质数与合数问题(含答案)--第一部分

合集下载

五年级数学质数与合数试题答案及解析

五年级数学质数与合数试题答案及解析

五年级数学质数与合数试题答案及解析1.一个正方形的边长是质数,它的面积是( )。

A.质数B.合数C.奇数D.偶数【答案】B【解析】略2.把10以内所有的质数相乘,所得的积一定是( )。

A.奇数B.偶数C.质数D.无法确定【答案】B【解析】略3.在20以内的自然数中,是奇数又是质数的数是()。

【答案】3,5,7,11,13,17,19【解析】略4.如果a是偶数,那么与它相邻的两个数是()和()这两个数是()数。

【答案】a-1、a+1、奇数【解析】略5.所有的奇数都是质数。

()【答案】×【解析】略6.一个长方形周长是16米,它的长、宽的米数是两个质数,这个长方形面积是多少平方米?【答案】15平方米【解析】因为长方形的周长是16厘米,所以长+宽=16÷2=8米,又因为长、宽均为质数,所以8=5+3,所以长应该是5米,宽是3米,再根据长方形的面积公式S=ab,即可求出面积.解:因为长方形的周长是16米,即(长+宽)×2=16,所以长+宽=16÷2=8(厘米);又因为长、宽均为质数,所以8=5+3,所以长应该是5米,宽是3米;长方形的面积是:5×3=15(平方米).答:这个长方形的面积是15平方米.点评:关键是根据题意将8进行裂项,得出符合要求的长和宽,再利用长方形的面积公式S=ab 解决问题.7.最小的质数是( ),最小的奇数是( ),( )既不是质数也不是合数。

【答案】2 1 1【解析】略8.两个质数的和一定是合数。

( )【答案】×【解析】例如2+3=5,5是质数。

9. 37是( )。

A.因数 B.质数 C.合数【答案】B【解析】略10.两个自然数相除,除数是最小的合数,商是一位数,商既是2的倍数又是3的倍数,余数比最小的质数多1。

除法算式是( )÷( )=( )……( )。

【答案】27 4 6 3【解析】最小的合数是4,所以除数是4,既是2的倍数又是3的倍数的一位数是6,所以商是6,最小的质数是2,所以余数是3,被除数=除数×商+余数,所以被除数是27。

23质数与合数

23质数与合数

质数与合数第一部分1 . 最小的质数是()A.0B.1 C.2D.3【答案】C【解析】略【题型】单选题【难度】容易2 . 最小的合数是()A.1B.2 C.3D.4【答案】D【解析】略【题型】单选题【难度】容易3 . 6以内的质数有()个A.1B.2 C.3D.4【答案】C【解析】略【题型】单选题【难度】较难4 . 10以内不是偶数的合数是()A.3B.5 C.7D.9【答案】D【解析】略【题型】单选题【难度】一般5 . 8以内不是奇数的质数是()A.2B.4 C.6D.0【答案】A【解析】略【题型】单选题【难度】一般6 . 一个数的因数只有1和它本身,这样的数叫()A.奇数B.质数C.偶数D.合数【答案】B【解析】略【题型】单选题【难度】一般7 . 一个合数至少有()个因数A.1B.2 C.3D.4【答案】C【解析】略【题型】单选题【难度】一般8 . 10以内所有的质数的和是()A.10B.12 C.15D.17【答案】D【解析】略【题型】单选题【难度】困难9 . 7以内的合数有()个A.3B.4 C.2D.6【答案】C【解析】略【题型】单选题【难度】一般10 . 两个连续自然数(不包括0)的积一定是()A.奇数B.偶数C.质数D.合数【答案】B【解析】略【题型】单选题【难度】一般质数与合数第二部分1.下列说法正确的是( )A、一条射线长30米B、8个球队淘汰赛,至少要经过7场比赛才能赛出冠军C、一个三角形三条边分别为3cm、9cm、5cmD、所有的偶数都是合数考点质数与合数;直线、线段和射线的认识;三角形的特性;简单的排列、组合答案B解析【解答】解:A、射线无限长,此选项错误;B、4+2+1=7(场),此选项正确;C、3+5<9,不能组成三角形,此选项错误;D、偶数2就不是合数,此选项错误.故答案为:B2.用10以内的质数能组成互质数( )A、4组B、5组C、6组D、8组考点合数与质数答案C解析【解答】解:共有质数2、3、5、7;组成的互质数:2和3、2和5、2和7、3和5、3和7、5和7,共6组.故答案为:C【分析】10以内的质数有2、3、5、7;互质数是只有公因数1的两个数,因此两个质数一定能组成一组互质数,这样列举出所有的互质数即可.3.一个质数减去另一个质数,它们的差( )。

