高分子材料化学基础第八章物理化学基础(六)溶液与相平衡
物理化学相平衡资料

绪论
化学化工
在化学研究和化学生产过程的分离操作中, 经常会遇到各种相变化过程,如蒸发、冷凝、 升华、溶解、结晶和萃取等,这些过程涉及到 不同相之间的物质传递。相平衡研究是选择分 离方法、设计分离装置以及实现最佳操作的理
论基础。
绪论
材料科学
硅酸盐制品——制品中大多数是含有多种晶 相和玻璃相的多相系统,因此制品的性能必 然是与相组成、含量及生产过程有关。 无机材料——功能材料(特殊性能的材料) 是由多种物质构成的复杂系统,制备过程中 涉及相变化。 冶炼过程——相的变化,研究金属成分、结 构与性能的关系。
处于不同相态的同种化学物质,只能算一个
物种。如:液态水和水蒸气。
物种数和独立组分数
(2)独立组分数 (number of independent component )
——足以确定平衡体系中的所有各相组成所 需要的最少数目的物质的数目,记作C。
S≥C C = S – R – R`
R是独立化学平衡数, R'是独立浓度关系数。
物种数和独立组分数
(A)对于独立化学平衡数,要注意“独立” 两个字。
例如:系统中含有C(s)、CO(g)、H2O(g)、 CO2(g)、H2(g)等五种物质,可能存在的反应有 (1) C(s)+H2O(g)=CO(g)+H2(g) (2) C(s)+CO2(g)=2CO(g) (3)CO(g)+H2O(g)=CO2(g)+ H2(g)
xS =1- x1 – x2-xs-1 P个浓度关系式。 (3)独立化学平衡数为R,独立浓度关系数为R'。
F = P(S + 2) –(P–1) –(P–1) –S(P–1)- P – R –R'
= S – R – R` –P + 2 = C –P + 2
【化学原理II】第二章 溶液与相平衡

x(乙醇)
n(乙醇) n(乙醇) n(水)
0.042
‹# ›
二、本章讲述的主要内容
• 溶液与相平衡的局部规律 分配定律
• 溶液与相平衡的普遍规律
• 相律 • 描述溶液与相平衡的图
拉乌尔定律、亨利定律、 相图
‹# ›
第一节 溶液的基本定律
一、拉乌尔定律 (Raoult's Law,1887)
A的蒸汽压
‹# ›
微观解释
1、由于溶质分子数目少,对混合体积、分子间作用力影响可忽略。 2、根本原因是单位液面上溶剂分子数目减少。
‹# ›
二、亨利定律 (Henry‘s Law,1803,英国)
• 作用:是关于气体在液体中的溶解度的定律
‹# ›
亨利定律的内容
在一定温度下和平衡状态下,气体在液体中 的溶解度xB(物质的量分数)与该气体的平衡压
• 若平衡时,气相中硫化氢分压为506.63kPa,求(1)水相中硫化氢的物 质的量分数;
• (2)苯相中硫化氢的物质的量分数。
‹# ›
例题P37(三定律求解)
• (1)气相总压力=p(H2S)+p(苯)+p(水); • (2)求苯和水的摩尔分数=求H2S在苯和水中的摩尔分数; • (3)求H2S在苯和水中的亨利常数; • (4)因为分配系数已知,求其中之一即可; • (5)由已知条件2求在H2S在水中的亨利常数; • (6)利用拉乌尔定律求溶剂在气相中的分压
M (乙醇)
m(水)] /
2.31mol / L
‹# ›
练习
在20℃时将50g乙醇溶于450g水中形成密度为 981.9kg/m3的溶液,计算(1)乙醇的浓度;(2) 乙醇的质量摩尔浓度;(3)乙醇的物质的醇)=46.069
材料物理化学-第六章 相平衡与相图

湖南工学院
