填料精馏塔课程设计

合集下载

化工原理课程设计任务书精馏塔

化工原理课程设计任务书精馏塔

化工原理课程设计任务书精馏塔本篇文档主要介绍化工原理课程设计任务书中关于精馏塔的要求和内容。

一、设计任务设计一座丙酮-甲醇精馏塔,要求:1. 产品:A级丙酮、B级丙酮、水、甲醇2. 输入流量:1000kg/h,A级丙酮50%,B级丙酮50%3. 操作压力:常压4. 输出流量:1000kg/h,A级丙酮90%,B级丙酮10%5. 设计基准:精馏32个板层二、设计步骤1. 精馏塔的结构设计(1) 塔的类型:管式塔(2) 塔的高度:设定32个板层,按传质条件设计最小高度(3) 填料类型:采用网格填料(4) 塔的直径:根据输入流量、精馏塔高度和填料设计(5) 塔的材质:不锈钢(6) 填料厚度:1.5cm2. 精馏塔的操作参数及控制(1) 操作压力:常压(2) 丙酮的重心温度:58℃(3) 甲醇的重心温度:52℃(4) 塔顶压力:1atm(5) 塔底压力:1atm(6) 板间压力降:0.015atm(7) 蒸汽进口管直径:50mm(8) 汽液分离器直径:100mm(9) 泵的扬程:15m3. 精馏塔的热力学计算(1) 设定板层数:32(2) 输入流量:1000kg/h,A级丙酮50%,B级丙酮50%(3) 设定塔顶压力:1atm(4) 设定塔底压力:1atm(5) 设定塔板温度,参考数值文献或软件计算(6) 根据塔板温度确定物质的蒸汽压(7) 根据物质的蒸汽压计算物质的分馏、回流比等参数4. 精馏塔的动力学模拟(1) 建立模型:使用MATLAB或其他模拟软件建立动力学模型(2) 确定控制方案:根据设定的输出要求,确定控制方案(3) 模拟仿真:进行塔的动态仿真,查找可能的故障及出现的问题(4) 评价:对模拟结果进行评价,并应对出现的问题进行处理三、设计成果1. 绘制精馏塔的结构图:包含填料、板层、进口出口等2. 绘制精馏塔的液相、气相平衡图3. 计算精馏塔流程图:包括输入和输出物质流量、温度、压力等参数4. 编写精馏塔的操作说明:包括操作控制、参数设定、操作步骤等5. 输出精馏塔的动态模拟成果:包括MATLAB或其他模拟软件的代码和仿真结果以上是化工原理课程设计的精馏塔任务书的要求和内容,本文档中介绍了设计步骤和要求,设计成果等部分,可以为读者提供一定帮助,同时也展示了精馏塔设计工作的一般流程和方法。