高斯小学奥数五年级上册含答案_质数与合数

高斯小学奥数五年级上册含答案_质数与合数

第三讲质数与合数什么是质数?每一个数都能写成若干个数相乘的形式,考虑到任何一个数都能写成若干个1乘以它本身的形式,所以不考虑1作为乘数的情况:6 2 3,8 2 4 2 2 2 ,12 2 6 3 4 2 2 3……这些数都能拆成若干个不为1的数相乘的形式,我们把这样的数称为合数.而像2, 3, 7 这些不能拆成若干个不为1的数相乘形式的数,我们称之为质数•如果说得形象一点,质数就是拆不开”的数,合数就是拆得开的数.严格说来,质数就是只能被1和自身整除的数;合数是除了1和它本身之外,还能被其它数整除的数•注意,1既不是质数也不是合数.我们先来看一个关于质数的小问题,提高大家对质数的熟悉程度:请写出所有颠倒个位十位之后还是质数的两位质数.____________________________________________________ (填写在横线上)相信对100以内的质数比较熟悉的同学,做这个题目会很轻松. 质数是我们后面学习的 基础,因此同学们一定要牢牢记住常见的质数. 请同学们在下面的横线上写出100以内的所有质数:从大到小写出100以内的质数.如果你能一个不少地写出来, 说明你对100以内的质数确实掌握得很牢固了 A A当然,同学们写出的这些质数只是质数大军中的冰山一角.【分析】1~56以内的质数有哪些?把它们列出来,然后依次找出对应的汉字,这句话就出 来了.同学们还可以这样做: 在100以上还有无穷多个质F 面是主试委员会为第六届 华杯赛 写的一首诗:美少年华朋会友,幼长相亲同切磋; 杯赛联谊欢声响,念一笑慰来者多; 九天九霄志凌云,九七共庆手相握; 聚起华夏中兴力,同唱移山壮丽歌.将它们对应的字依次排成一行,组成一句话,请写出这句话.数,比如接着100的就有四个质数:101, 103, 107, 109.将诗中56个字第1行左边第一字起逐行逐字编为1—56号,再将号码中的质数由小到大找出来,自然数N是一个两位数,它是一个质数,而且N的个位数字与十位数字都是质数,这样的自然数有多少个?(1)如果两个不同的质数相加等于26,那么这两个质数的乘积可能是多少?请全部写出.(2)如果两个不同的质数相加等于25,那么这两个质数的乘积可能是多少?请全部写出.(3)三个互不相同的质数相加,和为40,这三个质数的乘积可能是多少?请全部写出.【分析】对于第1问,依次枚举即可,可知这两个不同的质数一定都是奇数•那么后两问中的质数可以都是奇数吗?如果三个互不相同的质数相加,和为52,这三个质数可能是多少?通过前面的学习,我们对质数已经有了基本了解. 下面我们来学习这一讲中最重要的内相信对100以内的质数比较熟悉的同学, 做这个题目会很轻松. 质数是我们后面学习的分解质因数的方法一般是短除法,如下图所示,我们将 30分解质因数,在计算的过程容:分解质因数•分解质因数是指把一个数写成质因数相乘的形式•如: 30 2 3 5, 100 2 2 5 5,280 2 2 2 5 7 •同学们请注意:分解式应该把质因数按从小到大的顺序写好,每个数分解质因数的形式是唯一的.2 2100 2 5 ; 280在分解质因数时也可以写成3280 2 5 7 •这种写法更简洁更方便,其中位于质因数右上角,表示质因数个数的数叫作指数,如:这里280的分解式中5和7的指数都是1,写的时候可以省略.如何确定一个大数是不是质数呢?我们要判断 197是不是质数,难道需要一一验算197以内的所有质数吗?同学们不用担心,数学家们早就为我们准备了简单的方法, 只需要试很少的几个就能判断.例如我们要判断197是否为质数,只需要验算15以内的质数就足够了!因为 15 15 225比197大•类似的,如果我们要判断2011是不是质数,只需要验算45以内的质数,因为45 45 2025比2011大•有了这个方法,同学们以后判断一个大数是不是质数就非常方便了.请把下面的数分解质因数:(1) 360; (2) 539; (3) 999; (4) 10101.请把下面的数分解质因数: (1) 373; (2) 12660.中要善用各种特殊数的整除特性.100在分解质因数时也可以写成:一・22-25752O8能整除30相除后得3「分析」将一个数分解质因数, 可以从最小的质数开始, 一个一个去试商,写成短除的形式.在整数问题中,有一类特殊的问题,专求乘积末尾连续0的个数.解决这类问题的方法同样是质因数分解•下面我们来看一个例题.__算式1 2 3 L 100计算结果的末尾有多少个连续的0?【分析】乘积的末尾要出现一个0,只需要乘数中凑出一个10,那么能凑出来几个10,末尾就有多少个连续的0•注意到10 2 5,我们只需要计算这个算式中含有的质因数2和5 的个数就可以了.