料。⑤碳纤维、石墨、金刚石与C6 。⑥计算机模拟与材料设计。⑦用新材料科 学技术武装改造传统材料产业。 GRM—巨磁电阻(Giant Magnetoresistance),通常作传感器使用,主要应 用于探测磁场、电流、位移、角速度等领域。探测微弱磁场的GM R 传感器最早 被商业化应用在磁记录领域, 作为硬盘的读出磁头。 薄膜集成的GMR磁头体积变 小, 磁记录介质的存储单元也随之变小, 这样存储密度就大大提高了。 至2000年, 存储密度为56. 3Gb/in2 的GMR 的磁头已经在日本的富士通制作所研制出来。 在21世纪初,我国的水泥产量就已跃居世界第一,但是,水泥工业的结构优 化和产品升级是当前要务。大量利用废弃的粉煤灰、矿渣、钢渣、硫酸铁渣、废 石膏、污泥等作为水泥的原料和掺合料是我国的特色,几乎占水泥产量的1/3, 这是“资源循环利用”的重大举措。研制的抗氯盐腐蚀、水化热低、抗微收缩和 后期强度高的水泥,已成功应用于我国几个超大型的海工工程中。在混凝土中, 除水泥、黄沙、石子、水和添加剂(如减水剂)的5组分外,为获得更为优异的 性能,第六组分的研究也是一个研究热点。 黄伯云:粉末冶金专家,中南大学校长,中国工程院院士。1945年11月生于 湖南益阳南县, 1969年毕业于中南矿冶学院特种冶金系,1980年至1986年在美国 依阿华州立大学获硕士、 博士学位,随后进入美国田纳西大学和橡树岭国家实验 室从事博士后研究工作。1988年回国,1997年任中南工业大学校长,2001年任中 南大学校长, 1999年当选为中国工程院院士。黄伯云是我国材料科学领域的战略 科学家,他率领团队历时20年研制出的“高性能碳/碳航空制动材料的制备技 术”,打破了国外的技术垄断,使我国成为世界上有能力生产碳/碳复合材料飞 机刹车片的四个国家之一。也正是这项技术,在2005年荣获了已连续空缺6年的 国家技术发明一等奖。 C/C复合材料的密度仅为钢的1/4在波音747——400飞机上使用了C/C复合材 料刹车盘后, 使飞机机身大约减重816.5Kg。
物理化学-第六章__相平衡

第六章相平衡一.基本要求1.掌握相平衡的一些基本概念,会熟练运用相律来判断系统的组分数、相数和自由度数。
2.能看懂单组分系统的相图,理解相图中的点、线和面的含义及自由度,知道相图中两相平衡线的斜率是如何用Clapeyron方程和Clausius-Clapeyron方程确定的,了解三相点与凝固点的区别。
3.能看懂二组分液态混合物的相图,会在两相区使用杠杆规则,了解蒸馏与精馏的原理,知道最低和最高恒沸混合物产生的原因。
4.了解部分互溶双液系和完全不互溶双液系相图的特点,掌握水蒸汽蒸馏的原理。
5.掌握如何用热分析法绘制相图,会分析低共熔相图上的相区、平衡线和特殊点所包含的相数、相的状态和自由度,会从相图上的任意点绘制冷却时的步冷曲线。
了解二组分低共熔相图和水盐相图在湿法冶金、分离和提纯等方面的应用。
6.了解生成稳定化合物、不稳定化合物和形成固溶体相图的特点,知道如何利用相图来提纯物质。
二.把握学习要点的建议相律是本章的重要内容之一,不一定要详细了解相律的推导,而必须理解相律中各个物理量的意义以及如何求算组分数,并能熟练地运用相律。
水的相图是最简单也是最基本的相图,要把图中的点、线、面的含义搞清楚,知道确定两相平衡线的斜率,学会进行自由度的分析,了解三相点与凝固点的区别,为以后看懂相图和分析相图打好基础。
超临界流体目前是分离和反应领域中的一个研究热点,了解一些二氧化碳超临界流体在萃取方面的应用例子,可以扩展自己的知识面,提高学习兴趣。
