2019-2020学年浙江省台州一中高二(上)期中数学试卷

合集下载

2019—2020学年度第一学期高二年级学段(期中)考试数学试卷题

2019—2020学年度第一学期高二年级学段(期中)考试数学试卷题

2019—2020学年度第一学期高二年级学段(期中)考试数学试卷题考试时间:120分钟满分:150分一、选择题(本大题共12 小题,每小题5 分,共60 分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若a,b 是异面直线,b,c 是异面直线,则a,c 的位置关系为()A.相交、平行或异面B.相交或平行C.异面D.平行或异面2.已知直线l1:(k-3)x+(4-2k)y+1=0 与l2:2(k-3)x-2y+3=0 平行,则k 的值是()A.1 或3B.1 或C.3 或D.1 或23.圆锥的底面半径为1,高为3 ,则圆锥的表面积为()A.B.2C.3D.44.在直线3x-4y-27=0 上到点P(2,1)距离最近的点的坐标为()A.(5,-3)B.(9,0)C.(-3,5)D.(-5,3)5.若圆C1:x2+y2=1 与圆C2:x2+y2-6x-8y+m=0 外切,则m=()A.21B.19C.9D.-116.某几何体的三视图(单位:cm)如图,则该几何体的体积是()A.72 cm3B.90 cm3C.108 cm3D.138 cm37.若圆C:x2+y2+2x-4y+3=0 关于直线2ax+by+6=0 对称,则由点(a,b)向圆所作的切线长的最小值是()A.2B.3C.4D.6铜陵市一中期中考试第1页,共9页8.正四面体ABCD 中,E、F 分别是棱BC、AD 的中点,则直线DE 与平面BCF 所成角的正弦值为()9.垂直于直线y=x+1 且与圆x2+y2=4 相切于第三象限的直线方程是(A.x+y+22=0 B.x+y+2=0 C.x+y-2=0 D.x+y-2 2=010.如图,在正四棱柱ABCD-A1B1C1D1中,AB=3,BB1=4,长为1 的线段PQ 在棱AA1上移动,长为3 的线段MN 在棱CC1上移动,点R 在棱BB1上移动,则四棱锥R-PQMN 的体积是()A.12B.10C.6D.不确定11.已知A(-2,0),B(0,2),实数k 是常数,M,N 是圆x2+y2+kx=0 上两个不同点,P 是圆x2+y2+kx=0上的动点,如果点M,N 关于直线x-y-1=0 对称,则△P AB 面积的最大值是()A.3-2B.4C.3+2D.612.设圆C : x2 y2 3,直线l : x3y 6 0 ,点P x0, y0l ,若存在点Q C ,使得OPQ 60(O 为坐标原点),则x0的取值范围是())铜陵市一中期中考试第2页,共9页填空题(本大题共4 小题,每小题5 分,共20 分.把答案填在题中的横线上)二、解答题(本大题共6 小题,共70 分.解答时应写出文字说明、证明过程或演算步骤)17.(本小题满分10 分)已知直线l : y 3x3.(1)求点P 4,5关于直线l的对称点坐标;(2)求直线l关于点P 4,5对称的直线方程.18.(本小题满分12 分)如图,AA1B1B 是圆柱的轴截面,C 是底面圆周上异于A,B 的一点,AA1=AB=2.(1)求证:平面A1AC⊥平面BA1C;(2)求1-鏸ୋ的最大值.铜陵市一中期中考试第3页,共9页铜陵市一中期中考试 第 4页,共 9 页19.(本小题满分 12 分)如图,在四棱锥 P-ABCD 中,AP ⊥平面 PCD ,AD ∥BC ,AB=BC= AD ,E ,F 分别为线段 AD ,PC 的中点.求证: (1)AP ∥平面 BEF ;(2)BE ⊥平面 P AC.20.(本小题满分 12 分)已知圆 C 过点 M (0,-2),N (3,1),且圆心 C 在直线 x+2y+1=0 上. (1)求圆 C 的方程;(2)设直线 ax-y+1=0 与圆 C 交于 A ,B 两点,是否存在实数 a ,使得过点 P (2,0)的直线 l 垂直平分弦 AB ?若存在,求出实数 a 的值;若不存在,请说明理由.21.(本小题满分 12 分)如图,四棱锥 P-ABCD 的底面 ABCD 为菱形,∠ABC=60°,P A ⊥底面 ABCD ,P A=AB=2,E 为 P A 的中点. (1)求证:PC ∥平面 EBD ;(2)求三棱锥 C-P AD 的体积 V C-P AD ;(3)在侧棱 PC 上是否存在一点 M ,满足 PC ⊥平面 MBD ,若存在,求 PM 的长;若不存在,说明理由.22.(本小题满分 12 分)已知以点 C (t ∈R ,t ≠0)为圆心的圆与 x 轴交于点 O 和点 A ,与 y轴交于点 O 和点 B ,其中 O 为原点. (1)求证:△OAB 的面积为定值;(2)设直线 y=-2x+4 与圆 C 交于点 M ,N ,若 OM=ON ,求圆 C 的方程.1 2铜陵市一中期中考试 第 5页,共 9 页数学答案13. 1 14.2=x 或01043=+-y x 15. 0412322=--++y x y x 16.π617. (1)()7,2- ----------------------5分 (2)173-=x y ----------------------10分18.(1)证明:∵C 是底面圆周上异于A ,B 的一点,且AB 为底面圆的直径,∴BC ⊥AC.又AA 1⊥底面ABC ,∴BC ⊥AA 1, 又AC ∩AA 1=A ,∴BC ⊥平面A 1AC. 又BC ⊂平面BA 1C ,∴平面A 1AC ⊥平面BA 1C. ----------------------6分(2)解:在Rt △ACB 中,设AC=x ,∴BC=√AB 2-AC 2=√4-x 2(0<x<2),∴V A 1-ABC =13S △ABC ·AA 1=13·12AC ·BC ·AA 1=13x√4-x 2=13√x 2(4-x 2)=13√-(x 2-2)2+4(0<x<2).∵0<x<2,∴0<x 2<4.铜陵市一中期中考试 第 6页,共 9 页∴当x 2=2,即x=√2时,V A 1-ABC 的值最大,且V A 1-ABC 的最大值为23. ----------------------12分19.证明:(1)设AC ∩BE=O ,连接OF ,EC.因为E 为AD 的中点,AB=BC=12AD ,AD ∥BC , 所以AE ∥BC ,AE=AB=BC , 所以O 为AC 的中点.又在△P AC 中,F 为PC 的中点,所以AP ∥OF . 又OF ⊂平面BEF ,AP ⊄平面BEF ,所以AP ∥平面BEF . ----------------------6分 (2)由题意知,ED ∥BC ,ED=BC , 所以四边形BCDE 为平行四边形, 所以BE ∥CD.又AP ⊥平面PCD ,所以AP ⊥CD ,所以AP ⊥BE. 因为四边形ABCE 为菱形,所以BE ⊥AC. 又AP ∩AC=A ,AP ,AC ⊂平面P AC ,所以BE ⊥平面P AC. ----------------------12分20.解:(1)设圆C 的方程为:x 2+y 2+Dx+Ey+F=0,{-D2-E +1=0,4-2E +F =0,10+3D +E +F =0,则有{D =-6,E =4,F =4.故圆C 的方程为x 2+y 2-6x+4y+4=0. ----------------------6分 (2)设符合条件的实数a 存在,因为l 垂直平分弦AB ,故圆心C (3,-2)必在l 上,所以l的斜率k PC=-2.,k AB=a=-1k PC. ----------------------8分所以a=12把直线ax-y+1=0即y=ax+1,代入圆C的方程,消去y,整理得(a2+1)x2+6(a-1)x+9=0.由于直线ax-y-1=0交圆C于A,B两点,则Δ=36(a-1)2-36(a2+1)>0,即-2a>0,解得a<0.则实数a的取值范围是(-∞,0).∉(-∞,0),由于12故不存在实数a,使得过点P(2,0)的直线l垂直平分弦AB. ----------------------12分21.(1)证明:设AC,BD相交于点F,连接EF,∵四棱锥P-ABCD底面ABCD为菱形,∴F为AC的中点,又∵E为P A的中点,∴EF∥PC.又∵EF⊂平面EBD,PC⊄平面EBD,∴PC∥平面EBD. ----------------------4分(2)解:∵底面ABCD为菱形,∠ABC=60°,∴△ACD是边长为2的正三角形,又∵P A⊥底面ABCD,铜陵市一中期中考试第7页,共9页∴P A为三棱锥P-ACD的高,∴V C-P AD=V P-ACD=13S△ACD·P A=13×√34×22×2=2√33. ----------------------8分(3)解:在侧棱PC上存在一点M,满足PC⊥平面MBD,下面给出证明.∵四棱锥P-ABCD的底面ABCD为菱形,∴AC⊥BD,∵P A⊥平面ABCD,BD⊂平面ABCD,∴BD⊥P A.∵AC∩P A=A,∴BD⊥平面P AC,∴BD⊥PC.在△PBC内,可求PB=PC=2√2,BC=2,在平面PBC内,作BM⊥PC,垂足为M,设PM=x,则有8-x2=4-(2√2-x)2,解得x=3√22<2√2.连接MD,∵PC⊥BD,BM⊥PC,BM∩BD=B,BM⊂平面BDM,BD⊂平面BDM.∴PC⊥平面BDM.∴满足条件的点M存在,此时PM的长为3√22. ----------------------12分22.(1)证明:∵圆C过原点O,∴OC2=t2+4t2.设圆C的方程是(x-t)2+(y-2t )2=t2+4t2,令x=0,得y1=0,y2=4t;令y=0,得x1=0,x2=2t,∴S△OAB=12OA·OB=12×|4t|×|2t|=4,即△OAB的面积为定值. ----------------------6分铜陵市一中期中考试第8页,共9页(2)解:∵OM=ON,CM=CN,∴OC垂直平分线段MN.∵k MN=-2,∴k OC=12.∴2t =12t,解得t=2或t=-2. ----------------------8分当t=2时,圆心C的坐标为(2,1),OC=√5,此时,C到直线y=-2x+4的距离d=√5<√5,圆C与直线y=-2x+4相交于两点.符合题意,此时,圆的方程为(x-2)2+(y-1)2=5.当t=-2时,圆心C的坐标为(-2,-1),OC=√,此时C到直线y=-2x+4的距离d=√5>√5.圆C与直线y=-2x+4不相交,因此,t=-2不符合题意,舍去.故圆C的方程为(x-2)2+(y-1)2=5. ----------------------12分铜陵市一中期中考试第9页,共9页。