算式1 2 3 L 30的计算结果的末尾有多少个连续的0?分解质因数是学习数论问题时非常重要的方法,大家一定要能熟练的将一个数分解质因数,这应该作为一项基本的能力来培养. 下面我们来看看如何利用分解质因数来解决实际的问题.三个连续自然数的乘积等于39270,那么这三个数的和等于多少?「分析」39270是三个自然数的乘积,于是先将39270分解质因数,再对这些质因数进行适当的组合,凑出题目中的三个连续自然数. 由于连续自然数相互之间比较接近,所以凑的时候也必须尽量接近.【分析】完全平方数是两个相同数的乘积,那么分解后它的每个质因数的次数都是偶数. 而3 2360 2 3 5,它不是一个平方数.它最小再乘上多少,结果就是平方数了?通过上面例题的讲解,相信大家能体会到分解质因数的好处. 它就像手术刀一样,把整数解剖开来,让我们把整数的组成结构看得一清二楚. 很多看似复杂的问题,如果从分解质因数的角度来看,就会变得非常简单.在正整数里走得越远,我们就发现质数变得越来越稀少.有人可能会问:质数出现频率越来越小,它们会不会在某处终止呢?会不会从某个数开始之后就没有质数了呢?早在公元前300年左右,欧几里得就第一次证明了质数有无穷多个.他用的是如下的反证法:设n代表最后一个质数,那么从2到n的所有质数的积是2 3 5 7 L n .将这个积加1称为k,因为2, 3, 5, 7, 11,…,n都不能整除k,所以k必然含有一个更大的质因数!这与n代表最后一个质数相矛盾!作业1.(1)如果两个不同的质数相加等于39,那么这两个质数的乘积是多少?(2)三个互不相同的质数相加,和为30,这三个质数的乘积是多少?2.自然数49,87,101,103,121 中,哪些是质数?3.请把下面的数分解质因数:(1)240;(2)1080.4.三个连续自然数的乘积为336,则这三个数的和是多少?5.算式1 2 3 L 35的计算结果的末尾有多少个连续的0?第三讲质数与合数例题1. 答案:少年朋友亲切联欢一九九七相聚中山详解:1~56 中的质数有2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53 共16 个.例题2.答案:(1) 69、133; (2) 46; (3) 434 详解:(1)26可以拆成3与23的和,或者7与19的和;(2)25 只能拆成2 和23 的和;( 3)三个数的和是偶数, 可以是三个偶数, 或者一偶两奇.考虑到质数中只有 2 是偶数,可知一定是一偶两奇,且偶数是2.另外两个奇数是7和31.例题3.答案:(1) 360 23 32 5;(2) 539 ( 4)72 11 ;(3) 999 33 37;10101 3 7 13 37 .例题4. 答案:24详解:末尾0的个数与算式结果所含质因数2和5的个数有关, 结果中质因数的个数又与乘数中质因数的个数有关.因为 2 的个数要比 5 的个数多,所以0 的个数等于5的个数.乘数中5的倍数有20个,25的倍数有4个,所以质因数5的个数有20 4 24 个.末尾有24 个连续的0.例题5. 答案:102详解:39270 2 3 5 7 11 17 .考虑其中最大的质因数17,三个自然数中一定有 1 7的倍数.如果是17,那么一定有16或18.这不可能.如果是34,另外两个数是33和35,正好满足.33 34 35 102 .例题6. 答案:160详解:完全平方数的每个质因数的次数一定是偶数. 而360 23325, 至少要再乘上 2 5 10 才是一个平方数.题目要求是三位数,即360 1104 2__4_3_ 是一个平方数.可知空格上也要填入一个平方数,最三位数小要填16.要乘的三位数最小是160.练习1. 答案:23、37、53、73简答:一位数中的质数只有2、3、5、7.而N 的个位数字只能是3和7,分类枚举即可.练习2.答案:2、3、47或者2、7、43或者2、13、37或者2、19、31简答:三个质数一定是一偶两奇,偶数是2.练习3. 答案:(1)质数;(2)12660 22 3 5 211.练习4. 答案:7简答:1~30中5的倍数有6个,25的倍数有1个,所以其中有7 个5.计算结果的末尾有7 个连续的0 .作业1. 答案:(1)74;(2)230或374 简答:(1)39 2 37,乘积为74.(2)30 2 5 23 2 11 17 ,乘积为230或374.作业2. 答案:101,103.作业3. 答案:(1)240 24 3 5;(2)1080 23 33 5.作业4. 答案:21简答:336 24 3 7 6 7 8 ,和为21.作业5. 答案:8个简答:看含有因子5 的个数,是5 的倍数的数有7 个,是25 的倍数的数有1 个,共8 个.。

