《材料力学》第9章压杆稳定习题解-精选.pdf

合集下载

材料力学简明教程(景荣春)课后答案第九章

材料力学简明教程(景荣春)课后答案第九章

解 设各杆与铅垂线夹角为 θ ,则由平衡的各杆的受力
130
3FN cosθ = F , FN =
设钢管材料为 Q235,则
F F 2 .5 5 F = ⋅ = = 0.417 F 3 cos θ 3 2 12
= 269 > λp D2 + d 2 30 2 + 22 2 × 10 −3 π 2 EI π 3 E (D 4 − d 4 ) π 3 × 210 × 10 9 × (30 2 − 22 2 )× 10 −12 Fcr = = = = 9.37 kN 2 64 × 2.5 2 (μl )2 64(μl ) Fcr F 1 1 9.37 × 10 3 [F ] = = × = × = 7.49 kN 0.417 0.417 [n]st 0.417 3 i = =
2
127
比值差不多时较有利。 9-8 从稳定性的角度考虑,一般压杆截面的周边取圆形较为合理,但可以是空心或实 心的。如规定压杆横截面面积相同,则: (1) 从强度方面看,它们有无区别?为什么? (2) 从稳定性方面看,哪一种截面形式较为合理?为什么? (3) 如果空心圆形截面较合理的话,是否其内、外半径越大越好? 答 (1) 从强度方面看,它们无区别。因为 σ = F / A 。 (2) 从稳定性方面看,空心截面形式较为合理,因空心截面惯性矩较大。 (3) 如果空心圆形截面较合理的话,其内、外半径不是越大越好,因为在面积一定的情 况下,内、外半径太大了会造成薄壁失稳。 9-9 如何进行压杆的合理设计? 答 (1) 选择合理的截面形状; (2) 改变压杆的约束条件; (3)合理选择材料。 9-10 满足强度条件的等截面压杆是否满足稳定性条件?满足稳定性条件的压杆是否 满足强度条件?为什么? 答 (1) 因为强度条件是 σ < [σ ] =

材料力学-第9章压杆的稳定问题

材料力学-第9章压杆的稳定问题

0 1 0 sinkl coskl
sinkl 0
第9章 压杆的稳定问题
两端铰支压杆的临界载荷欧拉公式
sinkl 0
FP k EI 由此得到临界载荷
2
kl nπ, n 1, 2 ,,
FPcr
π 2 n 2 EI l2
最小临界载荷
FPcr π 2 EI 2 l
第9章 压杆的稳定问题
FPcr
π 2 EI
l
2
这一表达式称为欧拉公式。其中l为不同压杆屈曲后挠曲线上 正弦半波的长度,称为有效长度(effective length); 为反映不同 支承影响的系数,称为长度系数(coefficient of 1ength),可由屈 曲后的正弦半波长度与两端铰支压杆初始屈曲时的正弦半波长度 的比值确定。
d2w M ( x) - EI 2 dx
d2w 2 k w0 2 dx
k2 FP EI
第9章 压杆的稳定问题
两端铰支压杆的临界载荷欧拉公式
d2w 2 k w0 2 dx
k2
FP EI
微分方程的解
w =Asinkx + Bcoskx
边界条件
w ( 0 ) = 0 , w( l ) = 0
第9章 压杆的稳定问题
临界应力与临界应力总图
对于某一压杆,当分叉载荷 FP 尚未算出时,不 能判断压杆横截面上的应力是否处于弹性范围;当 分叉载荷算出后,如果压杆横截面上的应力超过弹 性范围,则还需采用超过比例极限的分叉载荷计算 公式。这些都会给计算带来不便。 能否在计算分叉载荷之前,预先判断哪一类压 杆将发生弹性屈曲?哪一类压杆将发生超过比例极 限的非弹性屈曲?哪一类不发生屈曲而只有强度问 题?回答当然是肯定的。为了说明这一问题,需要 引进长细比(slenderness)的概念。

第九章压杆稳定答案

第九章压杆稳定答案

i - . D 2 d 2 / 4 = 52 2 442 / 4mm = 0.017mm第九章压杆稳定1、图示铰接杆系ABC 由两根具有相同截面和同样材料的细长杆所组成。

