直角三角形的斜边与xcm长的直角边相差8cm,依据勾股定理以及直角三角形斜边上中线的性质,即可得到结论.本题主要考查了直角三角形斜边上中线的性质,注意在直角三角形中,斜边上的中线等于斜边的一半.15.【答案】127【解析】解:作AH⊥BC于H,交GF于M,如图,∵△ABC的面积是6,∴BC•AH=6,∴AH==3,设正方形DEFG的边长为x,则GF=x,MH=x,AM=3-x,∵GF∥BC,∴△AGF∽△ABC,∴=,即=,解得x=,即正方形DEFG的边长为.故答案为.作AH⊥BC于H,交GF于M,如图,先利用三角形面积公式计算出AH=3,设正方形DEFG的边长为x,则GF=x,MH=x,AM=3-x,再证明△AGF∽△ABC,则根据相似三角形的性质得=,然后解关于x的方程即可.本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在应用相似三角形的性质时,主要利用相似比计算相应线段的长.也考查了正方形的性质.16.【答案】①②【解析】解:①∵PM⊥AB,△ABC是等边三角形,∴∠BPM=30°,∴BM=BP=,PM===,AM=AB-BM=4-=,∴PA===,故①正确;②PB=2,则P为BC的中点,PA为△ABC的高,BM=BP=1,PM===,PA===2,∴S△ABC=BC•PA=×4×2=4,S△BMP=BM•PM=×1×=,∴S△ABC=8S△BMP,故②正确;③设BP=x,则CP=4-x,∵△ABC是等边三角形,∴∠B=∠C=60°,∵PM⊥AB,PN⊥AC,∴BM=x,PM=x,CN=(4-x)=2-,PN=(4-x),∴AM=4-x,AN=2+x,∴四边形AMPN的周长=x+(4-x)+4-x+2+x=2+6,故③不正确;④由③得:S四边形AMPN=×(4-x)•x+[4-(4-x)]•(4-x)=-x2+x+2,=-(x-2)2+3,若0<PB≤1,当x=1,即PB=1时,S四边形AMPN的值最大=-(x-1)2+3=,故④不正确;故答案为:①②.①由等边三角形的性质和直角三角形的性质得出BM=BP=,PM=,AM=AB-BM=,由勾股定理求出PA的长,即可得出结论;②PB=2,则P为BC的中点,PA为△ABC的高,BM=BP=1,由勾股定理求出PM=,PA=2,由三角形面积公式即可得出结论;③设BP=x,则CP=4-x,由等边三角形的性质和直角三角形的性质得出BM=x,PM=x,CN=(4-x),PN=(4-x),求出AM=4-x,AN=2+x,得出四边形AMPN的周长,即可得出结论;④由③得:S 四边形AMPN =-x 2+x+2=-(x-2)2+3,求出0<PB≤1时,PB=1时的面积最大,代入二次函数进行计算即可得出结论.本题考查了等边三角形的性质、直角三角形的性质、勾股定理、三角形面积公式以及二次函数关系式;熟练掌握等边三角形和直角三角形的性质,求出二次函数关系式是解决问题的关键.17.【答案】解:原式=π(π+1)2(π−1)−3π(π+1)π(π+1)(π−1)÷π2−4(π−1)π−1=π(π+1)[(π+1)(π−1)−3]π(π+1)(π−1)•π−1(π−2)2 =π(π+1)(π+2)(π−2)π(π+1)(π−1)•π−1(π−2)2=π+2π−2,当x =2×√32=√3时,原式=√3+√3−2=-7-4√3. 【解析】原式括号中两项通分并利用同分母分式的加减法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键. 18.【答案】解:原式=-0.5+2√3-2+√3-1+4=3√3+0.5. 【解析】直接利用零指数幂的性质以及特殊角的三角函数值和立方根的性质、负指数幂的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键. 19.【答案】证明:∵四边形ABCD 是平行四边形∴AD ∥BC ,∠B =∠D ∴∠DAE =∠AEB ∵AB =AE ∴∠B =∠AEB ∴∠D =∠DAE 【解析】由平行四边形的性质可得AD ∥BC ,∠B=∠D ,可得∠DAE=∠AEB ,由等腰三角形的性质可得∠B=∠AEB ,即可得结论.本题考查了平行四边形的性质,等腰三角形的性质,熟练运用平行四边形的性质是本题的关键.20.