化工课程设计填料塔设计

化工课程设计填料塔设计

化工课程设计填料塔设计一、教学目标本节课的学习目标包括:知识目标:学生需要掌握填料塔的基本概念、类型和设计方法;了解填料塔在化工过程中的应用和重要性。

技能目标:学生能够运用所学的知识,独立完成填料塔的设计计算;能够分析并解决实际工程中的问题。

情感态度价值观目标:培养学生对化工行业的兴趣和热情,提高学生对工程实践的重视,培养学生的创新意识和团队合作精神。

二、教学内容本节课的教学内容主要包括:1.填料塔的基本概念和类型:介绍填料塔的定义、结构和工作原理,分析不同类型填料塔的特点和应用范围。

2.填料塔的设计方法:讲解填料塔的设计步骤和方法,包括填料的选择、塔径的确定、塔高的计算等。

3.填料塔在化工过程中的应用:介绍填料塔在化工过程中的重要作用,分析其在不同领域的应用案例。

4.实际工程案例分析:通过分析实际工程中的填料塔设计案例,使学生能够将理论知识应用于实际问题解决。

三、教学方法为了提高教学效果,本节课将采用多种教学方法:1.讲授法:教师通过讲解填料塔的基本概念、设计方法和应用案例,使学生掌握相关理论知识。

2.讨论法:学生进行小组讨论,分享不同类型的填料塔设计和应用经验,培养学生的团队合作精神和创新意识。

3.案例分析法:分析实际工程中的填料塔设计案例,引导学生运用所学知识解决实际问题。

4.实验法:安排实验室实践环节,让学生亲自操作填料塔设备,增强学生的实践能力和操作技能。

四、教学资源为了支持本节课的教学内容和教学方法,将采用以下教学资源:1.教材:选用权威的化工教材,为学生提供系统的理论知识。

2.参考书:推荐相关领域的参考书籍,丰富学生的知识体系。

3.多媒体资料:制作精美的PPT课件,通过图片、图表和动画等形式,直观地展示填料塔的原理和设计方法。

4.实验设备:提供填料塔实验装置,让学生亲身体验填料塔的操作和应用。

五、教学评估本节课的评估方式包括:1.平时表现:通过观察学生的课堂参与、提问回答、小组讨论等,评估学生的学习态度和积极性。

精馏塔课程设计

精馏塔课程设计

绪论精馏是分离液体混合物最常用的一种单元操作,在化工、炼油、石油化工等工业中得到广泛的应用。

精馏过程在能量的驱动下,使气、液两相多次直接接触和分离,利用液相混合物中各组分挥发度的不同,使易挥发组分由液相向气相转移,难挥发组分由气相向液相转移,实现原料混合物中各组分的分离。

该过程是同时进行传热、传质的过程。

为实现精馏过程,必须为该过程提供物流的贮存、输送、传热、分离、控制等的设备、仪表等构成精馏过程的生产系统。

精馏设备主要是塔设备,其中最重要的类型为板式塔和填料塔。

本次课程设计是F1型浮阀精馏塔的设计,浮阀塔是使用最广泛的一种塔型。

浮阀塔之所以广泛应用,是由于它有以下特点:1.生产能力大,由于塔板上浮阀安排比较紧凑,其开孔面积大于泡罩塔板,生产能力比泡罩塔板大20%~40%,与筛板塔接近。

2.操作弹性大,由于阀片可以自由升降以适应气量的变化,因此维持正常操作而允许的负荷波动范围比筛板塔,泡罩塔都大。

3.塔板效率高,由于上升气体从水平方向吹入液层,故气液接触时间较长,而雾沫夹带量小,塔板效率高。

4.气体压降及液面落差小,因气液流过浮阀塔板时阻力较小,使气体压降及液面落差比泡罩塔小。

5.塔的造价较低,浮阀塔的造价是同等生产能力的泡罩塔的50%~80%,但是比筛板塔高20%~30。

近几十年来,人们对浮阀塔的研究越来越深入,生产经验越来越丰富,积累的设计数据比较完整,因此设计浮阀塔比较合适。

1工艺流程1.1精馏过程工艺流程示意图图1-1所示为精馏装置流程图进料塔顶产品图1-1 精馏装置的流程1.2精馏过程工艺流程的说明首先,苯和甲苯的原料混合物进入原料罐,在里面停留一定的时间之后,通过泵进入原料预热器,在原料预热器中加热到泡点温度,然后,原料从进料口进入到精馏塔中。

因为被加热到泡点,混合物为饱和液体,液相混合物在精馏塔中下降。

气相混合物上升到塔顶上方的冷凝器中,这些气相混合物被降温到泡点,其中的液态部分进入到塔顶产品冷却器中,停留一定的时间然后进入苯的储罐,而其中的气态部分重新回到精馏塔中,这个过程就叫做回流。