浙江省台州市高二上学期期中联考数学试题(解析版)

浙江省台州市高二上学期期中联考数学试题(解析版)
球的表面积公式: 球的体积公式: ,其中 表示球的半径
选择题部分(共40分)
一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.直线 的倾斜角为()
A. B. C. D.
【答案】D
【解析】
【分析】求出直线的斜率后可求直线的倾斜角.
【详解】直线 的斜率为 ,故其倾斜角 满足 ,
【详解】由题可知圆心 ,半径 ,
则点 到圆心 的距离 ,
切线长 ,可看作 到定点 的距离,
由 ,则点 在圆 内.
则 的最小值即为 到直线 的距离,
如图,过 作直线 垂直于 ,垂足为 ,与 轴的交点即为点 .
,则直线 : ,即
令 ,得 ,即
所以当点 与 重合时, 最小值.
故选:C.
非选择题部分(共110分)
7.若 为直线 的倾斜角,则过两点 、 的直线的斜率为()
A. B. C. D.
【答案】B
【解析】
【分析】求出 的值,利用直线的斜率公式结合弦化切可求得结果.
【详解】由题意可得 ,所以, .
故选:B.
8.棱长为2的正方体ABCD-A1B1C1D1中,E,F分别为棱A1D1,AA1的中点,过E,F,C1三点的平面截正方体所得的截面的面积为()
【详解】解:设圆台的上下底面的半径分别为r,R,
则 ,所以 ,
,所以 ,
作出圆台的轴截面,设圆台的高为h,根据题意圆台的母线长为3,
所以 ,
即该圆台的高为 .
故选:A.
5.在空间中,已知直线 ,两个不同的平面 , ,一定能推出“ ”的条件是()
A. B.
C. D.
【答案】B
【解析】

2019-2020年高二上学期期中考试数学试卷 含答案

2019-2020年高二上学期期中考试数学试卷 含答案

2019-2020年高二上学期期中考试数学试卷 含答案注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答题前,考生务必将自己的姓名、班级和准考证号填写在答题卡上..2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再涂选其它答案标号,写在本试卷上无效.3.回答第Ⅱ卷将答案写在答题卡上,在试题卷上作答,答案无效.4.考试结束,只交答题卡.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.直线x -y =0的倾斜角为( )A .45°B .60°C .90°D .135°2.若三点A (0,8),B (-4,0),C (m ,-4)共线,则实数m 的值是( )A .6B .-2C .-6D .23.圆x 2+y 2=4与圆x 2+y 2-6x+8y-24=0的位置关系是( ) A .相交 B .相离 C .内切D .外切4.如图,在长方体ABCD -A 1B 1C 1D 1中,棱锥A 1-ABCD 的体积与长方体AC 1的体积的比值为( )A.12 B .16 C.13D .155.如图,正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H ,K ,L 分别为AB ,BB 1,B 1C 1,C 1D 1,D 1D ,DA 的中点,则六边形EFGHKL 在正方体面上的射影可能是( )6.已知直线l与过点M(-3,2),N(2,-3)的直线垂直,则直线l的倾斜角是()A.π3 B.π4 C.2π3D.3π47.某几何体的三视图如图所示,则该几何体的表面积为( )A .2π+12B .π+12C .2π+24D .π+248.若坐标原点在圆x 2+y 2-2mx +2my +2m 2-4=0的内部,则实数m 的取值范围是( )A .(-1,1)B .⎝⎛⎭⎫-22,22 C .(-3,3)D .(-2,2)9.点P(7,-4)关于直线l:6x-5y-1=0的对称点Q的坐标是( )A .(5,6)B .(2,3)C .(-5,6)D .(-2,3)10.过(2,0)点作圆(x -1)2+(y -1)2=1的切线,所得切线方程为( )A .y =0B .x =1和y =0C .x =2和y =0D .不存在 11.两圆x2+y2+4x -4y =0与x2+y2+2x -12=0的公共弦长等于( ) A .4 B .2 3 C .3 2 D .4 212.已知直线y =kx +2k +1与直线y =12x +2的交点位于第一象限,则实数k 的取值范围是( )A .-6<k <2B .-16<k <0C .-16<k <12D .k >12第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分。