24.质数、合数与因数分解(含答案)-

24.质数、合数与因数分解(含答案)-

24.质数、合数与因数分解知识纵横一个大于1的正整数,若除了1与它自身,再没有其他的约数,•这样的正整数叫做质数;一个大于1的正整数,除了1与它自身,若还有其他的约数,这样的正整数称为合数,这样,我们可以按约数个数将正整数分为三类:正整数1⎧⎪⎨⎪⎩单位质数合数质数、合数有下面常用的性质:1.1不是质数,也不是合数;2是惟一的偶质数.2.若质数p│ab,则必有p│a或p│b.3.若正整a,b的积是质数p,则必有a=p或b=p.4.算术基本定理:任意一个大于1的整数N能分解成k个质因数的乘积,•若不考虑质因数之间的顺序,则这种分解是惟一的,从而N可以写成标准分解形式:N=p1a1·p2a2·…p k ak其中p1<p2<…<p k,p i为质数,a i为非负整数.(i=1,2,…k).例题求解【例1】已知三个不同的质数a,b,c满足ab b c+a=2000,那么a+b+c=_____.(第15届江苏省竞赛题) 思路点拨运用乘法分配律、算术基本定理,从因数分解入手,突破a的值.解:42 提示:由a(b b c+1)=24×53.【例2】不超过100的所有质数的乘积减去不超过60且个位数字为7•的所有质数的乘积所得之差的个位数字是( ).A.3B.1C.7D.9思路点拨从寻找适合题意的质数入手.解:选D 提示2与5的积为10,不超过60且个位数字为7的所有质数共4个,它们是7,17,37,47,10-1=9。

【例3】求这样的质数,当它加上10和14时,仍为质数. (上海市竞赛题)思路点拨由于质数的分布不规划,不妨从最小的质数进行实验,但这样的质数惟一吗?还需按剩余类的方法进行讨论.解:3符合要求提示:当p=3k+1时,p+10=3k+11,P+14=3(k+5),显然p+14是合数;当p=3k+2时,p+10=3(k+4)是合数,当p=3k时,只有k=1才符合题意。

【精品】五年级下册数学试题-竞赛专题:第3讲-质数和合数(含答案)全国通用

【精品】五年级下册数学试题-竞赛专题:第3讲-质数和合数(含答案)全国通用

知识概述质数:1个大于1的数除了1和它本身,不再有别的约数,这个数叫做质数(也叫做素数)。

合数:一个数除了1和它本身,还有别的约数,这个数叫做合数。

要特别记住:0和1不是质数,也不是合数,显然,在自然数范围内,最小的质数是2,2也是唯一的偶质数。

最小的合数是4。

要判断a是否为质数,如果自然数n n a⨯≤,1)(1)n n a+⨯+>(,那么我们只要从最小的质数2开始试除a,直到不大于n的最大质数,如果都不能整除a,那么a 为质数。