【答案】0.3 0.1 B【解析】解:(1)2÷0.1=20,m==0.3,n==0.1;故答案为0.3;0.1;条形统计图如图(2)这20名朋友一天行走步数的中位数落在B组;故答案为B;(3)画树状图如下:共有12种等可能的结果数,其中甲、乙被同时点赞的结果数为2,∴P(甲、乙被同时点赞)==.(1)用A组的频数除以它的频率得到调查的总人数,再分别用C组、D组的频数除以总人数得到m、n的值,然后画条形统计图;(2)利用中位数的定义进行判断;(3)画树状图展示12种等可能的结果数,找出甲、乙被同时点赞的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B 的概率.也考查了统计图.21.【答案】解:(1)∵∠ACB =90°,∠A =28°,∴∠B =62°, ∵BD =BC ,∴∠BCD =∠BDC =59°, ∴∠ACD =90°-∠BCD =31°; (2)①由勾股定理得,AB =√ππ2+ππ2=√π2+π2, ∴AD =√π2+π2-a ,解方程x 2+2ax -b 2=0得,x =−2π±√4π2+4π22=±√π2+π2-a ,∴线段AD 的长是方程x 2+2ax -b 2=0的一个根;②∵AD =AE ,∴AE =EC =π2, 由勾股定理得,a 2+b 2=(12b +a )2,整理得,ππ=34. 【解析】(1)根据三角形内角和定理求出∠B ,根据等腰三角形的性质求出∠BCD ,计算即可; (2)①根据勾股定理求出AD ,利用求根公式解方程,比较即可; ②根据勾股定理列出算式,计算即可.本题考查的是勾股定理、一元二次方程的解法,掌握一元二次方程的求根公式、勾股定理是解题的关键.22.【答案】解:(1)由题意知:当蔬菜批发量为60千克时:60×5=300(元),当蔬菜批发量为90千克时:90×5×0.8=360(元), 填写表格如下:把点(5,90),(6,60)代入,得{5π+π=906π+π=60,解得:{π=−30π=240.故该一次函数解析式为:y =-30x +240;(3)设当日可获利润w (元),日零售价为x 元,由(2)知,w=(-30x+240)(x-5×0.8)=-30(x-6)2+120,∵-30x+240≥75,即x≤5.5,∴当x=5.5时,当日可获得利润最大,最大利润为112.5元.【解析】(1)根据这种蔬菜的批发量在20千克~60千克之间(含20千克和60千克)时,每千克批发价是5元,可得60×5=300元;若超过60千克时,批发的这种蔬菜全部打八折,则90×5×0.8=360元;(2)把点(5,90),(6,60)代入函数解析式y=kx+b(k≠0),列出方程组,通过解方程组求得函数关系式;(3)利用最大利润=y(x-4),进而利用配方法求出函数最值即可.此题主要考查了待定系数法求一次函数解析式以及二次函数的应用,根据销售问题的相等关系得出W与x的函数关系式是解题关键.23.【答案】解:(1)如图,点Q为所作;(2)证明:过Q点作QE⊥BC于E,交AD于F,连接BQ、OQ、OA,如图,∵四边形ABCD为正方形,∴BC=CD=AD=AB=12,AD∥BC,在Rt△PCD中,PC=√62+122=6√5,∵BC为直径,∴∠BQC=90°,∵PD∥BC∴∠CPD=∠BCQ,∴Rt△BCQ∽Rt△CPD,∴CQ:PD=BC:CP,即CQ:6=12:6√5,∴CQ=12√55,∵CQ2=CE•CB,∴CE=(12√55)212=12 5,在Rt △CEQ 中,QE =√(12√55)2−(125)2=245,∴FQ =12-245=365,∵AF =AD -FD =AD -CE =12-125=485. ∴AQ =√(365)2+(485)2=12,在△OAB 和△OQA 中{ππ=ππππ=ππππ=ππ, ∴△OAB ≌△OQA (SSS ),∴∠OQA =∠OBA =90°, ∴OQ ⊥AQ ,∴AQ 为⊙O 的切线;(3)由(2)得CQ =12√55,AF =485,AQ =12,∴cos ∠EAQ =48512=45,即cos ∠DAQ 的值为45. 【解析】(1)作BC 的垂直平分得到BC 的中点O ,然后作出⊙O ;(2)过Q 点作QE ⊥BC 于E ,交AD 于F ,连接BQ 、OQ 、OA ,如图,利用勾股定理计算PC=6,证明Rt △BCQ ∽Rt △CPD ,利用相似比计算出CQ=,再利用射影定理计算CE=,则可得到QE=,所以FQ=,从而利用勾股定理计算出AQ=12,于是可证明△OAB ≌△OQA 得到∠OQA=∠OBA=90°,然后根据切线的判定定理可判断AQ 为⊙O 的切线; (3)由(2)得CQ=,AF=,AQ=12,然后根据余弦的定义得到即cos ∠DAQ 的值.