2019-2020年高二上学期期中考试数学试卷含答案

2019-2020年高二上学期期中考试数学试卷含答案

2019-2020年高二上学期期中考试数学试卷含答案注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答题前,考生务必将自己的姓名、班级和准考证号填写在答题卡上..2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再涂选其它答案标号,写在本试卷上无效.3.回答第Ⅱ卷将答案写在答题卡上,在试题卷上作答,答案无效.4.考试结束,只交答题卡.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.直线x-y=0的倾斜角为( )A.45°B.60°C.90°D.135°2.若三点A(0,8),B(-4,0),C(m,-4)共线,则实数m的值是( )A.6 B.-2 C.-6 D.2 3.圆x2+y2=4与圆x2+y2-6x+8y-24=0的位置关系是()A.相交B.相离C.内切D.外切4.如图,在长方体ABCD-A1B1C1D1中,棱锥A1-ABCD的体积与长方体AC1的体积的比值为( )A.12B.16C.13D.155.如图,正方体ABCD-A1B1C1D1中,E,F,G,H,K,L分别为AB,BB1,B1C1,C1D1,D1D,DA的中点,则六边形EFGHKL在正方体面上的射影可能是( ) 6.已知直线l与过点M(-3,2),N(2,-3)的直线垂直,则直线l的倾斜角是()A.π3B.π4C.2π3D.3π47.某几何体的三视图如图所示,则该几何体的表面积为( ) A.2π+12 B.π+12 C.2π+24 D.π+24 8.若坐标原点在圆x2+y2-2mx+2my+2m2-4=0的内部,则实数m的取值范围是( )A.(-1,1) B.-22,22C.(-3,3) D.(-2,2)9.点P(7,-4)关于直线l:6x-5y-1=0的对称点Q的坐标是()A.(5,6) B.(2,3) C.(-5,6)D.(-2,3)10.过(2,0)点作圆(x-1)2+(y-1)2=1的切线,所得切线方程为( )A.y=0 B.x=1和y=0 C.x=2和y=0 D.不存在11.两圆x2+y2+4x-4y=0与x2+y2+2x-12=0的公共弦长等于( ) A.4 B.2 3 C.3 2 D.4 212.已知直线y=kx+2k+1与直线y=12x+2的交点位于第一象限,则实数k的取值范围是( )A.-6<k<2 B.-16<k<0C.-16<k<12D.k>12第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分。

2019-2020学年度高二上学期期中考试数学试题(含答案解析)

2019-2020学年度高二上学期期中考试数学试题(含答案解析)