二组分理想液态混合物的相图是二组分系统中最基本的相图,要根据纵坐标是压力还是温度来确定气相区和液相区的位置,理解气相和液相组成为什么会随着压力或温度的改变而改变,了解各区的条件自由度(在二组分相图上都是条件自由度),为以后看懂复杂的二组分相图打下基础。
最高(或最低)恒沸混合物不是化合物,是混合物,这混合物与化合物的最根本的区别在于,恒沸混合物含有两种化合物的分子,恒沸点的温度会随着外压的改变而改变,而且两种分子在气相和液相中的比例也会随之而改变,即恒沸混合物的组成也会随着外压的改变而改变,这与化合物有本质的区别。
高分子溶液的相平衡和相分离

化学位∆u1与浓度的关系为:
Δμ1
=
RT [ln(1 −
φ1)
+
(1 −
1 x
1)φ2
+
χφ22
]
假定x=1000,可得到一系列不同 χ值的∆u1对 φ2的理论曲线
χ12值比较小时,Δμ1随φ2单调下降 χ12值比较大时,Δμ1随φ2有极大值和极小值 当两个极值点重合成为拐点,即临界点
φc
=
1 1+ r1 2
不同的相平衡图
相分离由温度、压力和浓度三个条件控制
UCST- Ultra critical solvency temperature 最高临界共溶温度
LCST- Low critical solvency temperature最低临界共溶温度
3.5 高分子溶液的相平衡和相分离
3.5.1 高分子溶液的相平衡 ( Phase equilibrium of polymer solution )
聚合物能够溶解于溶剂中的必要条件: 吉布斯自由能∆G<0
高分子的溶解过程具有可逆性,一般来说,温度降低, 高分子在溶剂中溶解度减小而使溶液分成两相,温度上 升后又能相互溶解成一相。
∂(Δμ1) = 0
∂φ2
∂
2 (Δμ1
∂φ2 2
)
=
0
χ12c
=
1 2
+
1 r1 2
+
1 2r
≈
1 2
+
1 r1 2
M不太大时,χ12可以超过1/2 M→无穷大时, χ12→ 1/2,体系处于θ状态,也就是M趋于 无穷大时的θ温度就是临界温度Tc 相分离的分子量依赖性,可以用逐步降低温度法把聚合物按分子量大小分离开来
上海交通大学物理化学PPT 溶液与相平衡

解:(1)刚开始出现液相时体系的组成就是
气相组成,有yA 0.400
pA pA* xA pyA pB pB* xB pyB
pA xA pB xB
yA yB
xA xB
yA pB yB pA
0.400 121.6 0.600 40.53
2.000
1 xB 1 1 2.000
xB
xB
xB 0.333
第三章 多组分体系热力学
与相平衡
1 多组分体系热力学
3.1 多组分体系及其组成表示法
3.1.1 多组分体系(multi-component system)的分类 由两种或两种以上物质(或组分)构成的体系为多组分体系
多组分体系
均相体系 多相体系
处理方法不同
混合物(mixture) 溶液(solution)。
i
A
ni
T ,V ,n ji
H ni
S , p,n ji
U ni
S ,V ,n ji
G
=
ni
T , p,n ji
注意与偏摩尔量的区别
组成可变的多相多组分系统的热力学基本方程
dG SdT Vdp
α1
μ dn K ( ) ( )
i1 i
i
d A SdT pdV
G
T
p,nj
dT
p
T ,nj
dp
K i 1
Gi
dni
SdT Vdp
K i 1
i
dni
化学势 的定义