我们可以按照一个数约数的个数,把自然数分成三类:0和1,质数和合数,因此,0和1外的自然数,不是质数就是合数。

求一个数N所有的约数的个数:用分解质因数形式表示为312123npp p pnN a a a a=⨯⨯⨯⋅⋅⋅⨯(123na a a aL、、、、为合数N的质因数)。

所求的约数的个数123(1)(1)(1)(1)nA p p p p=+⨯+⨯+⨯⋅⋅⋅⨯+。

例如33504237=⨯⨯,那么它有约数(31)(21)(11)24+⨯+⨯+=(个)。

分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数,例如,12=2×2×3,分解质因数往往是解数论题目的突破口,因为这样可以帮助我们分析数字的特征。

同学们必须熟练掌握100以内及其他常用合数的分解质因数。

常用的小于100的质数有2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97质数和合数自然数N是一个两位数,它是一个质数,而且N的个位数字与十位数字都是质数,这样的两位自然数有________个。

【解析】个位数只可能是3、7,十位数可能是2、3、5、7,这样的自然数有4个,23、37、53、73。

一个两位质数的两个数字交换位置后,仍然是一个质数,请写出所有这样的质数。

【解析】依题意知,构成这个两位质数的数字只能为奇数,经检验,如下质数满足题意:11、13、17、31、37、71、73、79、97。

小学数学五年级奥数质数与合数(一)试题含答案

小学数学五年级奥数质数与合数(一)试题含答案

小学数学五年级奥数——“质数与合数(一)”试题(含答案) 年级班姓名得分一、填空题1在一位的自然数中,既是奇数又是合数的有_____;既不是合数又不是质数的有_____;既是偶数又是质数的有_____.2、最小的质数与最接近100的质数的乘积是_____.3、两个自然数的和与差的积是41,那么这两个自然数的积是_____.4、在下式样□中分别填入三个质数,使等式成立.□+□+□=505、三个连续自然数的积是1716,这三个自然数是_____、_____、_____.6、找出1992所有的不同质因数,它们的和是_____.7、如果自然数有四个不同的质因数, 那么这样的自然数中最小的是_____.8、9216可写成两个自然数的积,这两个自然数的和最小可以达到_____.9、从一块正方形的木板上锯下宽为3分米的一个木条以后,剩下的面积是108平方分米.木条的面积是_____平方分米.10、今有10个质数:17,23,31,41,53,67,79,83,101,103.如果将它们分成两组,每组五个数,并且每组的五个数之和相等,那么把含有101的这组数从小到大排列,第二个数应是_____.二、解答题11、2,3,5,7,11,…都是质数,也就是说每个数只以1和它本身为约数.已知一个长方形的长和宽都是质数个单位,并且周长是36个单位.问这个长方形的面积至多是多少个平方单位?12、把7、14、20、21、28、30分成两组,每三个数相乘,使两组数的乘积相等.13、学生1430人参加团体操,分成人数相等的若干队,每队人数在100至200之间,问哪几种分法?14、四只同样的瓶子内分别装有一定数量的油,每瓶和其他各瓶分别合称一次,记录千克数如下:8、9、10、11、12、13.已知四只空瓶的重量之和以及油的重量之和均为质数,求最重的两瓶内有多少油?小学数学五年级奥数——“质数与合数(一)”试题答案1. 9,1,2在一位自然数中,奇数有:1,3,5,7,9,其中仅有9为合数,故第一个空填9.在一位自然数中,质数有2、3、5、7,合数有4、6、8、9,所以既不是合数又不是质数的为1.又在一位自然数中,偶数有2、4、6、8,所以既是偶数又是质数的数为2.2. 202最小的质数是2,最接近100的质数是101,它们的乘积是2⨯101=202.3. 420首先注意到41是质数,两个自然数的和与差的积是41,可见它们的差是1,这是两个连续的自然数,大数是21,小数是20,所以这两个自然数的积是20⨯21=420.4. 2、5、43接近50的质数有43,再将7分拆成质数2与质数5的和.即2+5+43=50另外,还有2+19+29=502+11+37=50[注]填法不是唯一的.