若由于杆件在平面ABC 内失稳而引起破坏,试确定荷载 F 为最大时的二角(假设0 —岂㊁)。

解:由平衡条件二 Fy = 0, F NAB = F COSd二 F x - 0, F NBC - F sin T 使F 为最大值条件使杆AB 、BC 的内力同 时达到各自的临界荷载。

设 AC 间的距离为I , AB 、BC 杆的临界荷载分别为H 2EI 兀 2EI F NAB= 7T = 7S —5 F NBC 二 2EI 二 2EI由以上两式得2、一承受轴向压力的两端铰支的空心圆管,外径 D 二52mm ,内径 d 二 44mm ,I 二 950mm 。

材料的二 1600MPa ,二 p 二1200MPa ,E = 210GPa 。

试求此杆的临界压力和临界应力。

支承可视为两端铰支,故 J =1,BC (I cos 。

f二 41.6 解:2 9 ■: 210 10 \ 1200 106回转半径为44斜撑杆得柔度■ - l. i =1 0.95/0.017 =55.9因■ ■ !,为大柔度杆,故可用欧拉公式计算临界荷载,临界压力为F cr 和临界 应力二cr 分别为:29 : .•4 4 _.2 二2 210 109 0.0524 -0.0444F cr ' -3 64 2 N =402KN(H ) (1x0.95) ”-心 匹=666 MPaA3、蒸汽机车的连杆如图所示,截面为工字型,材料为 Q235钢,连 杆所受最大轴向压力为465kN 。

连杆在xy 平面内发生弯曲,两端可视 为铰支,在xz 平面内发生弯曲,两端可视为固定。

试确定工作安全系 数。

|3100解连杆横截面的几何特性:2 2 A =[ 14>9.6- (9.6-1.4) >8.5] cm =64.7cm4I y=407 cm *yLI z=1780 cm4i y = |厂A = ,407 64.7 = 2.51cmi z = l z A = .1780 64.7 = 5.24cmQ235钢的「f%2E 「200 109 200 10—99.3a —0's 304 —240■■■■2 57.1b 1.12 在xy 平面内弯曲时连杆的柔度在xz 平面内弯曲时连杆的柔度y =0.5 3.1/0.0251 =61.8「1所以在计算两个方向上产生弯曲时的临界荷载,都要用经验公式,并且只须计算在柔度较大 的方向上产生弯曲时的临界荷载 F c 「二 a-b y A -丨304-1.12 61.8106 64.7 10*N=1520kN工作安全系数 n = F cr / F = 1520/465 = 3.274、油缸柱塞如图所示。

刘鸿文《材料力学》复习笔记和课后习题(含考研真题)详解(压杆稳定)【圣才出品】

刘鸿文《材料力学》复习笔记和课后习题(含考研真题)详解(压杆稳定)【圣才出品】

所示。
表 9-1-2
3 / 63
圣才电子书 十万种考研考证电子书、题库视频学习平台

(2)关于欧拉公式的讨论 ①相当长度 μl 的物理意义 压杆失稳时,挠曲线上两拐点间的长度就是压杆的相当长度 μl,它是各种支承条件下, 细长压杆失稳时,挠曲线中相当于半波正弦曲线的一段长度。 ②横截面对某一形心主惯性轴的惯性矩 I 杆端在各个方向的约束情况相同(如球形铰等),则 I 应取最小的形心主惯性矩;杆端 在各个方向的约束情况不同(如柱形铰),应分别计算杆在不同方向失稳时的临界压力,I 为其相应中性轴的惯性矩。 三、欧拉公式的适用范围及临界应力总图 1.相关概念
图 9-1-1
选取坐标系如图 9-1-1 所示,距原点为 x 的任意截面的挠度为 w,则弯矩 M=-Fw。
根据压杆变形后的平衡状态,得到杆的挠曲线近似微分方程
d2w dx2
M EI
2 / 63
圣才电子书 十万种考研考证电子书、题库视频学习平台