化工原理填料精馏塔课程设计

化工原理填料精馏塔课程设计

设计任务书一、设计题目丙酮-水连续精馏塔设计二、设计条件⑴处理量10000kg/h,进料含丙酮70%⑵塔顶操作压力常压(绝压),饱和液体进料⑸填料塔精馏设计⑹塔顶产品丙酮浓度不低于96%(质量分率)塔底釜液丙酮不高于10%(质量分率)三、设计任务书的要求1.目录2.绪论(简述选取的设计方案依据、主要设备的特征与比较)3.设备的物料计算4.设备的热量计算5.设备的工艺计算6.设备的结构计算7.流体阻力的校核8.辅助设备的选型9.结束语(对本设计的评价、建议)10.参考文献四、设计图纸内容1.操作装置的工业流程图(3#图纸)2.主要设备的结构装配图(2#图纸)目录绪论........................................................................–1 –第一章.流程的确定和说明..........................................–2 –一.加料方式............................................................–2 –二.进料状况............................................................–2 –三.塔顶冷凝方式......................................................–2 –四.回流方式............................................................–2 –五.加热方式............................................................–3 –六.加热器...............................................................–3 –第二章精馏塔的设计计算..........................................–4 –一.操作条件与基础数据.............................................–4 –2.1.1.操作压力.........................................................–4 –2.1.2.气液平衡关系及平衡数据....................................–4 –二.精馏塔的工艺计算................................................–5 –2.2.1.物料横算.........................................................–5 –2.2.2.热量衡算.........................................................–8 –2.2.3.理论塔板数的计算 (11)三.精馏塔主要尺寸的设计计算 (13)2.3.1.精馏塔设计的主要依据和条件 (13)2.3.2.塔径设计计算 (15)2.3.3.填料层高度设计计算 (18)第三章.附属设备及主要附件的选型计算 (21)一.冷凝器 (21)二.再沸器 (22)三.塔内其他构件 (22)3.3.1.接管管径的计算和选择 (22)3.3.2.除沫器 (24)3.3.3.液体分布器 (25)3.3.4.液体再分布器 (26)3.3.5.填料支撑板的选择 (26)3.3.6.塔釜设计 (27)3.3.7.塔的顶部空间高度 (27)3.3.8.手孔的设计 (27)3.3.9.裙座的设计 (27)四.精馏塔高度计算 (28)第四章.设计结果的自我总结与评价 (29)一.精馏塔主要工艺尺寸与主要设计参数汇总表 (29)二.设计结果的自我总结与评价 (29)附录 (31)一.符号说明 (31)二.参考文献 (32)绪论在化学工业和石油工业中广泛应用的诸如吸收、解吸、精馏、萃取等单元操作中,气液传质设备必不可少。

甲醇-水填料精馏塔的课程设计

甲醇-水填料精馏塔的课程设计

摘要:填料塔为连续接触式的气液传质设备,与板式塔相比,不仅结构简单,而且具有生产能力大,分离填料材质的选择,可处理腐蚀性的材料,尤其对于压强降较低的真空精馏操作,填料塔更显示出优越性。

本文以甲醇-水的混合液为研究对象,因甲醇-水系统在常压下相对挥发度相差较大,较易分离,所以此设计采用常压精馏。

根据物料性质、操作条件等因素选择填料塔,此设计采用泡点进料、塔底再沸器和塔顶回流的方式,将甲醇—水进行分离的填料精馏塔。

通过甲醇—水的相关数据,对全塔进行了物料衡算和热料衡算,得出精馏产品的流量、组成和进料流量、组成之间的关系,进而得到精馏塔的理论板数。

分析了进料、塔顶、塔底、提馏段、精馏段的流量及其物性参数。

对精馏段和提留段的塔径及填料层高度进行了计算,以确定塔的结构尺寸。

对塔内管径、液体分布器、筒体壁厚进行了选型计算,从而得到分离甲醇—水混合物液的填料精馏塔。

关键词:填料塔;流量;回流比;理论板数;工艺尺寸第一章:设计任务书 (1)一、设计题目 (1)二、操作条件 (1)三、填料类型 (1)四、设计内容 (2)第二章:工艺设计计算 (2)一、设计方案的确定 (2)二、精馏塔的物料衡算 (3)三、理论塔板数的确定 (3)四、精馏塔的工艺条件及有关物性数据的计算 (8)五、精馏塔塔体工艺尺寸的计算 (10)六、填料层压降的计算 (13)七、筒体壁厚的计算 (14)八、管径的计算 (14)九、液体分布器简要设计 (16)第三章:结论 (18)一、设计感想 (18)二、全章主要主要符号说明 (19)三、参考资料: (20)第一章:设计任务书一、设计题目在抗生素类药物生产过程中,需要用甲醇溶媒洗涤晶体,洗涤过滤后产生废甲醇溶液,其组成为含甲醇46%、水54%(质量分数),另含有少量的药物固体微粒。