2019-2020学年度高二上学期期中考试数学试题一、选择题(本大题共10小题,共40.0分)1.已知集合M={x|(x+3)(x-1)<0},N={x|x≤-3},则∁R(M∪N)=()A. {x|x≤1}B. {x|x≥1}C. {x|x<1}D. {x|x>1}2.数列-1,3,-5,7,-9,…的一个通项公式为()A. a n=2n−1B. a n=(−1)n(1−2n)C. a n=(−1)n(2n−1)D. a n(−1)n+1(2n−1)3.不等式2x-3y+6>0表示的平面区域在直线2x-3y+6=0的()A. 左上方B. 左下方C. 右上方D. 右下方4.下列说法正确的是()A. 若a<b,则1a <1bB. 若ac3>bc3,则a>bC. 若a>b,k∈N∗,则a k≤b kD. 若a>b,c>d,则a−d>b−c5.已知等比数列{a n}中,a2a3a4═1,a6a7a8=64,则a5=()A. ±2B. −2C. 2D. 46.设M=2a(a-2),N=(a+1)(a-3),则有()A. M>NB. M≥NC. M<ND. M≤N7.当x>1时,不等式x+1x−1≥a恒成立,则实数a的取值范围是()A. (−∞,2]B. [2,+∞)C. [3,+∞)D. (−∞,3]8.设{a n}是等差数列,公差为d,S n是其前n项的和,且S5<S6,S6=S7>S8,则下列结论错误的是()A. d<0B. a7=0C. S9>S5D. S6和S7均为S n的最大值9.设S n为等差数列{a n}的前n项和,a4=4,S5=15,若数列{1a n a n+1}的前m项和为1011,则m=()A. 8B. 9C. 10D. 1110.已知:x>0,y>0,且2x +1y=1,若x+2y>m2+2m恒成立,则实数m的取值范围是()A. (−∞,−2]∪[4,+∞)B. (−∞,−4]∪[2,+∞)C. (−2,4)D. (−4,2)二、填空题(本大题共4小题,共16.0分)11.△ABC中,a=1,b=√3,∠A=30°,则∠B等于______12.点P(x,y)在不等式组{x−2≤0y−1≤0x+2y−2≥0表示的平面区域上运动,则z=x-y的最大值为______.13.在△ABC中,三个角A、B、C所对的边分别为a、b、c.若角A、B、C成等差数列,且边a、b、c成等比数列,则△ABC的形状为______.14.对于任意实数x,不等式(a-2)x2-2(a-2)x-4<0恒成立,则实数a的取值范围是______.三、解答题(本大题共5小题,共44.0分)15.(1)解不等式2x2+x+1>0.<x<2},求a+b的值;(2)若不等式ax2+bx+2>0的解集是{x|-1216.已知数列{a n}中,a1=2,a n+1=2a n.(1)求a n;(2)若b n=n+a n,求数列{b n}的前5项的和S5.17.在△ABC中,角A,B,C的对边分别是a,b,c,若c cos A,b cos B,a cos C成等差数列.(Ⅰ)求∠B;,b=√3,求△ABC的面积.(Ⅱ)若a+c=3√3218.如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求B点在AM上,D点在AN上,且对角线MN过点C,已知AB=3米,AD=2米.(Ⅰ)要使矩形AMPN的面积大于32平方米,则DN的长应在什么范围内?(Ⅱ)当DN的长度为多少时,矩形花坛AMPN的面积最小?并求出最小值.19.已知数列{a n}的前n项和为S n,向量a⃗=(S n,2),b⃗ =(1,1−2n)满足条件a⃗ ⊥b⃗(1)求数列{a n}的通项公式;(2)设c n=na n,求数列{c n}的前n项和T n.答案和解析1.【答案】B【解析】解:∵集合M={x|(x+3)(x-1)<0}={x|-3<x<1},N={x|x≤-3},∴M∪N={x|x<1},∴∁R(M∪N)={x|x≥1},故选:B.先求出M,再求出M∪N,再根据补集的定义求出∁R(M∪N).本题主要考查集合的表示方法、集合的补集,两个集合并集的定义和求法,属于基础题.2.【答案】C【解析】解:数列-1,3,-5,7,-9,…的一个通项公式为.故选:C.其符号与绝对值分别考虑即可得出.本题考查了数列通项公式,考查了推理能力与计算能力,属于基础题.3.【答案】D【解析】解:画直线2x-3y+6=0,把(0,0)代入,使得2x-3y+6>0,所以不等式2x-3y+6>0表示的平面区域在直线2x-3+-6>0的右下方,故选:D.根据题意取特殊点验证不等式表示的平面区域即可.本题考查了二元一次不等式表示的平面区域问题,通常以直线定界,特殊点定区域,是基础题.4.【答案】D【解析】解:A.当a=1,b=2时,满足a<b,但不成立,故A错误,B.若ac3>bc3,若c<0,则a>b不成立,故B错误,C.当k=2时,a=1,b=-2满足条件.a<b,但a2≤b2不成立,故C错误,D.若a>b,c>d,则-d>-c,则a-d>b-c成立,故D正确故选:D.根据不等式的关系以及不等式的性质分别进行判断即可.本题主要考查命题的真假判断,结合不等式的性质分别进行判断是解决本题的关键.5.【答案】C【解析】解:设等比数列{a n}的公比为q,∵a2a3a4═1,a6a7a8=64,∴(q4)3=64,解得q2=2.又=1,解得a1=.则a5==2.故选:C.设等比数列{a n}的公比为q,由a2a3a4═1,a6a7a8=64,可得(q4)3=64,解得q2.又=1,解得a1.利用通项公式即可得出.本题考查了等比数列的通项公式与性质,考查了推理能力与计算能力,属于中档题.6.【答案】A【解析】解:∵M-N═2a(a-2)-(a+1)(a-3)=(a-1)2+2>0,∴M>N.故选:A.比较两个数的大小,通常采用作差法,分别计算M-N的结果,判断结果的符号.本题考查了比较两数大小的方法.当a-b>0时,a>b,当a-b=0时,a=b,当a-b <0时,a<b.7.【答案】D【解析】解:∵当x>1时,不等式x+恒成立,∴a≤x+对一切非零实数x>1均成立.由于x+=x-1++1≥2+1=3,当且仅当x=2时取等号,故x+的最小值等于3,∴a≤3,则实数a的取值范围是(-∞,3].故选:D.由题意当x>1时,不等式x+恒成立,由于x+的最小值等于3,可得a≤3,从而求得答案.本题考查查基本不等式的应用以及函数的恒成立问题,求出x+的最小值是解题的关键.8.【答案】C【解析】解:∵S5<S6,S6=S7>S8,∴a6>0,a7=0,a8<0,可得d<0.S6和S7均为S n的最大值.S9==9a5,S5==5a3.S9-S5=9(a1+4d)-5(a1+2d)=4a1+26d=4a7+2d<0,∴S9<S5.因此C错误.故选:C.S5<S6,S6=S7>S8,可得a6>0,a7=0,a8<0,可得d<0.S6和S7均为S n的最大值.作差S9-S5=4a7+2d<0,可得S9<S5.本题考查了等差数列的单调性、通项公式与求和公式、作差法,考查了推理能力与计算能力,属于中档题.9.【答案】C【解析】解:S n为等差数列{a n}的前n项和,设公差为d,a4=4,S5=15,则:,解得d=1,则a n=4+(n-4)=n.由于=,则,==,解得m=10.故答案为:10.故选:C.首先求出数列的通项公式,利用裂项相消法求出数列的和.本题考查的知识要点:数列的通项公式的求法及应用,裂项相消法求出数列的和10.【答案】D【解析】解:∵x>0,y>0,且,∴x+2y=(x+2y)()=2+++2≥8(当且仅当x=4,y=2时取到等号).∴(x+2y)min=8.∴x+2y>m2+2m恒成立,即m2+2m<(x+2y)min=8,解得:-4<m<2.故选:D.x+2y>m2+2m恒成立,即m2+2m<x+2y恒成立,只需求得x+2y的最小值即可.本题考查基本不等式与函数恒成立问题,将问题转化为求x+2y的最小值是关键,考查学生分析转化与应用基本不等式的能力,属于中档题.11.【答案】60°或120°【解析】解:∵a=1,b=,∠A=30°根据正弦定理可得:∴sinB=∴∠B=60°或120°故答案为:60°或120°根据正弦定理可求出角B的正弦值,进而得到其角度值.本题主要考查正弦定理的应用.属基础题.12.【答案】2【解析】解:画可行域如图,画直线z=x-y,平移直线z=x-y过点A(0,1)时z有最小值-1;平移直线z=x-y过点B(2,0)时z有最大值2.则z=x-y的最大值为2.故答案为:2.①画可行域;②z为目标函数的纵截距;③画直线z=x-y.平移可得直线过A 或B时z有最值.本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.13.【答案】等边三角形【解析】解:∵在△ABC中角A、B、C成等差数列,∴2B=A+C,由三角形内角和可得B=,又∵边a、b、c成等比数列,∴b2=ac由余弦定理可得b2=a2+c2-2accosB,∴ac=a2+c2-ac,即a2+c2-2ac=0,故(a-c)2=0,可得a=c,故三角形为:等边三角形,故答案为:等边三角形.由等差数列和三角形内角和可得B=,再由等比数列和余弦定理可得a=c,可得等边三角形.本题考查三角形形状的判定,涉及等差和等比数列及余弦定理,属基础题.14.【答案】(-2,2]【解析】解:当a=2时,-4<0恒成立;当a≠2时,不等式(a-2)x2-2(a-2)x-4<0恒成立,则,解得:-2<a<2;综上所述,-2<a≤2.故答案为:(-2,2].分a=2与a≠2讨论;在a≠2时,(a-2)x2-2(a-2)x-4<0恒成立⇒,解之,取并即可.本题考查函数恒成立问题,对a分a=2与a≠2讨论是关键,考查分类讨论思想与等价转化思想,属于中档题.15.【答案】解:(1)不等式2x2+x+1>0中,△=1-8=-7<0,所以该不等式的解集为R;(2)不等式ax2+bx+2>0的解集是{x|-12<x<2},则该不等式对应的方程两根是-12和2,所以{2a =−12×2−ba =−12+2,解得a=-2,b=3,∴a+b=1.【解析】(1)利用判别式△<0,得出该不等式的解集为R;(2)根据不等式的解集得出不等式对应方程的两个根,再由根与系数的关系求出a 、b 的值.本题考查了一元二次不等式的解法与应用问题,也考查了一元二次方程根与系数的关系应用问题.16.【答案】解:(1)由数列{a n }中,a 1=2,a n +1=2a n .则数列{a n }是首项为2,公比为2的等比数列, ∴a n =2n .(2)b n =n +a n =n +2n .∴数列{b n }的前5项的和S 5=(1+2+3+4+5)+(2+22+……+25) =5×(1+5)2+2×(25−1)2−1=77.【解析】(1)利用等比数列的通项公式即可得出.(2)b n =n+a n =n+2n .利用等差数列与等比数列的求和公式即可得出. 本题考查了等差数列与等比数列的求和公式,考查了推理能力与计算能力,属于中档题.17.【答案】解:(Ⅰ)∵c cos A ,B cosB ,a cos C 成等差数列,∴2b cos B =c cos A +a cos C ,由正弦定理知:a =2R sin A ,c =2R sin C ,b =2R sin B ,代入上式得:2sin B cosB=sin C cos A +sin A cos C ,即2sin B cosB=sin (A +C ). 又A +C =π-B ,∴2sin B cosB=sin (π-B ),即2sin B cosB=sin B . 而sin B ≠0,∴cos B =12,及0<B <π,得B =π3. (Ⅱ)由余弦定理得:cos B =a 2+c 2−b 22ac=12, ∴(a+c)2−2ac−b 22ac=12,又a +c =3√32,b =√3, ∴274-2ac -3=ac ,即ac =54,∴S △ABC =12ac sin B =12×54×√32=5√316.【解析】(Ⅰ)由ccosA ,BcosB ,acosC 成等差数列,可得2bcosB=ccosA+acosC ,利用正弦定理、和差公式即可得出;(II)利用余弦定理与三角形的面积计算公式即可得出.本题考查了等差数列、正弦定理、和差公式、余弦定理、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.18.【答案】解:(Ⅰ)设DN的长为x(x>0)米,则|AN|=(x+2)米∵|DN| |AN|=|DC||AM|,∴|AM|=3(x+2)x∴S AMPN=|AN|⋅|AM|=3(x+2)2x由S AMPN>32得3(x+2)2x>32又x>0得3x2-20x+12>0解得:0<x<23或x>6即DN的长取值范围是(0,23)∪(6,+∞)(Ⅱ)矩形花坛的面积为y=3(x+2)2x =3x2+12x+12x=3x+12x+12(x>0)≥2√3x⋅12x+12=24当且仅当3x=12x,即x=2时,矩形花坛的面积最小为24平方米.【解析】(Ⅰ)设DN的长为x(x>0)米,则|AN|=(x+2)米,表示出矩形的面积,利用矩形AMPN的面积大于32平方米,即可求得DN的取值范围.(2)化简矩形的面积,利用基本不等式,即可求得结论.本题考查根据题设关系列出函数关系式,并求出处变量的取值范围;考查利用基本不等式求最值,解题的关键是确定矩形的面积.19.【答案】解:(1)∵a⃗ ⊥b⃗ ,∴a⃗•b⃗ =S n+2-2n+1=0,∴S n=2n+1-2,当n≥2时,a n=S n-S n-1=2n,当n=1时,a1=S1=2满足上式,∴a n=2n,(2)∵c n=na n =n2n,∴T n=12+22+⋯+n−12+n2,两边同乘12,得12T n=122+223+⋯+n−12n+n2n+1,两式相减得:1 2T n=12+122+⋯12n−n2n+1=1−n+22n+1,∴T n=2−n+22n(n∈N+).【解析】(1)根据向量的数量积和可得S n=2n+1-2,再根据数列的递推公式即可求出,(2)根据错位相减法即可求出数列{c n}的前n项和T n本题考查了向量的数量积和数列的递推公式以及错位相减法,属于中档题第11页,共11页。