i
def
Gi
G ni
T , p,nji
i
def Gi
G ni
T , p,nji
高分子溶液的相平衡

的大小有关, 当x一定时:
当c1 < c1C 或 T > TC时 当c1 = c1C 或 T = TC时 当c1 > c1C 或 T < TC时
DGM/RT
0
j’ ja j2 jb j” 1.0
DGM/RT
当c1 > c1C 或 T < TC时
曲率半径大于0
体系为均相
路漫漫其修远兮, 吾将上下而求索
Discussion 1
路漫漫其修远兮, 吾将上下而求索
(1) 从纵轴的截距可求聚合 物的相对分子质量
(2) 从直线的斜率可计算第 二维利系数
c
Discussion 2
The second Virial coefficient
A2与c1相似,也是高分子与溶剂分子间相互作用
的反映,但A2可以直接从实验中得到。它们都与 高分子在溶液中的形态有密切关系。
路漫漫其修远兮, 吾将上下而求索
良溶剂
溶剂
劣溶剂
c
A2 > 0 A2 = 0 A2 < 0
线团扩张 无扰线团 线团紧缩
温度与A2的关系 A2
0
对于同一高分子-溶剂体系, 改变体系的温度, 则有:
T
A2 > 0 A2 = 0 A2 < 0
良溶剂 线团扩张
溶剂 无扰线团
劣溶剂 线团紧缩
路漫漫其修远兮, 吾将上下而求索
3.3.2 相分离
高分子溶液作为由聚合物和溶剂组成的二元体系 , 在一定条件下可分为两相, 其为一相为含聚合物 较少的“稀相”, 另一相为含聚合物较多的“浓相”, 这种现象称之为相分离
对于聚合物和溶剂都确定的体系, 相分离发生与 否同温度有关
完整word版,高分子化学与物理基础整理版

溶胀:溶剂分子渗入聚合物内部,溶剂分子和高分子的某些链段混合,使聚合物体积膨胀有限溶胀:最终不能达到溶解的溶胀,产生的条件:非良溶剂或交联聚合物无限溶胀:最终能达到溶解的溶胀,产生的条件:线性聚合物在良溶剂中溶解度参数:内聚能密度的平方根θ状态:溶剂分子之间、高分子链段之间以及高分子链段和溶剂分子间相互作用能相等,高分子链可互相贯穿并处于无扰状态。
X1:哈金斯参数,反映高分子与溶剂混合时相互作用能的变化。
松弛过程:在一定温度和外场作用下,聚合物从一种平衡态通过分子运动过渡到另一种与外界条件相适应的平衡态总是需要时间的现象。
玻璃化转变:玻璃态和高弹态之间的转变高弹性:聚合物的分子中链发生了运动,使长链分子由卷曲状态变成伸展状,当外力消除后,形变可完全恢复,材料的这种性质称为高弹性。
Tg:玻璃化转变的转变温度称为玻璃化转变温度,用Tg表示熔融指数:在一定的温度和负荷下,高分子熔体在10min流经一个规定直径和长度的标准毛细管的质量(g)。
假塑性流体:低剪切速率下的流动行为符合牛顿流体行为,但随着剪切速率增大,黏度降低。
具有这种流动行为的流体称为假塑性流体。
表观黏度:在中等剪切速率范围内流体所受到剪切应力与剪切速率的比值剪切变稀:表观粘度随剪切速率的增加而减小脆性断裂:断裂前试样没有明显的变化,断裂面一般与拉伸方向相垂直,断裂面光洁。
一般出现于屈服点之前的断裂。
韧性断裂:断裂前试样发生缩颈现象,断面粗糙。
一般发生于屈服点之后的断裂。