为使废甲醇溶液重复利用,拟建立一套填料精馏塔,以对废甲醇溶媒进行精馏得到含水量≤0.3%(质量分数)的甲醇溶媒。

设计要求废甲醇溶媒的处理量为4t/h,塔底废水中甲醇含量≤0.5%(质量分数)。

化工原理 课程设计 精馏塔

化工原理 课程设计 精馏塔

化工原理课程设计精馏塔
化工原理课程设计:精馏塔
一、设计题目
设计一个年产10万吨的乙醇-水溶液精馏塔。

该精馏塔将采用连续多级蒸馏的方式,将乙醇与水进行分离。

乙醇的浓度要求为95%(质量分数),水含量要求低于5%。

二、设计要求
1. 设计参数:
操作压力:常压
进料流量:10万吨/年
进料组成:乙醇40%,水60%(质量分数)
产品要求:乙醇95%,水5%
2. 设计内容:
完成精馏塔的整体设计,包括塔高、塔径、填料类型、进料位置、塔板数、回流比等参数的计算和选择。

同时,还需完成塔内件(如进料口、液体分布器、再沸器等)的设计。

3. 绘图要求:
需要绘制精馏塔的工艺流程图和结构示意图,并标注主要设备参数。

4. 报告要求:
完成设计报告,包括设计计算过程、结果分析、经济性分析等内容。

三、设计步骤
1. 确定设计方案:根据题目要求,选择合适的精馏塔类型(如筛板塔、浮阀塔等),并确定进料位置、塔板数和回流比等参数。

2. 计算塔高和塔径:根据精馏原理和物料性质,计算所需塔高和塔径,以满足分离要求。

3. 选择填料类型:根据物料的特性和分离要求,选择合适的填料类型,以提高传质效率。

4. 设计塔内件:根据塔板数和填料类型,设计合适的进料口、液体分布器、再沸器等塔内件。

5. 进行工艺计算:根据进料组成、产品要求和操作条件,计算每块塔板的温度和组成,以及回流比等参数。

6. 进行经济性分析:根据设计方案和工艺计算结果,分析项目的投资成本和运行成本,评估项目的经济可行性。

填料塔课课程设计书

填料塔课课程设计书

填料塔课课程设计书一、教学目标本课程旨在让学生了解填料塔的基本概念、结构、工作原理和应用领域,掌握填料塔的设计计算方法,培养学生的工程实践能力和创新意识。

具体目标如下:1.知识目标:(1)掌握填料塔的定义、分类和基本结构。

(2)了解填料塔的工作原理和性能参数。

(3)学会填料塔的设计计算方法。

(4)了解填料塔在化工、环保等领域的应用。

2.技能目标:(1)能够运用所学知识对填料塔进行初步设计。

(2)具备分析解决填料塔实际问题的能力。

(3)具备查阅相关资料、文献的能力。

3.情感态度价值观目标:(1)培养学生的环保意识,使学生在实际工程中能够充分考虑环保因素。

(2)培养学生团队合作精神,提高学生的沟通与协作能力。

(3)培养学生勇于创新、敢于实践的精神。

二、教学内容本课程的教学内容主要包括以下几个部分:1.填料塔的基本概念、分类和基本结构。

2.填料塔的工作原理和性能参数。

3.填料塔的设计计算方法。

4.填料塔在化工、环保等领域的应用实例。

5.填料塔的最新研究动态和发展趋势。

三、教学方法为了提高教学效果,本课程将采用多种教学方法,包括:1.讲授法:用于传授填料塔的基本概念、理论和设计方法。

2.案例分析法:通过分析实际工程案例,使学生更好地理解填料塔的应用。

3.实验法:学生进行填料塔性能实验,提高学生的实践能力。

4.讨论法:鼓励学生积极参与课堂讨论,培养学生的创新思维。

四、教学资源为了支持本课程的教学,我们将准备以下教学资源:1.教材:《化工原理》、《填料塔设计与应用》等。

2.参考书:《化工设备设计手册》、《填料塔研究进展》等。

3.多媒体资料:相关视频、图片、动画等。

4.实验设备:填料塔性能实验装置。

5.网络资源:相关学术期刊、论文、企业案例等。

五、教学评估本课程的教学评估将采用多元化的评估方式,以全面、客观地评价学生的学习成果。

评估方式包括:1.平时表现:通过课堂参与、提问、讨论等环节,评估学生的学习态度和积极性。

甲醇-水填料精馏塔的课程设计

甲醇-水填料精馏塔的课程设计

摘要:填料塔为连续接触式的气液传质设备,与板式塔相比,不仅结构简单,而且具有生产能力大,分离填料材质的选择,可处理腐蚀性的材料,尤其对于压强降较低的真空精馏操作,填料塔更显示出优越性。