通过对该方程的求解可得到使压杆保持微小弯曲平衡的最小压力,即两端铰支细长压杆 临界力为
π 2 EI Fcr l 2
上述计算公式称为两端铰支压杆的欧拉公式。
2.欧拉公式的普遍形式
Fcr
π 2 EI
l 2
式中,μl 为相当长度;μ 为长度因数,与压杆的约束情况有关;I 为横截面对某一形心
主惯性轴的惯性矩。
(1)各种支承情况下等截面细长压杆的长度因数及临界压力的欧拉公式,如表 9-1-2
对比项目 平衡状态
应力 平衡方程 极限承载能力
强度问题 直线平衡状态不变
达到限值 变形前的形状、尺寸
实验确定
稳定问题 平衡形式发生变化
可能小于限值 变形后的形状、尺寸

《材料力学》第9章压杆稳定习的题目解

《材料力学》第9章压杆稳定习的题目解

第九章 压杆稳定 习题解[习题9-1] 在§9-2中已对两端球形铰支的等截面细长压杆,按图a 所示坐标系及挠度曲线形状,导出了临界应力公式22lEIP cr π=。

试分析当分别取图b,c,d 所示坐标系及挠曲线形状时,压杆在cr F 作用下的挠曲线微分方程是否与图a 情况下的相同,由此所得cr F 公式又是否相同。

解: 挠曲线微分方程与坐标系的y 轴正向规定有关,与挠曲线的位置无关。

因为(b )图与(a )图具有相同的坐标系,所以它们的挠曲线微分方程相同,都是)("x M EIw -=。

(c )、(d)的坐标系相同,它们具有相同的挠曲线微分方程:)("x M EIw =,显然,这微分方程与(a )的微分方程不同。

临界力只与压杆的抗弯刚度、长度与两端的支承情况有关,与坐标系的选取、挠曲线的位置等因素无关。

因此,以上四种情形的临界力具有相同的公式,即:22l EIP cr π=。

[习题9-2] 图示各杆材料和截面均相同,试问杆能承受的压力哪根最大,哪根最小(图f 所示杆在中间支承处不能转动)?解:压杆能承受的临界压力为:22).(l EIP cr μπ=。

由这公式可知,对于材料和截面相同的压杆,它们能承受的压力与 原压相的相当长度l μ的平方成反比,其中,μ为与约束情况有关的长度系数。

(a )m l 551=⨯=μ (b )m l 9.477.0=⨯=μ (c )m l 5.495.0=⨯=μ(d )m l 422=⨯=μ (e )m l 881=⨯=μ(f )m l 5.357.0=⨯=μ(下段);m l 5.255.0=⨯=μ(上段) 故图e 所示杆cr F 最小,图f 所示杆cr F 最大。

[习题9-3] 图a,b 所示的两细长杆均与基础刚性连接,但第一根杆(图a )的基础放在弹性地基上,第二根杆(图b )的基础放在刚性地基上。

试问两杆的临界力是否均为2min2).2(l EI P cr π=?为什么?并由此判断压杆长因数μ是否可能大于2。

2020年材料力学习题册答案-第9章 压杆稳定

2020年材料力学习题册答案-第9章 压杆稳定

作者:非成败作品编号:92032155GZ5702241547853215475102时间:2020.12.13第九章压杆稳定一、选择题1、一理想均匀直杆受轴向压力P=P Q时处于直线平衡状态。

在其受到一微小横向干扰力后发生微小弯曲变形,若此时解除干扰力,则压杆( A )。

A、弯曲变形消失,恢复直线形状;B、弯曲变形减少,不能恢复直线形状;C、微弯状态不变;D、弯曲变形继续增大。

2、一细长压杆当轴向力P=P Q时发生失稳而处于微弯平衡状态,此时若解除压力P,则压杆的微弯变形( C )A、完全消失B、有所缓和C、保持不变D、继续增大3、压杆属于细长杆,中长杆还是短粗杆,是根据压杆的( D )来判断的。

A、长度B、横截面尺寸C、临界应力D、柔度4、压杆的柔度集中地反映了压杆的( A )对临界应力的影响。

A、长度,约束条件,截面尺寸和形状;B、材料,长度和约束条件;C、材料,约束条件,截面尺寸和形状;D、材料,长度,截面尺寸和形状;5、图示四根压杆的材料与横截面均相同,试判断哪一根最容易失稳。

