材料力学10压杆稳定_2经验公式

合集下载

第10章压杆稳定

第10章压杆稳定

第10章压杆稳定10.1【学习基本要求】1、理解压杆稳定的稳定平衡、不稳定平衡、临界力的概念。

2、掌握不同杆端约束下细长杆的临界力的计算公式。

3、理解长度系数的意义,掌握与常见的几种约束形式对应的长度系数。

4、掌握临界力与压杆长度、横截面形状、杆端约束的关系。

5、理解压杆的柔度的概念,掌握柔度的计算方法。

6、明确欧拉公式的适用范围和临界应力计算。

7、熟练掌握大柔度杆、中柔度杆、小柔度杆的判别方法及临界应力总图。

8、掌握压杆的稳定条件。

9、能熟练运用安全系数法对不同柔度压杆的稳定性进行分析计算。

10、掌握提高压杆稳定性的措施。

10.2【要点分析】1、压杆稳定的概念稳定性:压杆能保持稳定的平衡性能称为压杆具有稳定性。

失稳:压杆不能保持稳定的平衡叫压杆失稳。

稳定平衡:细长杆在轴向压力下保持直线平衡状态,如果给杆以微小的侧向干扰力,使杆产生微小的弯曲,在撤去干扰力后,杆能够恢复到原有的直线平衡状态而保持平衡,这种原有的直线平衡状态称为稳定平衡。

...不稳定平衡:撤去干扰力后,杆不会回到原来的平衡,而是保持微弯或力F继续增大,杆继续弯曲,产生显著的变形,甚至发生突然破坏,则称原有的平衡为不稳定平衡。

...失稳:轴向压力F由小逐渐增大的过程中,压杆由稳定的平衡转变为不稳定的平衡,这种现象称为压杆丧失稳定性或压杆失稳。

临界平衡状态:压杆在稳定平衡和不稳定平衡之间的状态称为临界平衡状态。

临界压力或临界力:压杆由直线状态的稳定平衡过渡到不稳定平衡时所对应的轴向压力,称为压杆的临界压力或临界力。

(即能使压杆保持微弯状态下的平衡的力)【注意】①临界状态也是一种不稳定平衡状态。

②临界状态下压杆即能在直线状态下也能在微弯状态下保持平衡。

③临界力使压杆保持微小弯曲平衡的最小压力。

2、理想压杆理想压杆是指不存在初弯曲、初偏心、初应力的承受轴向压力的均匀连续、各向同性的直杆。

工程中实际压杆与理想压杆有很大的区别,因为实际压杆常常带有初始缺陷,如:①初弯曲的存在使压杆截面形心轴线不是理想直线;②初偏心的存在造成压力作用线与杆件轴线不重合;③残余应力造成材料内部留有初应力;④材质不可能是完全均匀连续的。

材料力学压杆稳定概念欧拉公式计算临界力

材料力学压杆稳定概念欧拉公式计算临界力

材料力学压杆稳定概念欧拉公式计算临界力材料力学是研究物体受力及变形行为的一门学科。

压杆稳定是材料力学中重要的概念之一、当一个杆件受到作用力时,如果杆件不发生任何形状上的变化,我们称之为杆件处于稳定状态。

然而,当作用力超过一定临界值时,杆件就会发生失稳,产生形状上的变化。

因此,欧拉公式就是用来计算杆件临界力的一种方式。

欧拉公式由瑞士数学家欧拉于18世纪中叶首次提出。

它的基本假设是杆件是理想化的,即杆件是均匀、无缺陷、具有均匀截面的杆件。

根据欧拉公式,杆件临界力可通过以下公式计算:Pcr = (π^2 * E * I) / L^2其中,Pcr表示临界力,E表示杨氏模量,I表示截面惯性矩,L表示杆件的有效长度。

从上述公式中可以看出,临界力与材料的弹性模量有关,即材料越硬,临界力越大;同时临界力与截面的形状也有关,即截面惯性矩越大,临界力越大;临界力还与杆件长度有关,即杆件越短,临界力越大。