本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.也考查了正方形的性质、圆周角定理和切线的判定.24.【答案】解:(1)∵点O 1与点O 关于直线AC 对称,∴∠OAC =∠O 1AC . 在⊙O 中, ∵OA =OC ,∴∠OAC =∠C . ∴∠C =∠O 1AC , ∴O 1A ∥OC , 即AB ∥OC ;(2)方法一:如图2,连结OB .∵点O 1与点O 关于直线AC 对称,AC ⊥OO 1, 由点O 1与点B 重合,可得AC ⊥OB . ∵点O 是圆心,AC ⊥OB , ∴ππ⏜=ππ⏜;方法2:∵点O 1与点O 关于直线AC 对称, ∴AO =AO 1,CO =CO 1,由点O 1与点B 重合,可得 AO =AB ,CB =CO , ∵OA =OC , ∴AB =CB . ∴ππ⏜=ππ⏜;(3)当点O 1在线段AB 上(如图3),过点O 作OH ⊥AB ,垂足为H . ∵OH ⊥AB ,CE ⊥AB , ∴OH ∥CE , 又∵AB ∥OC , ∴HE =OC =5.∵AB =AO 1+O 1B =AO +O 1B =6且OH ⊥AB , ∴AH =12AB =3. ∴AE =EH +AH =5+3=8, ∵AB ∥OC , ∴ππππ=ππππ=58,当点O 1在线段AB 的延长线上,如图4, 过点O 作OH ⊥AB ,垂足为H . ∵OH ⊥AB ,CE ⊥AB , ∴OH ∥CE , 又∵AB ∥OC , ∴HE =OC =5.∵AB =AO 1-O 1B =AO -O 1B =4, 又∵OH ⊥AB , ∴AH =12AB =2. ∴AE =EH +AH =5+2=7,∵AB ∥OC , ∴ππππ=ππππ=57. 【解析】(1)利用对称性得出∠OAC=∠O 1AC ,再利用等边对等角得出∠OAC=∠C ,即可得出∠C=∠O 1AC ,求出AB ∥OC 即可;(2)由点O 1与点O 关于直线AC 对称,AC ⊥OO 1,由点O 1与点B 重合,可得AC ⊥OB ,再利用垂径定理推论得出AB=CB ;(3)分别根据当点O 1在线段AB 上以及当点O 1在线段AB 的延长线上时分别求出AE 的长即可得出答案.此题主要考查了圆的综合应用以及垂径定理和关于直线对称的性质等知识,利用数形结合以及分类讨论的思想得出是解题关键.25.【答案】解:(1)解:(1)∵抛物线C 1:y =ax 2+bx -32(a ≠0)经过点A (1,0)和B (-3,0),∴{π+π−32=09π−3π−32=0解得{π=12π=1, ∴抛物线C 1的解析式为y =12x 2+x -32, ∵y =12x 2+x -32=12(x +1)2-2, ∴顶点C 的坐标为(-1,-2);(2)如图1,作CH ⊥x 轴于H ,∵A (1,0),C (-1,-2), ∴AH =CH =2,∴∠CAB =∠ACH =45°,∴直线AC 的解析式为y =x -1,∵△DEF 是以EF 为底的等腰直角三角形,∴∠DEF =45°, ∴∠DEF =∠ACH , ∴EF ∥y 轴,∵DE =AC =2√2, ∴EF =4,设F (m ,12m 2+m -32),则E (m ,m -1), ∴(-12m 2+m -32)-(m -1)=4,解得m =-3(舍)或m =3, ∴F (3,6);(3)①tan ∠ENM 的值为定值,不发生变化; 如图2中,作EG ⊥AC ,交BF 于G ,∵DF ⊥AC ,BC ⊥AC , ∴DF ∥BC , ∵DF =BC =AC ,∴四边形DFBC 是平行四边形,∵∠CDF =90°, ∴四边形DFBC 是矩形, ∴EG =BC =AC =2√2, ∵EN ⊥EM ,∴∠MEN =90°, ∵∠CEG =90°, ∴∠CEM =∠NEG , ∴△ENG ∽△EMC ,∴ππππ=ππππ,∵F (3,6),EF =4, ∴E (3,2), ∵C (-1,-2), ∴EC =4√2,∴ππππ=4√22√2=2,∴tan ∠ENM =ππππ=2;∵tan ∠ENM 的值为定值,不发生变化;②如图3-1中,∵直角三角形EMN 中,PE =12MN ,直角三角形BMN 中,PB =12MN , ∴PE =PB ,∴点P 在EB 的垂直平分线上,∴点P 经过的路径是线段PP ′,如图3-2, 当点M 与B 重合时, ∵△EGN ∽△ECB , ∴ππππ=ππππ,∵EC =4√2,EG =BC =2√2, ∴EB =2√10,∴2√10=√24√2,∴EN =√10,∵P 1P 2是△BEN 的中位线,∴P 1P 2=12EN =√102;∴点M到达点C时,点P经过的路线长为√10.2【解析】(1)根据待定系数法即可求得解析式,把解析式化成顶点式即可求得顶点坐标;(2)根据A、C的坐标求得直线AC的解析式为y=x-1,根据题意求得EF=4,求得EF∥y轴,设F(m,m2+m-),则E(m,m-1),从而得出(m2+m-)-(m-1)=4,解方程即可求得F的坐标;(3)①先求得四边形DFBC是矩形,作EG⊥AC,交BF于G,然后根据△EGN∽△EMC,对应边成比例即可求得tan∠ENM==2;②首先证明点P在EB的垂直平分线上,推出点P经过的路径是线段PP′,如图3-2,当点M与B重合时,根据勾股定理和三角形相似求得EN=,然后根据三角形中位线定理即可求得;本题是二次函数综合题,考查了待定系数法求二次函数的解析式,一次函数的解析式,等腰直角三角形的判定和性质,三角形相似的判定和性质,勾股定理的应用等,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造相似三角形解决问题,属于中考压轴题.2018学年第二学期九年级综合练习数学试卷本试卷分选择题和非选择题两部分,共三大题25小题,满分150分.考试时间为120分钟.注意事项:1.答卷前,考生务必在答题卡第1页上用黑色字迹的钢笔或签字笔填写自己的考生号、姓名;填写考场试室号、座位号,再用2B 铅笔把对应这两个号码的标号涂黑.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图.答案必须写在答题卡各题目指定区域内的相应位置上;如需要改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交第一部分(选择题 共30分)一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的.) 一、 选择题 (本题共10小题,每小题3分,满分30分) 1.3- 的相反数为 ( )A . 3-B . 3C . 31-D . 31 2.下列图形中是中心对称图形的是( )A .B .C .D .3.把不等式组10630x x +>⎧⎨-≥⎩的解集表示在数轴上正确的是( )。
白云区中考一模数学试题

2020年白云区一模(货真价实的)数学试题第一部分(选择题共30 分)项中,只有一项是符合题目要求的。
一个多边形的内角和与它的外角和木图等,则这个多边形的边数为(如图〔,△ ABC 中, Z C=90°,/ A 的正切是(A.匹D.AC ABACBCAB、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选1. 数据 3, 1,5, 2, 7, 2的极差是A. 2B. 7C.D. 52. 单项式-2x 2y 的系数为(A. 2B. -2C.D. -3)3. 不等式组2x 6 x 2的解集是A. x 3 D. -2 xA. 4B. 5C. 6D. 74. 5.6. 已知两条线段的长度分别为2cm 8cm,下列能与它们构成三角形的线段长度为()A. 4cmB. 6cmC. 8cmD. 10c7. 64 的算术平方根与64 的立方根的差是()A. -12B. ±8C.± 4D. 48. 如图2,00是厶ABC的外接圆,/ A=50°,则/ 0BC勺度数等于()A. 50°B. 40° C . 45°D. 100°9. 如图3,梯形ABCD中, AB// BC, AC BD交于点0, AD=1, BC=3,则 S A AOD : S A BOC 等于()A. 1:2B. 1:3C . 4:9D. 1:9图2图3kx b ,当x 的值增大1时,y 值减小3,则当x 的值减小3时,y 值()A.增大3B.减小3C.增大910.