答案:( a )6、两端铰支的圆截面压杆,长1m,直径50mm。

其柔度为 ( C )A.60;B.66.7;C.80;D.507、在横截面积等其它条件均相同的条件下,压杆采用图( D )所示截面形状,其稳定性最好。

8、细长压杆的( A ),则其临界应力σ越大。

A 、弹性模量E 越大或柔度λ越小;B 、弹性模量E 越大或柔度λ越大;C 、弹性模量E 越小或柔度λ越大;D 、弹性模量E 越小或柔度λ越小; 9、欧拉公式适用的条件是,压杆的柔度( C )A 、λ≤、λ≤C 、λ≥π D、λ≥10、在材料相同的条件下,随着柔度的增大( C )A 、细长杆的临界应力是减小的,中长杆不是;B 、中长杆的临界应力是减小的,细长杆不是;C 、细长杆和中长杆的临界应力均是减小的;D 、细长杆和中长杆的临界应力均不是减小的; 11、两根材料和柔度都相同的压杆( A )A. 临界应力一定相等,临界压力不一定相等;B. 临界应力不一定相等,临界压力一定相等;C. 临界应力和临界压力一定相等;D. 临界应力和临界压力不一定相等;12、在下列有关压杆临界应力σe 的结论中,( D )是正确的。