浙江省台州中学高二上学期期中考试(数学文).doc

浙江省台州中学高二上学期期中考试(数学文).doc

浙江省台州中学高二上学期期中考试(数学文)一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 算法的三种基本结构是 ( )A. 顺序结构、模块结构、条件结构B. 顺序结构、循环结构、模块结构C. 顺序结构、条件结构、循环结构D. 模块结构、条件结构、循环结构 2. 下列说法中,正确的是 ( ) A .数据4、6、6、7、9、4的众数是4 B .一组数据的标准差是这组数据的方差的平方C .数据3,5,7,9的标准差是数据6、10、14、18的标准差的一半D .频率分布直方图中各小长方形的面积等于相应各组的频数 3.如图是中秋节晚会举办的挑战主持人大赛上, 七位评委为某选手打出的分数的茎叶统计图,去掉一个 最高分和一个最低分后,所剩数据的平均数和方差 分别为( ) A. 84,4.84B. 84,1.6C. 85,1.6D. 85,44.椭圆1422=+y x 的离心率为( ).A 23.B 43C 22 .D 325.右边的程序框图(如图所示),能判断任意输入数x 的奇偶性,其中判断框内的条件是( ) A. x=0 B. x=1 C. m=1 D. m=06.某公司在甲、乙、丙、丁四个地区分别有150个、1180个、150个销售点.公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为②.则完成①、②这两项调查宜采用的抽样方法依次是( )A .分层抽样法,系统抽样法B .分层抽样法,简单随机抽样法C .简单随机抽样法,分层抽样法D .系统抽样法,分层抽样法7.某战士在打靶中,连续射击两次,事件“至少有一次中靶”的对立事件是( )7第5题A 、两次都不中B 、至多有一次中靶C 、两次都中靶D 、只有一次中靶 8.读程序甲:INPUT i=1 乙:INPUT I=1000 S=0 S=0 WHILE i≤1000 DO S=S+i S=S+i i=i+l I=i 一1 WEND Loop UNTIL i<1 PRINT S PRINT SEND END对甲乙两程序和输出结果判断正确的是( )A .程序不同结果不同B .程序不同,结果相同C .程序相同结果不同D .程序相同,结果相同 9.设集合A ={x |11+-x x <0},B ={x || x -1|<a },则“a =1”是“A ∩B ≠”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件10. 用秦九韶算法递推公式⎩⎨⎧+==--k n k kna x v v a v 10求多项式8.07.16.25.325)(2345-+-++=x x x x x x f ,当5=x 的函数值时,=2v ( ) A .27 B .138.5 C .689.9 D . 17255.2 二、填空题:本大题共7小题,每小题3分,共21分. 11. 若将十进制数30化为)2(a ,则=a ___▲ ___.12、一田径队中有男运动员56人,女运动员42人,用分层抽样方法从全队中抽出一个容量为28的样本,其中男运动员应抽取 ▲ 人.13.先后抛掷质地均匀的硬币三次,则至少一次正面朝上的概率是______▲ ________. 14.命题“任意满足12>x 的实数x ,都有1>x ”的否定是 ▲ .15.已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点)1P 、(2P ,则椭圆的标准方程为_______▲_______.16.我市某机构调查小学生课业负担的情况,设平均每人每天做作业时间X (单位:分钟),按时间分下列0.03 1000.0059080706050组距频率四种情况统计:0~30分钟;②30~60分钟;③60~90分钟;④90分钟以上,有1000名小学生参加了此项调查,右图是此次调查中某一项的流程图,其输出的结果是600,则平均每天做作业时间在0~60分钟内的学生的频率是_______▲_________.17. 设{}n F 是斐波那契数列, 则2121,1--+===n n n F F F F F ,右图是输出斐波那契数列的一个算法流程图,现要表示输出斐波那契数列的前那么在流程图中的判断框内应填写的条件是▲ .三、解答题:本大题共5小题,共49分.解答应写出文字说明、证明过程或演算步骤. 18.(本小题9分)某校从参加高一年级期末考试的学生中抽出60名学生,并统计了他们的物理成绩(成绩均为整数且满分为100分),把其中不低于50分的分成五段[)60,50,[)70,60…[]100,90后画出如下部分..频率分布直方图.观察图形的信息,回答下列问题:(1)求成绩在[)70,80之间的学生人数(2)求出物理成绩低于50分的学生人数;(3)估计这次考试物理学科及格率(60分及以上为及格)19.(本小题满分10分)已知0>c 且1≠c ,设p :指数函数xc y )12(-=在实数集R 上为减函数,q :不开始等式1)2(2>-+c x x 的解集为R .若命题p 或q 是真命题, p 且q 是假命题,求c 的取值范围.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据(1)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程ˆˆy bxa =+; (2)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(用最小二乘法求线性回归方程系数公式1221ˆˆˆ,ni i i ni i x y nx y bay bx x nx ==-==--åå.) 注:11221ni ii i n n i x yx y x y x y x y ==++++∑,22222121ni i n i x x x x x ==++++∑.21.(本小题满分10分)P (b a ,)是平面上的一个点,设事件A表示“2<-b a ”,其中b a 、为实常数.(1)若b a 、均为从0,1,2,3,4五个数中任取的一个数(b a 、可相等),求事件A 发生的概率; (2)若b a 、均为从区间[0,5)任取的一个数,求事件A 发生的概率.22、(本小题满分10分)在直角坐标系0x y 中,点P 到两点(10,F 、(2F 的距离之和等于4,设点P 的轨迹为曲线C ,直线1y kx =+与曲线C 交于A 、B 两点.(1)求出C 的方程;(2)若k =1,求AOB ∆的面积;(3)若OA OB ⊥,求实数k 的值。

浙江省台州市七校联盟2019-2020学年高二上学期期中联考数学答案

浙江省台州市七校联盟2019-2020学年高二上学期期中联考数学答案


,所以

成立.