例子:假设有一根长为L的无缺陷的圆柱形杆件,其截面半径为r,杨氏模量为E。

根据材料力学的知识,该圆柱形杆件的截面惯性矩可计算为I=(π*r^4)/4Pcr = (π^2 * E * ((π * r^4) / 4) ) / L^2通过上述公式,可以计算出该无缺陷的圆柱形杆件的临界力。

这个临界力表示了该杆件能够承受的最大作用力。

如果作用力超过了临界力,该杆件将发生失稳,产生形状上的变化。

总结起来,材料力学中的压杆稳定概念是指杆件在受力作用下不发生形状上的变化。

欧拉公式是用来计算杆件临界力的一种常用公式,可以帮助工程师们确定杆件的最大承载能力。

材料力学 第十章 压杆稳定问题

材料力学 第十章 压杆稳定问题

由杆,B处内力偶
MB Fcraq1 , q1
由梁,B处转角
MB Fcr a
q2

MBl 3EI
q1 B
MB MBl Fcra 3EI
3EI Fcr al
q2 C
l
Page21
第十章 压杆稳定问题
作业
10-2b,4,5,8
Page22
第十章 压杆稳定问题
§10-3 两端非铰支细长压杆的临界载荷
稳定平衡
b. F k l
临界(随遇)平衡
c. F k l
不稳定平衡
Fcr kl 临界载荷
F
k l
F 驱动力矩 k l 恢复力矩
Page 5
第十章 压杆稳定问题
(3)受压弹性杆受微干扰
F Fcr 稳定平衡 压杆在微弯位置不能平衡,要恢复直线
F >Fcr 不稳定平衡 压杆微弯位置不能平衡,要继续弯曲,导致失稳
(

w)
令 k2 F
EI
d 2w dx2

k
2w

k
2
l
l
FM w
x
F B
F

B F
Page24
第十章 压杆稳定问题
d 2w dx2

k2w

k 2
F
w

通解:
A
x
B
w Asinkx Bcoskx
l
考虑位移边界条件:
x 0, w 0,
B
x 0, q dw 0
Page31
第十章 压杆稳定问题
二、类比法确定临界载荷
l

压杆·稳定性

压杆·稳定性

=
2 ,因为 h>b ,则 I y
=
hb3 12
< bh3 12
=
Iz ,由式(10.3)得
Pcr
=
π 2 EI (μl)2
=
π2
× (200 ×103
MPa) × ( 1 × 40 mm × (20 12
(2 ×1000 mm)2
mm)3 ) ≈13200
N
= 13.2
kN
10.2.2 临界应力
当压杆受临界压力作用而维持其不稳定直线平衡时,横截面上的压应力仍然可按轴向压
10.3.2 临界应力经验公式与临界应力总图
在工程实际中,常见压杆的柔度λ 往往小于 λp ,即 λ<λp ,这样的压杆横截面上的应力 已超过材料的比例极限,属于弹塑性稳定问题。这类压杆的临界应力可通过解析方法求得, 但通常采用经验公式进行计算。常见的经验公式有直线公式与抛物线公式等,这里仅介绍直 线公式。把临界应力 σcr 与柔度λ 表示为下列直线关系称为直线公式。
式中,λ 称为压杆的柔度或长细比,为无量纲量,它综合反映了压杆的长度、约束形式及截 面几何性质对临界应力的影响。于是,式(10.4)中的临界应力可以改写为
·219·
材料力学
σ cr
=
π2E λ2
式(10.6)是欧拉公式(10.3)的另一种表达形式,两者并无实质性差别。
(10.6)
10.3 欧拉公式的适用范围·临界应力总图·直线公式
2
≤σ
p

λ≥π E σp
(10.7)

于是条件式(10.7),可以写成
λP = π
E σp
(10.8)
λ ≥ λp
(10.9)