若一次函数yD .减小9第二部分(非选择题 共120分)、填空题(本大题共6小题,每小题3分,满分18分.)11.已知/ a=50° ,则/ a 的余角的度数为AD13. 点P (-2 , 1 )关于原点对称的P'的坐标为14.在一次数学测验中,某学习小组的六位同学的分数分别是 54, 85, 92, 73, 61,85.这组215. 计算并化简式子 上 •坐2x y16. 如图4, 是以边长为6的等边△ ABC —边AB 为半径的四分之一圆周,P 为 上一动点,当BP 经过弦AD 的中点E 时,四边形ACBE 勺周长为 ______ .(结果用根号表示)12 .不等式-2x 6的解集为数的平均数是,众数是中位数是2x—的结果为 y 2y三、解答题(本大题共 9 小题,满分 102分,解答应写出文字说明、证明过程或演 算步骤)17.(本小题满分 9 分)18.(本小题满分 9 分)解方程组3x 2 y 4x 3y 5已知,如图5, E、F分别为矩形ABCD勺边AD和BC上的点,AE=CF 求证:BE=DF19. (本小题满分10分)D 先化简,在求值:(x 2)2(x 3)(x 3),其中BF图520. (本小题满分10分)如图6,等腰△ OAB的顶角/ AOB=30,点B在x轴上,腰OA=4(1)B点得坐标为:________ ;21. (本小题满分12分)在-2 , -3, 4这三个数中任选2个数分别作为点P的横坐标和纵坐标.(1)可得到的点得个数为_______________ ;(2)求过P点的正比例函数图象经过第二,四象限的概率(用树形图或列表法求解);(3)过点P得正比例函数中,函数y随自变量x的增大而增大的概率为_______22. (本小题满分11分)在同一间中学就读的李浩与王真是两邻居,平时他们一起骑自行车上学,清明节后的一天,李浩因有事,比王真迟了10分钟出发,为了能赶上王真,李浩用了王真速度的 1.2倍骑车追赶,结果他们在学校大门处相遇,已知他们家离学校大门处的骑车距离为15千米.求王真的速度•C(1) _______________ Z ABC= .(2) AC与有什么关系?请证明你的结论;(3) 在。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2009年白云区初中毕业班综合测试(一)数 学 试 题本试卷分选择题和非选择题两部分,共三大题25小题,满分150分.考试时间为120分钟. 注意事项:1.答卷前,考生务必在答题卡第1页上用黑色字迹的钢笔或签字笔填写自己的学校、班级、姓名、试室号、座位号、准考证号,再用2B 铅笔把准考证号对应的号码标号涂黑.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图.答案必须写在答题卡各题目指定区域内的相应位置上;如需要改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.-1.2的绝对值是(*)(A)-1.2 (B)1.2 (C)2. 1 (D)-2. 1 2.函数y=2的自变量x 的取值范围是(*) (A)x ≥1 (B)x >0 (C)x >1 (D)x ≠1 3.∠α=25°,则∠α的余角度数是(*)(A)75° (B)55° (C)155° (D)65° 4.不等式-x +2≥0的解集在数轴上表示正确的是(*) (A) (B) (C) (D) 5.方程124362x x x-+--=的解为(*)(A)x =1 (B)x =-2 (C)x =4 (D)x =36.如图1,△ABC为⊙O的内接三角形,∠OBC=50°,则∠A等于( )(A)80° (B)60° (C)50° (D)40° 7.对多项式32x -27因式分解,结果正确的是(*) (A)3(2x -9) (B)32(3)x +(C)(3x +3)(3x -9) (D)3(x +3)(x -3)8.Rt △ABC中,∠C=90°,AB=13,AC=5,则sin B的值为(*) (A)513(B)135(C)1213(D)5129.下列事件中,为不确定事件的是(*)(A)如果a 、b 都是有理数,那么a b =b a (B)没有水分,种子不发芽 (C)掷一枚普通正方体骰子,点数为2 (D)动物总是会死的10.