强迫高弹形变:Tg或Tm一下的大应力大形变,去除外力,形变不能回复,但加热至Tg 或Tm以上,形变大部分能恢复高分子的热运动特点:①运动单元的多重性,小运动单元(侧基、支链、链节、链段)和大运动单元(分子链)的运动②高分子热运动是一种松弛过程——分子运动具有时间依赖性③高分子热运动与温度有关——分子运动具有温度依赖性影响聚合物Tg(玻璃化转变温度)的结构因素和影响规律:链结构(主链结构、取代基和链构型),分子量,支化、交联和结晶,共聚,共混,分子间作用力,外界条件链柔性(最重要),主链柔性越好,Tg越低①对称取代——极性减弱,分子间作用力下降,Tg下降②不对称取代——数量增加,内旋转阻力增大(柔性变差),Tg上升③取代基越大——分子间距变大,分子间作用力下降,Tg下降一、聚合物的粘性流动:高分子流动是通过链段的位移运动来完成的,链段运动带动整个分子链位移,高分子流动不符合牛顿流体的流动规律,高聚物熔体为非牛顿流体,高分子流动时伴有高弹形变二、粘流温度Tf的影响因素:分子链的结构(链柔性、分子间作用力、分子量)及外力(外力大小与作用时间)三、高分子流动性影响因素:链结构的影响(分子量、分子量分布、支化)、外界条件(温度、剪切速率和剪切应力)四、分析加工条件(温度、剪切应力、剪切速率)对不同结构聚合物流动性的影响规律,并得出结论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《高分子材料化学基础》
理想稀溶液ideal dilute solution
• 理想稀溶液定义: • xA→1;∑xi→0 的溶液称为理想稀溶液。 • 理想稀溶液的性质: • 溶剂:服从拉乌尔定律; • 溶质: 服从亨利定律。 • 稀溶液是化学反应中常见的体系。实际溶液当其浓度 无限稀释时,均可视为理想稀溶液。
《高分子材料化学基础》
• km和kx的关系: • p=kxxB • =kxnB/(nA+nB) • ≈ kxnB/nA 当xB→0时 • =kxMAnB/(nAMA) • =(kxMA)nB/(nAMA) • = (kxMA)nB/WA • = (kxMA)mB • =kmmB • 令 km=kxMA
《高分子材料化学基础》
• 例2.
413.2K下,C6H5Cl和C6H5Br的蒸汽压分别为
1.236atm和0.6524atm。两者形成理想溶液,此溶液 在413.2K、1atm下沸腾,求体系液相和气相的组成?
《高分子材料化学基础》
• 解: 理想溶液服从拉乌尔定律:
• p1=p1*x1 p2=p2*x2 • 下标1代表氯苯;下标2代表溴苯。 • 已知: p1*=1.236atm p2*=0.6524atm • 溶液在413.2K沸腾,故有: • p1+p2= p1*x1+p2*x2=1.0 • p1*x1+p2*(1- x1)=1.0 1.236x1+0.6524(1-x1)=1 • 解得: x1=0.5956 x2=0.4044 (液相组成)
式中18.015和46.069分别为A和B的摩尔质量,单位为g· mol-1。
由 pA*xA kx,BxB 101.325 得 kx,B =[{101.325-91.3(1-0.01195)}/0.01195] =930(kPa) pB =kx,B xB 9300.02 18.6(kPa)
《高分子材料化学基础》
理想溶液(ideal solution) 尔定律,则其为理想溶液. (0≦xi≦1) 均
《高分子材料化学基础》
• 理想溶液模型和理想气体模型的区别: • 1. 理想气体分子间无作用力;理想溶液的分子间存在 作用力,但只强调分子间的作用力相似。 • 2. 理想气体要求分子的体积为零;理想溶液不要求分 子体积为零,但要求各种分子的大小、形状相似. • 许多实际溶液体系性质很接近理想溶液: • 同系物混合所组成的溶液, 同分异构体所组成的溶液等.