如也可以写成41+2+7=505. 11,12,13将1716分解质因数得1716=2⨯2⨯3⨯11⨯13=11⨯(2⨯2⨯3)⨯13由此可以看出这三个数是11,12,13.6. 88先把1992分解质因数,然后把不同质数相加,求出它们的和.1992=2⨯2⨯2⨯3⨯83所以1992所有不同的质因数有:2,3,83.它们的和是2+3+83=88.7. 210最小的四个质数是2,3,5,7,所以有四个不同质因数的最小自然数是2⨯3⨯5⨯7=2108. 192先把9216分解质因数,然后再用“试验法”解答9216=2⨯2⨯…⨯⨯3⨯310个=96⨯96欲使这两个自然数的和最小,可使两数相等,所以这两个质因数的和最小为96+96=192.9. 36如下图所示,要求木条的面积,必须知道正方形木板的边长.把108分解质因数.108=2⨯2⨯3⨯3⨯3=12⨯9由此可见,9加3正好等于12,所以正方形木板边长是12分米.所以,木条面积是12⨯3=36(平方分米)10. 31这10个质数之和是598,分成两组后,每组五个数之和是598÷2=299.在有79这组数中,其他四个质数之和是299-79=220,个位数是0,因此这四个质数的个位数可能有三种情形:(1)三个1和一个7;(2)二个3和二个7;(3)三个3和一个1.31+41+101=173,220-173=47,可这十个数中没有47,情形(1)被否定.17+67=84,220-84=136,个位数为3有23,53,83,只有53+83=136,因此从情形(2)得到一种分组:17,53,67,79,83和23,31,41,101,103.所以,含有101这组数中,从小到大排列第二个数是31.[注]从题目本身的要求来说,只要找出一种分组就可以了,但从情形(3)还可以得出另一种分组.23+53+83+103=262,262-220=42, 我们能否从53,83,103中找出一个数,用比它少42的数来代替呢?53-42=11,83-42=41,103-42=61.这十个数中没有11和61,只有41.又得到另一种分组:23,41,53,79,103和17,31,67,83,101.由此可见,不论哪一种分组,含101这组数中,从小到大排列,第二个数都是31.11. 由于长+宽是 36÷2=18将18表示为两个质数和 18=5+13=7+11所以长方形的面积是 5⨯13=65或7⨯11=77故长方形的面积至多是77平方单位.12. 先把14,20,21,28,30分解质因数,看这六个数中共有哪几个质因数,再分摊在两组中,使两组数乘积相等.14=7⨯2 20=2⨯2⨯521=3⨯7 28=2⨯2⨯730=2⨯3⨯5 7从上面五个数分解质因数来看,连7在内共有质因数四个7,六个2,二个3,二个5,因此每组数中一定要含三个2,一个3,一个5,二个7.六个数可分成如下两组(分法是唯一的):第一组: 7、28、和30第二组:14、21和20且7⨯28⨯30=14⨯21⨯20=5880满足要求.[注]解答此题的关键是审题,抓住题目中的关键性词语:“使两组数的乘积相等”.实质上是要求两组里所含质因数相同,相同的质因数出现的次数也相同.13. 把1430分解质因数得1430=2⨯5⨯11⨯13根据题目的要求,应在2、5、11及13中选用若干个数,使它们的乘积在100到200之间,于是得三种答案:(1)2⨯5⨯11=110; (2)2⨯5⨯13=130; (3)11⨯13=143.所以,有三种分法:一种是分为13队,每队110人;二是分为11队,每队130人;三是分为10队,每队143人.14. 由于每只瓶都称了三次,因此记录数之和是4瓶油(连瓶)重量之和的3倍,即4瓶油(加瓶)共重(8+9+10+11+12+13)÷3=21(千克)而油重之和及瓶重之和均为质数,所以它们必为一奇一偶,而质数中是偶数的质数只有2,故有(1)油重之和为19千克,瓶重之和为2千克,每只瓶重21千克,最重的两瓶内的油为13-21⨯2=12(千克).(2)油重之和为2千克,瓶重之和为19千克,每只瓶重419千克,最重的两瓶内的油为13-419⨯2=27(千克),这与油重之和为2千克矛盾,不合要求,删去.。

小学五年级下册数学能力培优试卷 质数与合数(含答案)

小学五年级下册数学能力培优试卷 质数与合数(含答案)