本文以甲醇-水的混合液为研究对象,因甲醇-水系统在常压下相对挥发度相差较大,较易分离,所以此设计采用常压精馏。

根据物料性质、操作条件等因素选择填料塔,此设计采用泡点进料、塔底再沸器和塔顶回流的方式,将甲醇—水进行分离的填料精馏塔。

通过甲醇—水的相关数据,对全塔进行了物料衡算和热料衡算,得出精馏产品的流量、组成和进料流量、组成之间的关系,进而得到精馏塔的理论板数。

分析了进料、塔顶、塔底、提馏段、精馏段的流量及其物性参数。

对精馏段和提留段的塔径及填料层高度进行了计算,以确定塔的结构尺寸。

对塔内管径、液体分布器、筒体壁厚进行了选型计算,从而得到分离甲醇—水混合物液的填料精馏塔。

关键词:填料塔;流量;回流比;理论板数;工艺尺寸第一章:设计任务书 (1)一、设计题目 (1)二、操作条件 (1)三、填料类型 (1)四、设计内容 (2)第二章:工艺设计计算 (2)一、设计方案的确定 (2)二、精馏塔的物料衡算 (3)三、理论塔板数的确定 (3)四、精馏塔的工艺条件及有关物性数据的计算 (8)五、精馏塔塔体工艺尺寸的计算 (10)六、填料层压降的计算 (13)七、筒体壁厚的计算 (14)八、管径的计算 (14)九、液体分布器简要设计 (16)第三章:结论 (18)一、设计感想 (18)二、全章主要主要符号说明 (19)三、参考资料: (20)第一章:设计任务书一、设计题目在抗生素类药物生产过程中,需要用甲醇溶媒洗涤晶体,洗涤过滤后产生废甲醇溶液,其组成为含甲醇46%、水54%(质量分数),另含有少量的药物固体微粒。

为使废甲醇溶液重复利用,拟建立一套填料精馏塔,以对废甲醇溶媒进行精馏得到含水量≤0.3%(质量分数)的甲醇溶媒。

设计要求废甲醇溶媒的处理量为4t/h,塔底废水中甲醇含量≤0.5%(质量分数)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

填料精馏塔课程设计精馏塔设计计算1 操作压力与基础数据(1)操作压力精馏塔操作按操作压力分为常压、加压和减压操作。

精馏操作中压力影响非常大。

当压力增大时,混合液的相对挥发度将减小,对分离不利;当压力减小时,相对挥发度会增大,对分离有利。

但当压力不太低时,对设备的要求较高,设备费用增加。

因此在设计时一般采用常压蒸馏。

当常压下无法完成操作时,则采用加压或减压蒸馏。

对于乙醇–水系统在常压下相对挥发度相差较大,较易分离,故本设计采用常压蒸馏。

(2)气、液平衡关系数据如表1:平均温100 95.5 89 86.7 85.3 84.1 82.7 82.3 度t液相乙0 1.9 7.21 9.66 12.38 16.61 23.37 26.08 醇x气相乙0 17 38.91 43.75 47.04 50.89 54.95 55.8 醇y平均温81.5 80.7 79.8 79.7 79.3 78.74 78.41 78.15 度t液相乙32.73 39.65 50.79 51.98 57.32 65.63 74.72 89.43 醇x气相乙59.26 61.22 65.65 65.99 68.41 73.85 78.15 89.43 醇y根据以上数据绘出 x-y 平衡图(3)物料平衡计算 ① 物料衡算。