在 上的值域为
,所以

…….(13 分)
又线段 与圆 无公共点,所以

成立,即 .
故圆 的半径 的取值范围为
……………………..(15 分)
试卷第 4 页,总 4 页
七校联盟 2019 学年第一学期期中联考高二数学参考答案
一、单选题(每题 4 分,共计 40 分)
1.B 2.D 3.C 4.C 5.A 6. D 7.D 8.D 9.A 10.C
二、填空题(11—14 每空 3 分,15—17 每空 4 分,共计 36 分)
11.(-1,2); 1
12. (1,1,5) ; 3 3 13. 1 ; x 2y 2 0
, ,
.
当直线 不垂直于 轴时,设直线方程为
,则
,解得

综上,直线 的方程为 或 (3)直线 的方程为
,设
……………(7 分)


因为点 是线段 的中点,所以
,又 , 都在半径为 的圆 上,所以
……….(9 分)
因为关于 , 的方程组有解,即以 为圆心, 为半径的圆与以 为半径的圆有公共点,所以
为圆心, ,………(11 分)
试卷第 2 页,总 4 页
21:
试卷第 3 页,总 4 页
22.(1)
(2) 或
(3)
(1)
…………(3 分)
(2)线段 的垂直平分线方程为 ,线段 的垂直平分线方程为
所以
外接圆圆心
,半径
,圆 的方程为
设圆心 到直线 的距离为 ,因为直线 被圆 截得的弦长为 2,所以
当直线 垂直于 轴时,显然符合题意,即 为所求;…………..(5 分)

浙江省2019—2020学年高二数学上学期期中考试卷(四)

浙江省2019—2020学年高二数学上学期期中考试卷(四)