材料力学-压杆稳定

材料力学-压杆稳定

1.直线型经验公式
对于柔度(λs≤λ<λp)的中柔 度杆(中长压杆),临界应力 与λ的关系采用直线公式:
cr a b 13 8
式(13-8)中的系数a,b可查书中表 13-1。 λ的最低界限:
s
a
s
b
(塑性材料)
b
a
b
b
(脆性材料)
---------(13-9)
图13-3
2.抛物线型经验公式
式中有c1,c2,k三个未知量。根据边界条件:当x=0时, yA=0;代入式(c)得c2=0。式(c)成为
y c1 sinkx (d )
当x=l时,yB=0;代入式(d)后可得 c1 sinkl 0 (e)
要满足式(e),必然是c1或sinkl等于零,若c1=0,则压杆 上各点的位移都为零,这显然与压杆在微弯状态下保持平衡 的前提不符,故必须是sinkl=0。要满足这一条件的kl值为:
kl 0, ,2 ,L ,n (n为正整数)
由k P n 可得:
EI l
P
n2 2 EI
l2
(
f
)
使压杆可能在微弯状态下保持平衡的最大轴向压力,应
该是式(f) 中n=1时的P值,这就是所求的两端铰支压杆的临
界力Pcr,即
Pcr
2 EI
l2
(13 1)
式(13-1)习惯上称为两端铰支压杆的欧拉公式。当各个 方向的支承情况相同时(如两端为球铰),压杆总是在它的 抗弯能力最小的纵向平面内失稳,所以式(13-1)中的EI是压 杆的最小抗弯刚度,即I应取截面的最小形心主惯性矩Imin。
2
图13-4 对于柔度(λ<λc)的杆件,临界应力与λ的关系采用抛物线公式:

材料力学压杆稳定概念欧拉公式计算临界力演示文稿

材料力学压杆稳定概念欧拉公式计算临界力演示文稿

材料力学压杆稳定概念欧拉公式计算临界力演示文稿一、引言大家好,今天我将为大家介绍材料力学中的压杆稳定概念以及欧拉公式的计算方法。

压杆稳定是材料力学中重要的概念,对于设计结构的稳定性和安全性具有重要意义。

欧拉公式是计算压杆临界力的关键公式,我们将通过演示来说明其应用方法。

二、压杆稳定概念在材料力学中,压杆指的是在受压载荷作用下会出现屈曲失稳现象的结构元件。

在受压载荷下,压杆往往会发生弯曲、屈服、断裂等失稳形态,这些失稳形态都会导致结构的破坏和力学性能的下降。

因此,压杆的稳定性是设计和分析结构的重要考虑因素之一压杆稳定主要受以下因素影响:1.压杆的几何形状,包括长度、截面形状等;2.压杆的材料力学性质,如弹性模量、屈服强度等;3.压杆的边界条件,如固定端、自由端等。

三、欧拉公式的推导欧拉公式是计算压杆临界力的经典公式,其推导基于材料力学中的弹性稳定理论。

其表达式为:Pcr = (π²EI)/(Kl/r)²其中,Pcr为压杆的临界力;E为材料的弹性模量;I为截面的惯性矩;K为端部系数(取决于边界条件);l为压杆的长度;r为截面的半径或半宽。