已知Rt △ABC的斜边AB=5cm ,直角边AC=4cm ,BC=3cm ,以直线AB为轴旋转一周,得到的几何体的表面积是(*)-1 -2 -3 1 3 2 0 -1-2 -3 0 · -1 -2 -3 1 3 2 0 ·-1-2 -3 12·ACBO图1(A)22.562cm π (B)16.82cm π (C)9.62cm π (D)7.22cm π第二部分 非选择题(共120分)二、填空题(本大题共6小题,每小题3分,满分18分)11.七边形的内角和为 * °,外角和为 * °.=* .13.已知△ABC中,D、E分别是AB、AC边的中点,则DE BC= * .14.一个不透明的袋子里装有3个红球,4个黄球,5个白球,每个球除颜色外其它都相同,搅匀后随机从中摸出一个球是黄球的概率是 * .15.将点A(0,6)绕着原点顺时针方向旋转60°得到点B,则点B的坐标为 * (结果用根号表示).16.如图2,正方形ABCD、DEFG、FHIJ在直线MN的同一侧,点B、C、E、H、I均在直线MN上,正方形ABCD、FHIJ的面积分别为13、23,则正方形DEFG的面积为 * .三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分9分)解方程:4122x x x x -=+-- 18.(本小题满分9分)如图3,E、F分别是矩形ABCD的边AD、BC上的点, 且AE=CF.求证:四边形EBFD为平行四边形.19.(本小题满分10分)为提高同学们体育运动水平,增强体质,初三毕业年级规定:每周三下午人人参与1小时体育运动.项目有篮球、排球、羽毛球和乒乓球.下面是初三(2)班某次参加活动的两个不完整统计图(图4和图5).根据图中提供的信息,请解答以下问题: (1)初三(2)班共有多少名学生?(2)计算参加乒乓球运动的人数,并在条形统计图(图4)中,将表示“乒乓球”的部分补充完整; (3)求出扇形统计图中“羽毛球”扇形圆心角的度数.20.(本小题满分12分)如图6,⊙O是△ABC外接圆,直径AB=12,∠A=2∠B.N M J HGF E D C B A I 图2B C DEFA图3 乒乓球羽毛球排球篮球人数201612840图4 图6(1)∠A= °,∠B= °; (2)求BC的长(结果用根号表示);(3)连结OC并延长到点P,使CP=OC,连结PA,画出图形, 求证:PA是⊙O的切线. 21.(本小题满分12分) 如图7,是反比例函数y =k x的图象,且k 是一元二次方程260xx +-=的一个根.(1)求方程260x x +-=的两个根;(2)确定k 的值;(3)若m 为非负实数,对于函数y =kx,当x 1=m +1及x 2=m +2时,说明y 1与y 2的大小关系.22.(本小题满分10分)某航运公司年初用120万元购进一艘运输船,在投入运输后,每一年运输的总收入为72万元,需要支出的各种费用为40万元.(1)问该船运输第几年开始盈利(盈利即指总收入减去购船费及所有支出费用之差为正值)?(2)若该船运输满15年要报废,报废时旧船卖出可收回5万元,求这15年的年平均盈利额(精确到0.1万元).23.(本小题满分12分)如图8,在平面直角坐标系中,直线l 是第二、四象限的角平分线. (1)实验与探究:由图观察易知A(0,2)关于直线l 的对称点A '的坐标为(-2,0),请在图中分别标明B(-1,5)、C(3,2)关于直线l 的对称点B '、C '的位置,并写出他们的坐标:B ' 、C ' ;(2)归纳与发现:结合图观察以上三组点的坐标,你会发现坐标平面内任一点P(a ,b )关于第二、四象限的角平分线l 的对称点P '的坐标为 (不必证明); (3)运用与拓展:已知两点D(-1,-3)、E(2,-4),试在直线l 上确定一点Q,使点Q到D、E两点的距离之和最小,并求出点Q的坐标. 24.(本小题满分14分)如图9,直线AM∥BN,AE、BE分别平分∠MAB、∠NBA.(1)∠AEB的度数为 ; (2)请证明(1)中你所给出的结论;(3)过点E任作一线段CD,使CD交直线AM于点D,交直线BN于点C,线段AD、BC、AB三者间有何等量关系?试证明你的结论.25.(本小题满分14分)已知经过A、B、C三点的二次函数图象如图10所示. (1)求二次函数的解析式及抛物线顶点M的坐标;(2)若点N为线段BM上的一点,过点N作x 轴的垂线,垂足为点Q.