浙江省2019—2020学年高二数学上学期期中考试卷(四)(考试时间100分钟满分120分)一、单项选择题(共10小题,每小题4分,共40分)1.已知a∥α,b⊂α,则直线a与直线b的位置关系是()A.平行B.相交或异面C.异面D.平行或异面2.直线3x+y+1=0的倾斜角是()A.30°B.60°C.120°D.135°3.如果AB>0,BC>0,那么直线Ax﹣By﹣C=0不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.已知两条直线l1:x+2ay﹣1=0,l2:x﹣4y=0,且l1∥l2,则满足条件a的值为()A.B.C.﹣2 D.25.点P(x,y)在直线x+y﹣4=0上,O是原点,则|OP|的最小值是()A.B.2C. D.26.设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:①若m⊥α,n∥α,则m⊥n②若α∥β,β∥γ,m⊥α,则m⊥γ③若m∥α,n∥α,则m∥n④若α⊥γ,β⊥γ,则α∥β其中正确命题的序号是()A.①和②B.②和③C.③和④D.①和④7.在如图的正方体中,M、N分别为棱BC和棱CC1的中点,则异面直线AC和MN所成的角为()A.30°B.45°C.60°D.90°8.三棱锥P﹣ABC的三条侧棱PA、PB、PC两两垂直,PA=1,PB=2,PC=3,且这个三棱锥的顶点都在同一个球面上,则这个球面的表面积为()A.B.56πC.14πD.64π9.直线y=kx+3与圆(x﹣2)2+(y﹣3)2=4相交于M,N两点,若,则k的取值范围是()A. B. C.D.10.棱长为1的正方体ABCD﹣A1B1C1D1中,M,N分别是A1B1,BB1的中点,点P在正方体的表面上运动,则总能使MP⊥BN 的点P所形成图形的周长是()A.4 B.C.D.二、填空题(共6小题,两空每题6分,一空的每题4分,共28分)11.已知A(1,﹣2,1),B(2,2,2),点P在x轴上,且|PA|=|PB|,则点P的坐标为.12.如图Rt△O′A′B′是一平面图形的直观图,斜边O′B′=2,则这个平面图形的面积是.13.若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如图所示,则这个棱柱的表面积为.则这个棱柱体积为.14.设A、B是直线3x+4y+3=0与圆x2+y2+4y=0的两个交点,则线段AB的垂直平分线的方程是,弦长|AB|为.15.直线x+y+c=0与圆x2+y2=4相交于不同两点,则c的取值范围是.16.已知圆C:(x﹣2)2+(y﹣1)2=5及点B(0,2),设P,Q分别是直线l:x+y+2=0和圆C上的动点,则||+||的最小值为.三、解答题(共4小题,共52分,解答应写出文字说明、证明过程或演算步骤.)17.如图,已知△ABC的顶点为A(2,4),B(0,﹣2),C (﹣2,3),求:(Ⅰ)AB边上的中线CM所在直线的方程;(Ⅱ)AB边上的高线CH所在直线的方程.18.在四棱锥P﹣ABCD中,底面ABCD是正方形,PA⊥平面ABCD,PA=AB,E是PC的中点.(1)求证:平面EBD⊥平面ABCD;(2)求二面角E﹣BC﹣A的大小.19.如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,PA⊥平面ABCD,点M,N分别为BC,PA的中点,且PA=AD=2,AB=1,AC=.(Ⅰ)证明:MN∥平面PCD;(Ⅱ)求直线MN与平面PAD所成角的正切值.20.已知直线x﹣y+2=0和圆C:x2+y2﹣8x+12=0,过直线上的一点P(x0,y0)作两条直线PA,PB与圆C相切于A,B 两点.①当P点坐标为(2,4)时,求以PC为直径的圆的方程,并求直线AB的方程;②设切线PA与PB的斜率分别为k1,k2,且k1•k2=﹣7时,求点P的坐标.参考答案一、单项选择题1.解:∵直线a∥平面α,直线b在平面α内,∴a∥b,或a与b异面,故答案为:平行或异面,2.解:将直线方程化为:,所以直线的斜率为,所以倾斜角为120°,故选C.3.解:由题意可知B≠0,故直线的方程可化为,由AB>0,BC>0可得>0,<0,由斜率和截距的几何意义可知直线不经过第二象限,故选B4.解:根据两条直线l1:x+2ay﹣1=0,l2:x﹣4y=0,且l1∥l2,可得,求得a=﹣2,故选C.5.解:由题意可知:过O作已知直线的垂线,垂足为P,此时|OP|最小,则原点(0,0)到直线x+y﹣4=0的距离d==2,即|OP|的最小值为2.故选B.6.解:对于①,因为n∥α,所以经过n作平面β,使β∩α=l,可得n∥l,又因为m⊥α,l⊂α,所以m⊥l,结合n∥l得m⊥n.由此可得①是真命题;对于②,因为α∥β且β∥γ,所以α∥γ,结合m⊥α,可得m⊥γ,故②是真命题;对于③,设直线m、n是位于正方体上底面所在平面内的相交直线,而平面α是正方体下底面所在的平面,则有m∥α且n∥α成立,但不能推出m∥n,故③不正确;对于④,设平面α、β、γ是位于正方体经过同一个顶点的三个面,则有α⊥γ且β⊥γ,但是α⊥β,推不出α∥β,故④不正确.综上所述,其中正确命题的序号是①和②故选:A7.解:连接C1B,D1A,AC,D1C,MN∥C1B∥D1A∴∠D1AC为异面直线AC和MN所成的角而三角形D1AC为等边三角形∴∠D1AC=60°故选C.8.解:三棱锥P﹣ABC的三条侧棱PA、PB、PC两两互相垂直,它的外接球就是它扩展为长方体的外接球,求出长方体的对角线的长:所以球的直径是,半径为,∴球的表面积:14π故选C.9.解:圆(x﹣2)2+(y﹣3)2=4的圆心为(2,3),半径等于2,圆心到直线y=kx+3的距离等于d=由弦长公式得MN=2≥2,∴≤1,解得,故选B.10.解:如图,取CC1的中点G,连接DGMA,设BN交AM 与点E,则MG∥BC,∵BC⊥平面ABA1B1,NB⊂平面ABA1B1,∴NB⊥MG,∵正方体的棱长为1,M,N分别是A1B1,BB1的中点,△BEM中,∠MBE=30°,∠BME=60°∴∠MEB=90°,即BN⊥AM,MG∩AM=M,∴NB⊥平面ADGM,∴使NB与MP垂直的点P所构成的轨迹为矩形ADGM,∵正方体的棱长为1∴故由勾股定理可得,使B1C与MP垂直的点P所构成的轨迹的周长等于2+.故选:D.二、填空题11.解:∵点P在z轴上,∴可设点P(x,0,0).∵|PA|=|PB|,∴=,解得x=3.∴点P的坐标为(3,0,0).故答案为:(3,0,0)12.解:∵Rt△O'A'B'是一平面图形的直观图,斜边O'B'=2,∴直角三角形的直角边长是,∴直角三角形的面积是××=1,∴原平面图形的面积是1×2=2故答案为:2,13.解:由已知中的三视图,可得该几何体是一个正三棱柱,底面正三角形的高为3,故底面边长为6,故底面面积为:=9,棱柱的高为:4,故棱柱的侧面积为:3×6×4=72,故棱柱的表面积为:;棱柱体积为:36故答案为:,3614.解:∵A、B是直线3x+4y+3=0与圆x2+y2+4y=0的两个交点,∴线段AB的垂直平分线过圆的圆心,且和直线AB垂直,则垂直平方线的斜率k=,圆的标准方程是x2+(y+2)2=4,则圆心坐标为(0,﹣2),半径R=2,则垂直平分线的方程为y+2=x,即4x﹣3y﹣6=0,圆心到直线AB的距离d==1,∴|AB|=2=2.故答案为:4x﹣3y﹣6=0,2.15.解:∵直线x+y+c=0与圆x2+y2=4相交于不同两点,∴<2,∴﹣2<c<2,∴c的取值范围是.故答案为:.16.解:由于点B(0,2)关于直线x+y+2=0的对称点为B′(﹣4,﹣2),则|PB|+|PQ|=|PB′|+|PQ|≥|B′Q|,又B′到圆上点Q的最短距离为|B′C|﹣r=3﹣=2,故答案为:2.三、解答题17.解:(Ⅰ)由题意可得,线段AB的中点M(1,1),再根据C(﹣2,3),可得AB边上的中线CM所在直线的方程为=,即2x+3y﹣5=0.(Ⅱ)由于直线AB的斜率为=3,故AB边上的高线CH 的斜率为﹣,AB边上的高线CH所在直线的方程为y﹣3=﹣(x+2),即3x+3y﹣7=0.18.证明:(1)设AC∩BD=O,∵底面ABCD是正方形,∴O是AC中点,∵E,O分别为线段PC,AC的中点∴OE∥PA,∵PA⊥平面ABCD∴OE⊥平面ABCD∵OE⊂平面BDEPABCDE∴平面EBD⊥平面ABCD…解:(2)取线段BC的中点F,连接OF,EF∵ABCD是正方形,F是线段BC的中点O∴OF⊥平面BCF,∵OE⊥平面ABCD,∴OE⊥BC,∴BC⊥平面OEF∴EF⊥BC,∴∠EFO是二面角E﹣BC﹣A的平面角,…在直角三角形OEF中,OE=OF,∴∠EFO=45°,即二面角E﹣BC﹣A的大小为45°.…19.解:(Ⅰ)证明:取PD中点E,连结NE,CE.∵N为PA 中点,∴NE,又M为BC中点,底面ABCD为平行四边形,∴MC.∴NE MC,即MNEC为平行四边形,…∴MN∥CE∵EC⊂平面PCD,且MN⊄平面PCD,∴MN∥平面PCD.…(其它证法酌情给分)(Ⅱ)方法一:∵PA⊥平面ABCD,PA⊂平面ABCD,∴平面PAD⊥平面ABCD,过M作MF⊥AD,则MF⊥平面PAD,连结NF.