四、欧拉公式的应用1.计算压杆的临界力将具体的压杆参数代入欧拉公式,即可计算出压杆的临界力。

临界力是指当压杆受到该力时,会发生屈曲失稳现象。

因此,设计和使用压杆时,其受力不应超过临界力以保证结构的稳定性和安全性。

2.优化设计结构欧拉公式的计算结果可以用于优化设计结构。

通过改变压杆的长度、截面形状或材料,可以得到不同的临界力。

在满足结构强度和刚度的前提下,可以选择较大的临界力,以提高结构的稳定性和安全性。

五、演示为了更好地理解欧拉公式的应用,接下来我将进行一次实际的演示。

1.实验准备准备一个压杆样品,测量其长度和截面尺寸,并记录下材料的弹性模量。

2.欧拉公式计算根据测量得到的压杆参数,代入欧拉公式,计算临界力。

3.施加载荷将一定的载荷作用于压杆样品上。

材料力学压杆稳定概念欧拉公式计算临界力课件

材料力学压杆稳定概念欧拉公式计算临界力课件

杆的长度远大于横截面尺 寸,且横截面尺寸保持不 变。
杆的材料需满足胡克定律 ,即应力与应变成线性关 系。
欧拉公式在压杆稳定中的应用
01
通过欧拉公式,可以计算出压杆在临界状态下的临界力,即压杆失稳 前的最大承载力。
02
临界力的大小与压杆的材料、截面形状、尺寸等因素有关,是评估压 杆稳定性能的重要指标。
通过优化载荷分布,可以改善压杆的受力状态,从而提高稳定性。
THANKS
感谢观看
详细描述
理想压杆的临界力不受压杆重量和惯性影响,因此在实际应用中 ,需要考虑这些因素对临界力的影响。
实际压杆临界力计算
总结词
实际压杆是指考虑自身重量和惯 性影响的压杆,其临界力计算需 考虑这些因素。
总结词
实际压杆的临界力受到自身重量 和惯性影响,因此需要考虑这些 因素对临界力的影响。
详细描述
在计算实际压杆的临界力时,需 要考虑压杆自重产生的挠度以及 横截面面积和长度等因素的影响 。
02
推导过程中,考虑了压杆的弯曲变形和轴向压缩变形,利用能
量守恒和弹性力学的基本方程,最终得到了欧拉公式。
推导过程涉及了数学和物理的相关知识,需要一定的专业背景
03
和理论基础。
欧拉公式应用条件
欧拉公式适用于理想弹性 材料制成的细长等截面直 杆。
杆的受力方式为两端受压 ,且轴向压力逐渐增加直 到临界状态。
材料力学压杆稳定概念欧 拉公式计算临界力课件
• 压杆稳定概念 • 欧拉公式 • 临界力计算 • 压杆稳定性的影响因素 • 提高压杆稳定性的措施
01
压杆稳定概念
压杆失稳现象
01
02
03
弯曲变形
当压杆受到压力时,可能 会发生弯曲变形,导致承 载能力下降。

材料力学第十章 压杆稳定性问题2

材料力学第十章 压杆稳定性问题2
在求Pcr 及 cr的基础上,进行稳定性校核。 的基础上 进行稳定性校核
Pcr P Pcr nst
nst 为稳定安全系数, 为稳定安全系数 一般大于强度安全系数 般大于强度安全系数。 由于初曲率、载荷偏差、材料不均匀、有钉子孔 等 都会降低 Pcr 。而且柔度越大,影响越大。 等,都会降低 而且柔度越大 影响越大
S
cr
max
若 P ,图中CD段选欧拉公式 若 S P ,图中 图中BC段选经验公式 若 S ,图中AB段按强度计算,即 cr
何斌
s
Page 13
Q235钢制成的矩形截面杆,两端约束以及所承受的载 荷如图示 荷如图示((a)为正视图(b)为俯视图),在AB两处为销钉 为 视图 为俯视图 在 两处为销钉 连接。若已知L=2300mm,b=40mm,h=60mm。材料的弹性模 量E=205GPa。试求此杆的临界载荷。 正视图平面弯曲截面z绕轴 正视图平面弯曲截面z 转动;俯视图平面弯曲截 面绕y 面绕 y轴转动。 轴转动 正视图:
2 对中长杆由于 cr与 P , s b 有关 2. 强度越高, cr也越高 3 对短粗杆:强度问题 3. 对短粗杆 强度问题
何斌
P