当点N在线段BM上运动时(点N不与点B、点M重合),设NQ的长为t ,四边形NQAC的面积为s ,求s 与t 之间的函数关系式及自变量t 取值范围;(3)将△OAC补成矩形,使△OAC的两个顶点成为矩形一边的两个顶点,第三个顶点落在矩形这一边的对边上,求出矩形未知顶点的坐标.NMEBA图9y1x1 C AQN B MO2-1 208数学“一模”参考答案及评分建议三、解答题17.(本小题满分9分)解:两边同乘以(x -2),…………………………………………………1分 得x =4-x +x -2…………………………………………………………4分 解得x =2……………………………………………………………………6分 检验:当x =2时,x -2=2-2=0……………………………………8分 ∴x =2是增根,原方程无解.………………………………………………9分 另:解:4122x x x x --=--……………………………………………………1分 (4)12x x x --=-…………………………………………………………………4分2412x x -=-………………………………………………………………………6分 2(2)12x x -=-……………………………………………………………………7分2=1…………………………………………………………………………8分 ∴原方程无解…………………………………………………………………9分18.(本小题满分9分) 证法一:∵ABCD为矩形,∴AD∥BC且AD=BC,……………………2分 又∵AE=CF,∴AD-AE=BC-CF,………………………4分 即ED=BF,……………………………………………………………6分 由ED∥BF且ED=BF,……………………………………………8分 得四边形EBFD为平行四边形…………………………………………9分 (一组对边平行且相等的四边形为平行四边形).证法二:∵ABCD为矩形,………………………………………………1分 ∴AD=BC,AB=CD,∠A=∠C=90°,……………………3分 又∵AE=CF,∴△ABE≌△CDF(SAS),……………………5分∴BE=CD.………………………………………………………………6分∵AE=CF,∴AD-AE=BC-CF,………………………………………………7分即ED=BF,………………………………………………………………8分∴四边形EBFD为平行四边形……………………………………………9分(两组对边分别相等的四边形是平行四边形).[注:其它正确的证法参照给分]19.(本小题满分10分)解:(1)20÷40%=50(人).……………………………………2分初三(2)班共有50名学生;……………………………………………3分(或12÷24%=50)(2)50×20%=10.………………………………………………4分参加乒乓球运动有10人……………………………………………………5分(图略);………………………………………………………………………6分(3)参加羽毛球运动的百分比为:8÷50=16%,………………7分(或1-40%-24%-20%=16%)360°×16%=57.6°,……………………………………………9分所以“羽毛球”扇形圆心角的度数为57.6°.…………………………10分20.(本小题满分12分)解:(1)60°,30°;……………………………………………………2分(2)∵AB为直径,∴∠ACB=90°.………………………………3分又∵∠B=30°,∴AC=12AB=6……………………………………5由勾股定理,得BC=(或∵AB为直径,∴∠ACB=90°,又∵∠A=60°,∴BC=AB·sin60°=12×(3)如图,……………………………………………………………………8分由已知条件得OP=2OC=AB,…………………………………………………………9分∵∠BAC=60°,OA=OC,∴△OAC为等边三角形,∴∠AOC=60°.在△ABC和△OPA中,∵AB=OP,∠BAC=∠POA=60°,AC=OA,∴△ABC≌△OPA(S.A.S),…………………………………10分∴∠OAP=∠ACB=90°,…………………………………………11分∴PA是⊙O的切线…………………………………………………………12分(过半径外端点且垂直于此半径的直线是圆的切线).