材料力学习题册答案第章压杆稳定

材料力学习题册答案第章压杆稳定

第 九 章 压 杆 稳 定 【2 】一.选择题1.一幻想平均直杆受轴向压力P=P Q 时处于直线均衡状况.在其受到一渺小横向干扰力后产生渺小曲折变形,若此时解除干扰力,则压杆<A ).A.曲折变形消掉,恢复直线外形; B.曲折变形削减,不能恢复直线外形; C.微弯状况不变;D.曲折变形持续增大.2.一修长压杆当轴向力P=P Q 时产生掉稳而处于微弯均衡状况,此时若解除压力P,则压杆的微弯变形<C )A.完整消掉 B.有所缓和 C.保持不变 D.持续增大3.压杆属于修长杆,中长杆照样短粗杆,是依据压杆的<D )来断定的.A.长度B.横截面尺寸C.临界应力D.柔度 4.压杆的柔度分散地反应了压杆的< A )对临界应力的影响.A .长度,束缚前提,截面尺寸和外形; B.材料,长度和束缚前提;C.材料,束缚前提,截面尺寸和外形;D.材料,长度,截面尺寸和外形; 5.图示四根压杆的材料与横截面均雷同, 试断定哪一根最轻易掉稳.答案:< a )6.两头铰支的圆截面压杆,长1m ,直径50mm .其柔度为 ( C >A.60;B.66.7; C .80; D.507.在横截面积等其它前提均雷同的前提下,压杆采用图<D )所示截面外形,其稳固性最好.8.修长压杆的<A ),则其临界应力σ越大.A.弹性模量E 越大或柔度λ越小;B.弹性模量E 越大或柔度λ越大;C.弹性模量E 越小或柔度λ越大;D.弹性模量E 越小或柔度λ越小; 9.欧拉公式实用的前提是,压杆的柔度<C )A.λ≤PEπσ B.λ≤sEπσC .λ≥λ≥10.在材料雷同的前提下,跟着柔度的增大<C )A.修长杆的临界应力是减小的,中长杆不是;B.中长杆的临界应力是减小的,修长杆不是;C.修长杆和中长杆的临界应力均是减小的;D.修长杆和中长杆的临界应力均不是减小的; 11.两根材料和柔度都雷同的压杆<A )A. 临界应力必定相等,临界压力不必定相等;B. 临界应力不必定相等,临界压力必定相等;C. 临界应力和临界压力必定相等;D. 临界应力和临界压力不必定相等;12.鄙人列有关压杆临界应力σe 的结论中,<D )是准确的.A.修长杆的σe 值与杆的材料无关;B.中长杆的σe 值与杆的柔度无关;C.中长杆的σe 值与杆的材料无关;D.粗短杆的σe 值与杆的柔度无关; 13.修长杆推却轴向压力P 的感化,其临界压力与<C )无关.A.杆的材质B.杆的长度C.杆推却压力的大小D.杆的横截面外形和尺寸二.盘算题1. 有一长l =300 mm,截面宽b =6 mm.高h =10 mm 的压杆.两头铰接,压杆材料为Q235钢,E =200 GPa,试盘算压杆的临界应力和临界力.解:<1)求惯性半径i对于矩形截面,假如掉稳必在刚度较小的平面内产生,故应求最小惯性半径mm732.1126121123minmin ===⨯==b bhhb AI i<2)求柔度λλ=μl /i ,μ=1,故λ=1×300/1.732=519>λp =100 <3)用欧拉公式盘算临界应力()MPa8.652.1731020ππ24222cr =⨯==λσE<4)盘算临界力F cr =σcr ×A =65.8×6×10=3948 N=3.95 kN2.一根两头铰支钢杆,所受最大压力KN P 8.47=.其直径mm d 45=,长度mm l 703=.钢材的E =210GPa,pσ=280MPa,2.432=λ.盘算临界压力的公式有:(a> 欧拉公式;(b>直线公式cr σ=461-2.568λ(MPa>.试 <1)断定此压杆的类型;<2)求此杆的临界压力;解:<1) 1=μ8621==PE σπλ5.624===d lilμμλ因为12λλλ<<,是中柔度杆. <2)cr σ=461-2.568λMPaKNA P cr cr 478==σ3.活塞杆<可算作是一端固定.一端自由),用硅钢制成,其直径d=40mm ,外伸部分的最大长度l =1m ,弹性模量E=210Gpa,1001=λ.试<1)断定此压杆的类型;<2)肯定活塞杆的临界载荷. 解:算作是一端固定.一端自由.此时2=μ,而,所以,.故属于大柔度杆-用大柔度杆临界应力公式盘算.4.托架如图所示,在横杆端点D 处受到P=30kN 的力感化.已知斜撑杆AB 两头柱形束缚<柱形较销钉垂直于托架平面),为空心圆截面,外径D=50mm .内径d=36mm ,材料为A3钢,E=210GPa.pσ=200MPa.s σ=235MPa.a=304MPa.b=1.12MPa .若稳固安全系数n w =2,试校杆AB 的稳固性.1.5m0.5mC ABD第第第第30o解 运用均衡前提可有∑=0A M ,107N 5.05.11040230sin 5.123=⨯⨯⨯==P NBDkN2cm 837.32=A ,4cm 144=y I ,cm 04.2=y i ,4cm 1910=x Icm 64.7=x iA3钢的4.99=P λ,1.57=S λ压杆BA 的柔度Sx x i lλμλ<=⨯==7.220764.030cos 5.11Pyy i lλμλ<=⨯==9.820209.030cos 5.11 因x λ.yλ均小于P λ,所以应该用经验公式盘算临界载荷()[]N109.8212.130400329.0)(6⨯⨯-⨯=-==y cr cr b a A A P λσ695=kN压杆的工作安全系数55.6107695=>==st n nBA 压杆的工作安全系数小于划定的稳固安全系数,故可以安全工作.5. 如图所示的构造中,梁AB 为No.14通俗热轧工字钢,CD 为圆截面直杆,其直径为d =20mm,二者材料均为Q235钢.构造受力如图所示,A.C.D 三处均为球铰束缚.若已知pF=25kN,1l =1.25m,2l =0.55m,s σ=235MPa.强度安全因数s n =1.45,稳固安全因数st []n =1.8.试校核此构造是否安全.