时才适用
2E P 2
2E P
E
P
P
欧拉公式适用于 P
Page 6
材料力学
第十章 压杆稳定问题
10.4 临界应力和长细比 细长杆 中长杆和短粗杆 细长杆、中长杆和短粗杆
1.细长杆: ① P 的压杆称为细长杆。 的压杆称为细长杆 ② 此类压杆只发生了弹性失稳 ③ 稳定计算:欧拉公式 稳定计算 欧拉公式
何斌
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
其中,直线公式适用的柔度的界限值 s = (a-s) / b,为材料常数
这类杆称为中长杆(或中柔度杆),亦即直线公式适用于中长杆 (或中柔度杆)
说明: 当 ≤ s,称为粗短杆,则应按强度问题处理。
三、临界应力总图
压杆的临界应力 cr 可视作压杆柔度 的分段函数,即
π2E 2
cr
查表得 a = 461 MPa、b = 2.567 MPa
临界应力 临界力
cr a b 461 2.567 64.7 294.9 MPa Fcr cr A 162.7 kN
3)由于连杆在 x-y、x-z 两个平面内的柔度 z = 64.7、y = 57.4 比

π 2 EI min
0.7l 2
870 kN
2)两端固定但可沿轴向相对移动
长度因数 = 0.5, 立柱柔度
3600
zz
s


l
imin

0.5 3600 24
75 p
此时,立柱为中柔度杆,应用直线公式计算其临界力
由表 10-2 查得 a = 304 MPa,b = 1.12 MPa
临界应力 临界力
cr a b 304 1.12 75 220 MPa Fcr cr A 220 48.541 1068 kN
[例2] 图示连杆,已知材料为优质碳钢,弹性模量 E = 210×109 GPa, 屈服极限 s = 306 MPa。试确定该连杆的临界力Fcr ,并说明横截面的 设计是否合理。
解: 由于连杆在两 个方向上的约束情 况不同,故应分别 计算连杆在两个纵 向对称平面内的柔 度,柔度大的那个 平面即为失稳平面
1)计算柔度 在 x-y 平面(弯曲中性轴为 z 轴): 两端铰支
z = 1
l1 = 750 mm
A 2412 2 6 22 552 mm2
Iz

12 243 12


a b
s
≥p
s p ≤ s
其对应在 - cr 坐标系中
cr
的图线称为压杆的临界应
s
力总图
p
结论:对于中、小柔度
杆,若误用欧拉公式计算
临界应力,将产生偏向危
险一面的严重误差
O
s
p

[例1] 由No. 25a 工字钢制成的一端固定、一端铰支立柱,材料为 Q235 钢。已知立柱长 l = 3.6 m ,弹性模量 E = 200 GPa,试求立柱 的临界力。若将约束条件改为两端固定但可沿轴向相对移动,则问 该立柱的临界力有何变化?
A 552 mm2
Iy

24 123 12
2 6 223 12
14100 mm4
iy
Iy A
14100 5.05mm 552
1.6
57.4
因为λz = 64.7 >λy ,故连杆将在 x-y 平面内失稳
2)计算临界力
由碳钢 s = 306 MPa,查表得 p 100 s 60 由于 s < z < p ,连杆属于中长杆,故采用直线公式计算临界力

2

22 63 12

22 6152


74200 mm4
iz
Iz A
74200 11.6 mm 552
z

zl1
iz

1.0 750 11.6

64.7
在 x-z 平面(弯曲中性轴为 y 轴): 两端固定可轴向相对移动
y = 0.5
l2 = 580 mm
第四节 临界应力的经验公式
一、压杆临界应力的经验公式·直线公式
当 < p ,欧拉公式不再适用,但压杆仍会失稳。此时,可用经
验公式来计算压杆的临界应力:
cr a b
其中,a、b 为材料常数 上述经验公式也称为直线公式
cr a b
二、直线公式的适用范围
s p
较接近,故该连杆横截面的设计较为合理。
解: 1) 一端固定一端铰支
长度因数 = 0.7
由型钢表查得 A = 48.541 cm2
imin = 2.4 cm
Imin = 280 cm4
z
由表 10-2 查得 p 100 s 61.4
立柱柔度


l
imin
105 P
故知,此时立柱为细长杆
故由欧拉公式得其临界力
Fcr
相关文档
最新文档