§8.6 溶液与相平衡
《高分子材料化学基础》
§8.6.1 稀溶液的两个经验定律
• 一. 拉乌尔定律(Raoult’s law): • 法国科学家拉乌尔于1887年发表了稀溶液溶剂的蒸汽压与溶质 量的关系的论文,认为: • 在定温下,稀溶液溶剂的蒸汽压等于此温度下纯溶剂的蒸汽压 与溶液中溶剂摩尔分数的乘积。数学表达式为: • pA=pA* xA (1) • pA*:相同温度下纯溶剂的饱和蒸汽压。 • 此规律称为拉乌尔定律(Raoult’s law)。
《高分子材料化学基础》
• 二. 亨利定律(Henry’s law): • 英国科学亨利于1803年根据实验结果总结出稀溶液的另 一条经验定律,称为亨利定律: • 在一定温度并达平衡状态时,气态在液体中的溶解度与
该气体在气相中的分压成正比。 • 数学表达式为:pB=kx xB (2) • xB是溶质B在溶液中的摩尔分数;kx是一比例常数,称为 亨利常数,kx的值与溶质、溶剂的性质、体系的温度、 压力等因素有关。
《高分子材料化学基础》
• Raoult定律是溶液性质中最基本的定律。它适用的对象是稀 溶液中的溶剂,且不论溶质挥发与否。(所谓稀溶液是指 溶质的浓度很小,溶剂的摩尔分数接近于1的溶液。严格来 说,只有理想稀溶液,即溶质的浓度趋于零的无限稀的溶 液,溶剂才真正遵循拉乌尔定律;但在稀溶液范围内,拉 乌尔定律还是近似成立的。) • 若溶质是非挥发性物质,溶液的蒸汽压等于溶剂的蒸汽压; 加入的溶质愈多,溶液的蒸汽压下降得愈厉害。 • Raoult定律一般只适用于非电解质溶液,电解质溶液因为存 在电离现象,溶质对溶剂蒸汽压的影响要更复杂一些。
《高分子材料化学基础》
• 拉乌尔定律所描述的是稀溶液中溶剂的性质;亨利定律 所描述的是稀溶液中溶质的性质。 • 稀溶液中溶质的浓度一般很低,故实际上常常用m和c表 示溶液的浓度,当采用不同的浓度表示法时,亨利定律
的表达式也有所区别。 • 若溶液采用质量摩尔浓度,则亨利定律的表达式为: • pB=km mB (3)
《高分子材料化学基础》
(4)
• 若用物质的量浓度,则亨利定律为:
• pB=kccB (5) • Kc:物质的量浓度为单位的亨利系数 • 可以证明,对于稀溶液,不同浓度表示法的亨利系数kc 与kx的关系为: • kC=kxMA/A (6)
《高分子材料化学基础》
• 亨利定律的适用范围:
• 1. 适用于稀溶液,浓度大时偏差较大; • 2. 溶质在气相和液相中的分子形态应一致,若两相中分子 的形态不一致,则不适用。 • 如:HCl在气相中以HCl分子的形式存在, 当其溶于水溶液 中后,HCl将电离成H+离子和Cl-离子,故HCl在水溶液中和 气相中的粒子形态不相同, 故亨利定律不能用于盐酸溶液。
解:两溶液均按乙醇在水中的稀溶液考虑。溶剂水(A) 适用于拉乌尔定律,溶质乙醇(B)适用于亨利定律。 (1).pA=pA*xA=91.3×(1-0.02)=89.5 (kPa) (2).计算pB需要有亨利常数,这可由题给数据求得。 先将wBˊ=3%换算成摩尔分数,有:
《高分子材料化学基础》
3 / 4 6 . 0 6 9 x 0 . 0 1 1 9 5 B 3 / 4 6 . 0 6 99 7 / 1 8 . 0 1 5
《高分子材料化学基础》
• 例1. 370.26K时,在乙醇的质量百分数为3%的乙醇水
溶液上,蒸气的总压为101.325kPa。已知在此温度下 纯水的蒸气压为91.3kPa。 • 试计算在乙醇的摩尔分数为 0.02 的水溶液上 (1). 水的 蒸气分压; (2).乙醇的蒸气分压。
《高分子材料化学基础》