解:在给定的构造中共有两个构件:梁AB ,推却拉伸与曲折的组合感化,属于强度问题;杆CD ,推却紧缩荷载,属稳固问题.现分离校核如下.(1> 大梁AB 的强度校核.大梁AB 在截面C 处的弯矩最大,该处横截面为安全截面,其上的弯矩和轴力分离为3max p 1(sin 30)(25100.5) 1.25M F l ==⨯⨯⨯°315.6310(N m)15.63(kN m)=⨯⋅=⋅3N p cos302510cos30F F ==⨯⨯°°321.6510(N)21.65(kN)=⨯= 由型钢表查得14号通俗热轧工字钢的333222102cm 10210mm 21.5cm 21.510mm z W A ==⨯==⨯由此得到33max N max 392415.631021.6510102101021.51010z M F W A σ--⨯⨯=+=+⨯⨯⨯⨯6163.210(Pa)163.2(MPa)=⨯= Q235钢的许用应力为s s 235[]162(MPa)1.45n σσ===max σ略大于[]σ,但max([])100%[]0.7%5%σσσ-⨯=<,工程上仍以为是安全的.(2> 校核压杆CD 的稳固性.由均衡方程求得压杆CD 的轴向压力为 N p p 2sin 3025(kN)CD F F F ===°因为是圆截面杆,故惯性半径为 5(mm)4I di A ===又因为两头为球铰束缚 1.0μ=,所以p 31.00.55110101510liμλλ-⨯===>=⨯这表明,压杆CD 为修长杆,故需采用式(9-7>盘算其临界应力,有222932Pcrcr 2220610(2010)41104Ed F A σλ-πππ⨯⨯π⨯⨯==⨯=⨯352.810(N)52.8(kN)=⨯=于是,压杆的工作安全因数为 cr Pcr w st w N 52.8 2.11[] 1.825CD F n n F σσ====>=这一成果解释,压杆的稳固性是安全的.上述两项盘算成果表明,全部构造的强度和稳固性都是安全的.6.一强度等级为TC13的圆松木,长6m,中径为300mm,其强度许用应力为10MPa.现将圆木用来当作起重机用的扒杆,试盘算圆木所能推却的允许压力值.解:在图示平面内,若扒杆在轴向压力的感化下掉稳,则杆的轴线将弯成半个正弦波,长度系数可取为1μ=.于是,其柔度为168010.34liμλ⨯===⨯依据80λ=,求得木压杆的稳固因数为22110.39880116565ϕλ===⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭从而可得圆木所能推却的允许压力为62[][]0.398(1010)(0.3)281.34F A ϕσπ==⨯⨯⨯⨯=(kN>假如扒杆的上端在垂直于纸面的偏向并无任何束缚,则杆在垂直于纸面的平面内掉稳时,只能视为下端固定而上端自由,即2μ=.于是有2616010.34liμλ⨯===⨯求得22280028000.109160ϕλ===62[][]0.109(1010)(0.3)774F A ϕσπ==⨯⨯⨯⨯=(kN>显然,圆木作为扒杆运用时,所能推却的允许压力应为77 kN,而不是281.3 kN.7. 如图所示,一端固定另一端自由的修长压杆,其杆长l = 2m,截面外形为矩形,b = 20 mm.h = 45 mm,材料的弹性模量 E = 200GPa .试盘算该压杆的临界力.若把截面改为 b = h =30 mm,而保持长度不变,则该压杆的临界力又为多大?解:<一).当b=20mm.h=45mm 时 <1)盘算压杆的柔度22000692.82012liμλ⨯===>123cλ=(所所以大柔度杆,可运用欧拉公式>(2>盘算截面的惯性矩由前述可知,该压杆必在xy 平面内掉稳,故盘算惯性矩4433100.312204512mm hb I y ⨯=⨯==<3)盘算临界力μ = 2,是以临界力为()()kN N l EI Fcr 70.337012210310200289222==⨯⨯⨯⨯⨯==-πμπ<二).当截面改为b = h = 30mm 时 <1)盘算压杆的柔度22000461.93012liμλ⨯===>123cλ=(所所以大柔度杆,可运用欧拉公式>(2>盘算截面的惯性矩44431075.6123012mm bh I I z y ⨯====代入欧拉公式,可得()()Nl EI F cr 8330221075.610200289222=⨯⨯⨯⨯⨯==-πμπ从以上两种情形剖析,其横截面面积相等,支承前提也雷同,但是,盘算得到的临界力后者大于前者.可见在材料用量雷同的前提下,选择适当的截面情势可以进步修长压杆的临界力.8. 图所示为两头铰支的圆形截面受压杆,用Q235钢制成,材料的弹性模量E=200Gpa,屈从点应力σs =240MPa,123c λ=,直径d=40mm,试分离盘算下面二种情形下压杆的临界力:<1)杆长l =1.5m;<2)杆长l =0.5m. 解:<1)盘算杆长l =1.2m 时的临界力 两头铰支是以 μ=1惯性半径42406410444d I d i mm d Aππ=====柔度:1150015010liμλ⨯===>123c λ=(所所以大柔度杆,可运用欧拉公式>225223.1421087.64150cr aE MP πσλ⨯⨯===2233.144087.64110.081011044cr cr cr d F A N KNπσσ⨯==⨯=⨯=⨯≈<2)盘算杆长l =0.5m 时的临界力μ=1,i =10mm柔度:15005010liμλ⨯===<123c λ=压杆为中粗杆,其临界力为222400.006822400.0068250222.95cr aMP σλ=-=-⨯=2233.1440222.95280.021028044cr cr cr d F A N kNπσσ⨯==⨯=⨯=⨯≈感激土木0906班王锦涛.刘元章同窗!声名:所有材料为本人收集整顿,仅限小我进修运用,勿做贸易用处. 声名:所有材料为本人收集整顿,仅限小我进修运用,勿做贸易用处.。