已知:F = 3000t %40=F ω %94=D ω %2=W ωkmol kg M O H H C /07.4652=kmol kg M O H /02.182=摩尔分率 :%7.2002.18/6007.46/4007.46/40=+=F x%97.8502.18/607.46/9407.46/94=+=D x %79.002.16/9807.46/207.46/2=+=W x 进料平均相对分子质量 :kmol kg M /83.2302.18793.007.46207.0=⨯+⨯=② 根据气、液平衡表(x-y-t 表)利用内插法求塔顶温度 LD t ,VD t 。

塔釜温度 W t ,进料温度F t 。

a 、 塔顶温度LD t ,VD t23.7841.7815.7841.7815.7843.8915.7897.85=⇒--=--VD VD t t ℃21.7841.7815.7841.7872.7443.8972.7497.85=⇒--=--LD LD t t ℃b 、 塔釜温度 W t13.981005.9510009.1079.0=⇒--=--W W t t ℃ c 、 进料温度 F t25.831.847.821.8461.1637.2361.167.20=⇒--=--F W t t ℃③ 回流比的确定查乙醇 – 水物系在101.3 kpa 下的温度组成图可知,对组成为乙醇的摩尔分数为0.207的进料,泡点为81.9℃、露点为91.7℃。

又因进料的平均摩尔质量 kmol kg M m /83.23793.002.18207.007.46=⨯+⨯= 查附录十三可知30℃时 k kg kj C //512.22c = ,k kg kj C o h //174.42=液体变蒸气时 k kg kj C //329.32c = , k kg kj C o h //220.42=乙醇和水的平均比热容k kg kj C //83.3L = ,k kg kj C //04.4V = 乙醇和水的汽化潜热分别为kg kj r /8602c = ,kg kj r o h /21542=将料液由30℃升温至81.9℃所需热量为:)/(4737)309.81(83.383.23L kmol kj i i F =-⨯⨯=-继续加热使之完全汽化。

本设计中所需的汽化潜热都是在正常沸点下的值,可认为沸点低的乙醇在81.9℃完全汽化再升温至91.7℃ 则)/(39896]2154)9.817.91(83.3[207.007.46)]9.817.91(04.4860[V kmol kj i i L =+-⨯+⨯⨯-⨯+=- 119.13989647371)()(=+=--+-=--=L V F L L V L V F V i i i i i i i i i i q403.91119.1119.11=-=-q q q 线方程为739.1403.911-=---=x q x x q qy F q 线与平衡线的交点e ,查图知:207.0=≈F e x x ,526.0=e y 代入式05.1207.0526.0526.08597.0min =--=--=e e e D x y y x R取min 5.1R R =,则R=1.58 。

④ 相对挥发度α: t=95.5℃时,58.109.1)17100()9.1100(17)1()1(1=⨯--⨯=--==x y x y x y x y A B B A α t=78.41℃时,21.173.74)15.78100()73.74100(15.78)1()1(2=⨯--⨯=--==x y x y x y x y A B B A α 90.5221.158.10221=+=+=ααα2、精馏塔的工艺计算 (1)物料衡算① 物流示意图(略) ② 物料衡算a 、 已知:F=3000t ,年开工300天。

kmol kg M /83.23=。

进料摩尔流量 )/(48.1783.23243001030003h kmol F =⨯⨯⨯=已求得 %7.20=F x ,%97.85=D x ,%79.0=W x 。

总物料 F = D + W ,易挥发组分W D F W x Dx Fx += 解得 )/(086.4h kmol D =,)/(394.13h kmol W = b 、 塔顶产品的平均相对分子质量:.46kmol078597.kgM=⨯=+⨯-%18.42135(/%)9702.1(85.)塔顶产品流量:).4h086kgD=/⨯42=164(.172135.C、塔釜产品的平均相对分子质量:.46kmol07kg.079+⨯=⨯-%M=18242.18/)%)(7902..01(塔釜产品流量).39413h=⨯W=kg18(/.333.242244F = D + W = 172.164 + 244.333 = 416.497(kg/h)③物料衡算结果如表2:(2)热量衡算①热流示意图(略)②热量衡算a、加热介质和冷却剂的选择(a)加热介质的选择本设计选用300kpa(温度为133.3℃)的饱和水蒸气作为加热介质,水蒸气易获得、清洁、不易腐蚀加热管,不但成本会相应降低,塔结构也不复杂。