则∠MNF为直线MN与平面PAD所成的角,…由AB=1,,AD=2,得AC⊥CD,由AC•CD=AD•MF,得,在Rt△AMN中,AM=AN=1,得.在Rt△MNF中,,∴,直线MN与平面PAD所成角的正切值为.…方法二:∵PA⊥平面ABCD,PA⊥AB,PA⊥AC,又∵AB=1,,BC=AD=2,∴AB2+AC2=BC2,AB⊥AC.…如图,分别以AB,AC,AP为x轴,y轴,z轴,建立空间直角坐标系A﹣xyz,则,N(0,0,1),P(0,0,2),,∴,,,…设平面PAD的一个法向量为,则由,令y=1得,…设MN与平面PAD所成的角为θ,则,∴MN与平面PAD所成角的正切值为.…20.解:①圆C:x2+y2﹣8x+12=0,可化为(x﹣4)2+y2=4,PC中点为(3,2),|PC|=2,∴以PC为直径的圆的方程为圆E:(x﹣3)2+(y﹣2)2=5,∵PA⊥AC,PB⊥BC,∴P,A,B,C四点共圆E,∴直线AB的方程是两圆公共弦所在直线方程,两方程相减可得直线AB的方程为x﹣2y﹣2=0;②设过P的直线l方程为y﹣y0=k(x﹣x0),由于⊙C与直线l 相切,得到d==2,整理得到:k2[(4﹣x0)2﹣4]+2y0(4﹣x0)k+y02=4k2+4,∴k1•k2==﹣7y0=x0+2,代入,可得2x02﹣13x0+21=0,∴x0=3或,∴点P坐标(3,5)或(,).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年浙江省台州一中高二(上)期中数学试卷
一、选择题:每小题4分,共40分
1.(4分)点(1,2)A 到直线:3410l x y --=的距离为( ) A .
4
5
B .
65
C .4
D .6
2.(4分)设m ,n 是空间中不同的直线,α,β是空间中不同的平面,则下列说法正确的是( )
A .//αβ,m α⊂,则//m β
B .m α⊂,n β⊂,//αβ,则//m n
C .//m n ,n α⊂,则//m α
D .m α⊂,n β⊂,//m β,//n α,
则//αβ 3.(4分)过两点(4,)A y ,(2,3)B -的直线的倾斜角为45︒,则(y = ) A .3
-
B .
3 C .1- D .1
4.(4分)将半径为1,圆心角为23
π
的扇形围成一个圆锥,则该圆锥的体积为( ) A .22π
B .
22π
C .
22π
D .
22π
5.(4分)下列说法中正确的是( )
A .若一个命题的逆命题为真,则它的逆否命题一定为真
B .若一个命题的否命题为真,则它的逆否命题一定为真
C .“若220a b +=,则a ,b 全为0”的逆否命题是“若a ,b 全不为0,则220a b +≠”
D .“若220a b +=,则a ,b 全为0”的逆否命题是“若a ,b 不全为0,则220a b +≠” 6.(4分)在一个倒置的正三棱锥容器内放入一个钢球,钢球恰与棱锥的四个面都接触,过棱锥的一条侧棱和高作截面,正确的截面图形是( )
A .
B .
C .
D .
7.(4分)平面内称横坐标为整数的点为“次整点”.过函数29y x =-
整点作直线,则倾斜角大于45︒的直线条数为.( ) A .10
B .11
C .12
D .13
8.(4分)异面直线a 、b 和平面α、β满足a α⊂,b β⊂,l αβ=I ,则l 与a 、b 的位置关系一定是( ) A .l 与a 、b 都相交 B .l 与a 、b 中至少一条平行 C .l 与a 、b 中至多一条相交
D .l 与a 、b 中至少一条相交
9.(4分)已知四棱锥P ABCD -,记AP 与BC 所成的角为1θ,AP 与平面ABCD 所成的角为2θ,二面角P AB C --为3θ,则下面大小关系正确的是( ) A .12θθ„
B .13θθ„
C .23θθ„
D .13θθ…
10.(4分)如图,在长方体1111ABCD A B C D -中,2DC =,11DA DD ==,点M 、N 分别为1A D 和1CD 上的动点,若//MN 平面11AA C C ,则MN 的最小值为( )
A 5
B .
23
C 5
D 5 二、填空题:11-14每空3分,15-17每空4分,共36分
11.(6分)在空间直角坐标系中,已知点(1A ,0,2)与点(1B ,3-,1),则||AB = ,若在z 轴上有一点M 满足||||MA MB =,则点M 坐标为 .
12.(6分)已知直线1:(1)620l m x y -++=,2:10l x my ++=,m 为常数,若12l l ⊥,则m 的值为 ,若12//l l ,则m 的值为 .
13.(6分)如图,P 为ABC ∆所在平面外一点,1PA PB PC ===,60APB BPC ∠=∠=︒,90APC ∠=︒,若G 为ABC ∆的重心,则||PG 长为 ,异面直线PA 与BC 所成角的余弦
值为 .
14.(6分)若圆222:(0)O x y r r +=>与圆22:70(C x y ax by a +++-=,b ,r 为常数),关于直线20x y -+=对称,则a 的值为 ,r 的值为 .
15.(4分)如图,正四棱锥P ABCD -的侧棱长为4,侧面的顶角均30︒,过点A 作一截面与PB 、PC 、PD 分别相交于E 、F 、G ,则四边形AEFG 周长的最小值为 .
16.(4分)已知实数x 、y 满足22(2)(3)1x y -++=,则|344|x y +-的最小值为 . 17.(4分)如图,正四面体ABCD 中,//CD 平面α,点E 在AC 上,且2AE EC =,若四面体绕CD 旋转,则直线BE 在平面α内的投影与CD 所成角的余弦值的取值范围是 .
三、解答题:5小题,共74分
18.(14分)已知某几何体的正视图、侧视图、俯视图如图所示.
(1)求该几何体的侧视图的面积; (2)求该几何体的体积.
19.(15分)已知p :关于x ,y 的方程222:4630C x y x y m +-++-=表示圆;q :圆
222(0)x y a a +=>与直线345100x y m +-+=有公共点.若p 是q 的必要不充分条件,求实数a 的取值范围.
20.(15分)如图,直角梯形ABCD 中,//AB CD ,90BAD ∠=︒,1AB AD ==,2CD =,若将BCD ∆沿着BD 折起至△BC D ',使得AD BC '⊥.
(1)求证:平面C BD '⊥平面ABD ; (2)求C D '与平面ABC '所成角的正弦值;
(3)M 为BD 中点,求二面角M AC B '--的余弦值.
21.(15分)已知圆C 过点(2,6)A ,且与直线1:100l x y +-=相切于点(6,4)B . (1)求圆C 的方程;
(2)过点(6,24)P 的直线2l 与圆C 交于M ,N 两点,若CMN ∆为直角三角形,求直线2l 的方程;
(3)在直线3:2l y x =-上是否存在一点Q ,过Q 向圆C 引两条切线,切点为E ,F ,使QEF ∆为正三角形,若存在,求出点Q 坐标,若不存在,说明理由.
22.(15分)如图,三棱柱ABC A B C '''-,2AC =,4BC =,120ACB ∠=︒,90ACC '∠=︒,且平面AB C '⊥平面ABC ,二面角A AC B ''--为30︒,E 、F 分别为A C '、B C ''的中点.
(1)求证://EF 平面AB C '; (2)求B '到平面ABC 的距离; (3)求二面角A BB C ''--的余弦值.
2019-2020学年浙江省台州一中高二(上)期中数学试卷
参考答案与试题解析
一、选择题:每小题4分,共40分
1.(4分)点(1,2)A 到直线:3410l x y --=的距离为( ) A .
4
5
B .
65
C .4
D .6
【解答】解:点(1,2)A 到直线:3410l x y --=6
5
=, 故选:B .
2.(4分)设m ,n 是空间中不同的直线,α,β是空间中不同的平面,则下列说法正确的是( )
A .//αβ,m α⊂,则//m β
B .m α⊂,n β⊂,//αβ,则//m n
C .//m n ,n α⊂,则//m α
D .m α⊂,n β⊂,//m β,//n α,
则//αβ 【解答】解:A .根据面面平行的性质得若//αβ,m α⊂,则//m β成立,故A 正确,
B .两个平行平面内的两条直线位置关系不确定,即//m n 不一定正确,故B 错误,
C .根线面平行的判定定理,必须要求m αà,故C 错误
D .根面面平行的判定定理,则两条直线必须是相交直线,故D 错误,
故选:A .
3.(4分)过两点(4,)A y ,(2,3)B -的直线的倾斜角为45︒,则(y = )
A .
B
C .1-
D .1
【解答】解:经过两点(4,)A y ,(2,3)B -的直线的斜率为3
2
y k +=. 又直线的倾斜角为45︒,

3
tan 4512
y +=︒=,即1y =-. 故选:C .
4.(4分)将半径为1,圆心角为23
π
的扇形围成一个圆锥,则该圆锥的体积为( )
A .
B C D 【解答】解:设圆锥的底面半径为r ,则223
r ππ=, 13
r ∴=
,。

相关文档
最新文档