(或:∵∠BAC=60°,OA=OC,∴△OAC为等边三角形,∴∠OCA=60°,CA=CO=CP,∴∠CAP=∠CPA=12∠OCA=30°,∠OAP=∠OAC+∠CAP=60°+30°=90°,∴PA切⊙O于点A).21.(本小题满分12分)解:(1)260x x +-= (x -2)(x +3)=0, x -2=0或x +3=0,x 1=2,x 2=-3.……………………………………………………………4分 [注:用其它方法,只要答案正确,均给3分](2)∵图象在第二、第四象限,……………………………………………5分 根据反比例函数图象的性质,知k <0,……………………………………6分 ∴k =-3;……………………………………………………………………7分 (3)解法一:∵m ≥0,∴0<m +1<m +2,…………………………………………9分 即0<x 1<x 2,………………………………………………………………10分 又∵k =-3<0,∴在x >0时,函数y 随自变量x 的增大而增大,…………………………………………11分 ∴y 1<y 2的.…………………………………………………………………12分 解法二:∵m ≥0,∴0<m +1<m +2,…………………………………………9分∴31m +>32m +,……………………………………………………………10分 -31m +<-32m +,…………………………………………………………12分 即y 1<y 2.22.(本小题满分10分)解:(1)设运输第x 年开始盈利,………………………………………1分 则有72x -40x -120>0,…………………………………………4分 即32x >120,x >3.75,………………………………………………………………5分 ∵x 为正整数,∴x 最小值应取4,∴该船第4年开始盈利;……………………………………………………6分 (2)根据题意,有[(72-40)×15+5-120]÷15………………………8分 =24.333…≈24.3,………………………………………………………………9分 即运输15年的年平均盈利额约为24.3万元.…………………10分23.(本小题满分12分)解:(1)图略……………………………………………………………2分 B '(-5,1)、C '(-2,-3);………………………………4分 (2)P(-b ,-a );………………………………………………6分 (3)点D关于直线l 的对称点D '的坐标为(3,1),………………………………………………7分 [注:求出点E的对称点的坐标参照给分]设过点E、点D '的直线解析式为:y=k x +b ,………………………8分 分别把点E、D '的坐标代入其中, 得关于k 、b 的二元一次方程组,解得k =5,b =-14,………………………………………………9分 ∴y =5x -14.点Q是直线y =5x -14与直线l :y =-x 的交点,……………………10分解方程组:514y x y x =-⎧⎨=-⎩ 得7373x y ⎧=⎪⎪⎨⎪=-⎪⎩, ……………………………11分∴点Q的坐标为(73,-73).…………………………………………12分24.(本小题满分14分)解:(1)90°;…………………………………………………………1分 (2)证明:如图,∵AE、BE分别平分∠NBA、∠MAB,∴∠1=∠2,∠3=∠4,……………………………………………2分 又∵AM∥BN,∴∠MAB+∠NBA=180°,……………………………………3分 即∠1+∠2+∠3+∠4=180°, ∠1+∠1+∠3+∠3=180°,∴2(∠1+∠3)=180°,………………………………………4分 ∠1+∠3=90°,……………………………………………………5分 从而∠AEB=180°-(∠1+∠3)=90°;………………6分(3)①当点D在射线AM的反向延长线上、 点C在射线BN上时(如图), 线段AD、BC、AB三者间的关系为:BC=AB+AD.…………………………………………………………7分 证法一:延长AE交BN于点F. ∵AM∥BN,∴∠4=∠AFB, 又∠3=∠4,∴∠AFB=∠3,∴BF=BA(等角对等边),………………………………………………8分 即△BAF为等腰三角形.由(1)∠AEB=90°知BE⊥AF, 即BE为等腰△BAF底边AF上的高, 由“三线合一”定理,得AE=EF。