(b)冷却剂的选择。

常用的冷却剂是水和空气,应因地制宜加以选用。

受本地气温限制,冷却水一般为10 - 25℃。

本地最热月份平均气温为25℃,故选用25℃的冷却水,选升温10℃,即冷却水的出口温度为35℃。

b 、 冷凝器的热负荷冷凝器的热负荷:)()1(LD VD C I I D R Q -+= ,其中VD I —— 塔顶上升蒸气的焓,kcal/kmol ,LD I —— 塔顶馏出液的焓,kcal/kmol 。

水乙(V V D LD VD H H x I I ∆-+∆=-)x 1D其中乙V H ∆ —— 乙醇的蒸发潜热,kcal/kmol水V H ∆ —— 水的蒸发潜热,kcal/kmol沸点下蒸发潜热数据如表3注:1 kcal = 4.184 kJ蒸发潜热与温度的关系:=∆2H 38.0121)11(r r V T T H --∆,其中r T ——对比温度。

由沃森公式计算塔顶温度下的潜热: 78.23℃时,对乙醇681.02.51623.7815.27322=+==C r T T T 681.02.5163.7815.27311=+==C r T T T 对水,同理得:523.02=r T ,576.01=r T蒸发潜热乙V H ∆=9469)681.01681.01(946938.0=--⨯(kcal/kmol )水V H ∆=338.10174)576.01523.01(972938.0=--⨯(kcal/kmol ) 对全凝器作热量衡算(忽略热量损失))()1(LD VD C I I D R Q -+=选择泡点回流,因为塔顶乙醇含量很高,与露点相接近,所以:水乙V D V D LD VD H x H x I I ∆-+∆⨯=-)1(代入数据得:)/(04.6713338.10174)8597.01(94698597.0kmol kcal I I LD VD =⨯--⨯=- )/(06.7076804.6713086.4)158,1(h kcal Q C =⨯⨯+=c 、 冷却介质消耗量: )/(804.7076)2535(106.70768)(12h kg t t C Q W PC C C =-⨯=-=d 、 加热器的热负荷及全塔热量衡算。

选用300kpa (温度为133.3℃)的饱和水蒸气为加热介质。

列表计算乙醇、水在不同温度下混合的比热容[单位:kcal/(kg ·℃]如表4注:1 kcal =4.18kJ乙醇:24.4)25.8321.78(841.0)(1-=-⨯=-⨯F LD p t t C 02.13)25.8313.98(875.0)(1=-⨯=-⨯F W p t t C 水: 04.5)25.8321.78(1)(2-=-⨯=-⨯F LD p t t C 88.14)25.8313.98(1)(2=-⨯=-⨯F W p t t C29.4)25.8321.78()106.094.0841.0()1(21-=-⨯⨯+⨯=-+=⎰D p D p pC C dt C ωω 84.14)25.8313.98()198.002.0875.0()1(21=-⨯⨯+⨯=-+=⎰W p W p pC C dt Cωω根据表2有:D = 172.164 kg/h ,W = 244.333 kg/h)/(58.738)29.4(164.17221.7825.83h kcal dt C D dt C D Q p p D -=-⨯===⎰)/(90.362584.14333.24413.9825.83h kcal dt C W dt C W Q p p W =⨯===⎰对全塔进行热量衡算:C W D S F Q Q Q Q Q ++=+ 为了简化计算,以进料焓为基准做热量衡算: F C W D S Q Q Q Q Q -++== -738.58+3625.90+70768.06-0 = 73655 (kcal/h ) 塔釜热损失为10%,则η = 0.9,则)/(818399.073655'h kcal Q Q SS ===η式中 S Q ——加热器理想热负荷,kcal/h S Q '——加热器实际热负荷,kcal/h D Q ——塔顶馏出液带出热量,kcal/hW Q ——塔底带出热量,kcal/h加热蒸汽消耗量:)300333(/.12168kpa k kg kj H r ,水蒸气=∆)/(54.1582.41.216881839'h kg H Q W r S h ==∆=水蒸气热量衡算结果如表5:(3) 理论板数的计算虽然本设计的相对挥发度在改变,但仍可用捷算法计算。

相关文档
最新文档