小学五年级下册数学能力培优试卷 质数与合数1、 质数与合数(1)只有两个因数(1和它本身)的自然数叫做质数(素数)。

如2、3、5、11 。

(2)如果除了1和它本身外,还有其他的因数,这样的自然数叫做合数。

如4、6、9、15 。

2、 1既不是质数,也不是合数。

自然数按整数的因数个数的不同可分成三类:1、质数、合数。

3、常用的100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97,共计25个;除了2其余的质数都是奇数。

4、互质(1)如果两个数的公因数只有1,那么称这两个数互质。

(2)互质的两个数,最小公倍数是它们的乘积。

5、分解质因数 (1)如果一个整数的因数是质数,为质数的因数就叫做这个数的质因数。

(2)每个合数都可以写成几个质数相乘的形式。

其中每个质数都是这个合数的因数,叫做这个合数的分解质因数。

分解质因数只针对合数。

采用短除法。

例如:53230⨯⨯=。

其中2、3、5叫做30的质因数。

又如32322122⨯=⨯⨯=,2、3都叫做12的质因数,其中后一个式子叫做分解质因数的标准式,在求一个数约数的个数和约数的和的时候都要用到这个标准式。

分解质因数往往是解数论题目的突破口,因为这样可以帮助我们分析数字的特征。

1、重点(难点):(1)掌握判别质数与合数的方法:试除法:用所有比它小的质数从小到大依次去除这个数,如果能够整除那么这个数一 定是合数。

如果不能整除(尝试到除数与商最近时),那么这个数一定是质数。

(2)学会分解质因数。

2、易错点:(1)1既不是质数也不是合数;(2)分解质因数时要从最小的质数去试除且因数一定为质数。

将20分解质因数为52220⨯⨯=,而不是5420⨯=。

1、 写出下列各数的所有因数,并判断哪些是质数,哪些是合数。

2 8 13 25 31 39 65 732的因数:___________________( );25的因数:_________________( ) 31的因数:________________ ( );39的因数:________________ _( ) 65的因数:_________________( );73的因数:_________________ ( )【答案】2的因数:1 ,2 (质数);25的因数:1 ,5 ,25 (合数)31的因数:1 ,31 (质数);39的因数:1 ,3 ,13 ,39 (合数)65的因数:1 ,5 ,13 ,65 (合数);73的因数:1 ,73 (质数)2、判断,下面的说法对吗?(1)所有奇数都是质数。

质数与合数

质数与合数

质数与合数质数与合数一、趣题引入甲、乙、丙三人打靶,每人打三枪,三人各自中靶的环数之积都是60,按个人中靶的总环数由高到低排,依次是甲、乙、丙。

靶子上4环的那一枪是谁打的?(环数是不超过10的自然数)二、知识点如果一个比1大的自然数只有两个约数:1和本身,那么这个自然数就叫质数。

(质数也叫素数。

)例如:43=1×43。

43只有1和43两个约数,所以43是质数。

100以内的质数极为常用,它们是:2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97。

在自然数中,如果除了1和本身两个约数,还有其它的约数,这个自然数就叫做合数。

例如:6的约数有1,2,3,6,那么6是合数。

应特别注意:1既不是质数也不是合数,这样,自然数在按约数个数分类,可以分成:质数、合数和1。

偶数中只有2是质数,而且是所有质数中最小的一个。

除2以外所有的偶数都是合数,除2以外所有的质数都是奇数。

每个合数都可以写成几个质数相乘的形成,这几个质数就叫做这个合数的质因数,例如,因为70=2×5×7,所以2,5,7是70的质因数。

把一个合数用质数相乘的形式表示出来,叫做分解质因数。

例如:60=2×2×3×5=22×3×5,把60这个合数用2×2×3×5或22×3×5的形式来表示,就是把60分解质因数。

三、例题分析例1:两个质数的积是46,求这两个质数的和。

分析:两个质数的积是46,46是偶数,只能是一个奇质数与一个偶质数的积,而偶质数只有2,因此很容易得出另外的质数,从而问题得以解决。

解:因为46是偶数,因此它必是一个奇质数与一个偶质数的积,而偶质数只有2,另一个质数为46÷2=23,所以2与23的和是25。

例2:用2,3,4,5中的三个数能组成哪些三位质数?分析:首先考虑个位是几,如果个位数字是2或4,这样的三位数必能被2整除,因此这样的三位数不会是质数,如果个位数字是5,这样的三位数必能被5整除,这样的三位数也不会是质数,所以各位数字只能是3,再由剩下的三个数字组成百位、十位,得出个位数字是3的三位数为243,423,253,523,453,543,最后根据质数的判断方法,得到所求的质数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五年级奥数:数的整除问题(含答案)——第一部分(共5题)
2014年5月21日星期三
【例题1】:
今有10个质数:17,23,31,41,53,67,79,83,101,103.如果将它们分成两组,每组五个数,并且每组的五个数之和相等,那么把含有101的这组数从小到大排列,第二个数应是().
考点:质数与合数问题.
分析:可以先求出这10个质数的和是多少,根据已知条件,把这10个质数分成两组,即可求出每组5个质数的和,然后在分析每组数各有哪几种情况,由此解答即可.
解答:这10个质数之和是598,分成两组后,每组五个数之和是598÷2=299.
在有79这组数中,其他四个质数之和是299-79=220,个位数是0,因此这四个质数的个位数可能有三种情形:
(1)三个1和一个7;
(2)二个3和二个7;
(3)三个3和一个1.
31+41+101=173,220-173=47,可这十个数中没有47,情形(1)被否定.
17+67=84,220-84=136,个位数为3有23,53,83,只有53+83=136,因此从情形(2)得到一种分组:17,53,67,79,83和23,31,41,101,103.
所以,含有101这组数中,从小到大排列第二个数是31.
注:从题目本身的要求来说,只要找出一种分组就可以了,但从情形(3)还可以得出另一种分组.23+53+83+103=262,262-220=42,我们能否从53,83,103中找出一个数,用比它少42的数来代替呢?
53-42=11,83-42=41,103-42=61.这十个数中没有11和61,只有41.又得到另一种分组:
23,41,53,79,103和17,31,67,83,101.
由此可见,不论哪一种分组,含101这组数中,从小到大排列,第二个数都
是31.
点评:此题的解答思路要开阔,考虑要周全,分析所包含的各种情况,提高分析解决问题的能力.
【例题2】:
2,3,5,7,11,…都是质数,也就是说每个数只以1和它本身为约数.已知一个长方形的长和宽都是质数个单位,并且周长是36个单位.问这个长方形的面积至多是多少个平方单位?
考点:合数与质数.
分析:根据周长先求出长与宽的和,再把和写成两个质数的和,两个质数的积最大者即为答案.
解答:由于长+宽是36÷2=18,
将18表示为两个质数和18=5+13=7+11,
所以长方形的面积是5×13=65或7×11=77,
故长方形的面积至多是77平方单位.
点评:此题主要考查长方形的周长以及质数的知识.
【例题3】:
一个质数的3倍和一个质数的2倍之和等于2000,那么这两个质数之和是多少?
分析:因为2000为两个奇数或偶数组成,一个数的2倍为偶数,所以另一个质数的3倍也一定为偶数,偶数×3=偶数,根据质数的定义,质数中只有最小的质数2为偶数,2×3=6,由此即能得出另一质数是多少,进而求出两个质数之和.
解答:解:因为2000为偶数,
个质数的2倍一定为偶数,则另一个质数的3倍也一定为偶数,
偶数×3=偶数,质数中只有最小的质数2为偶数,2×3=6,
2000-6=1994,1994÷2=997,
即另一质数为997,
所以,这两个质数为997+2=999.
答:这两个质数之和是999.
点评:根据数和的奇偶性进行分析是完成本题的关键.
【例题4】:
一个三角形的三条边的边长都是质数,三条边长之和是16。

那么最长边与最短边的差是____。

【答案】考虑到三角形两边之和大于第三边,且三边长都是质数,得三条边长为2,7,7。

差是7-2=5。

【例题5】:
下列数表的最后一个数的个位数是_____。

1 2 3 4 5……9798 99 100
3 5 7 9 ……195 197 199
8 12 16 ……392 396
20 28 (788)
…………
【答案】
第一行有100个数,以后每行少一个数,共有100行。

第1行首尾两数之和为101;
第2行首尾两数之和为101×2;
第3行首尾两数之和为101 × 2 ;

第99行首尾两数之和为101×2 。

第100行的数正是第99行两数之和101×2 。

2的n次方的个位数规律是按2,4,8,6循环出现,98÷4=24……2.
因此101×2 的个位数字是4。

相关文档
最新文档