《材料力学》第9章压杆稳定习题解

《材料力学》第9章压杆稳定习题解
把A、B的值代入(a)得:
v
MM
e'kkx
esin
(1coskx)
v
PP
crcr
M
e
边界条件:③xL;v0:0(1coskL)
P
cr
,1coskL0
Mቤተ መጻሕፍቲ ባይዱ
'esin
④x0v0:0kkLsinkL0
P
cr
以上两式均要求:kL2n,(n0,1,3,......)
5
2
L
。故有:
k
2
2
(0.5L)
2
P
cr
EI
其最小解是:kL2,或
Pcr
2
EI
min
2
(2.l)
?为什么?并由此判断压杆长因数是否可能大于2。
2
螺旋千斤顶(图c)的底座对丝杆(起顶杆)的稳定性有无影响?校核丝杆稳定性时,
把它看作下端固定(固定于底座上)、上端自由、长度为l的压杆是否偏于安全?
解:临界力与压杆两端的支承情况有关。因为(a)的下支座不同于(b)的下支座,所以它们的
度系数。
(a)l155m
(b)l0.774.9m
(c)l0.594.5m
(d)l224m
(e)l188m
(f)l0.753.5m(下段);l0.552.5m(上段)
故图e所示杆
F最小,图f所示杆Fcr最大。
cr
[习题9-3]图a,b所示的两细长杆均与基础刚性连接,但第一根杆(图a)的基础放在弹性
地基上,第二根杆(图b)的基础放在刚性地基上。试问两杆的临界力是否均为
失稳时整体在面内弯曲,则1,2两杆组成一组合截面。
(c)两根立柱一起作为下端固定而上端自由的体系在面外失稳
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

临界力计算公式不同。 (b) 为一端固定,一端自由的情况,它的长度因素
2 ,其临界
力为: Pcr
2 EI min ( 2.l ) 2
。但是,
(a)
为一端弹簧支座,一端自由的情况,它的长度因素
2 ,因此,不能用 Pcr
2 EI min ( 2.l ) 2
来计算临界力。
3
为了考察( a)情况下的临界力, 我们不妨设下支座 ( B)的转动刚度 C
把 A、B 的值代入( a)得:
v M e (1 cos kx) v' M e k sin kx
Pcr
Pcr
边界条件:③ x L ; v 0 : 0 M e (1 cos kL) , 1 coskL 0 Pcr
④ x 0 v' 0 : 0 M e k sin kL Pcr
sin kL 0
以上两式均要求: kL 2n , (n 0,1,3,......)
第九章 压杆稳定 习题解
[ 习题 9-1] 在§ 9-2 中已对两端球形铰支的等截面细长压杆, 按图 a 所示坐标系及挠度曲线
形状,导出了临界应力公式 Pcr
2EI l2
。试分析当分别取图
b,c,d
所示坐标系及挠曲线形
状时,压杆在 F cr 作用下的挠曲线微分方程是否与图
是否相同。
a 情况下的相同,由此所得 Fcr 公式又
Pcr
2 EI ( .l ) 2 。由这公式可知, 对于材料和截面相同的压杆,
它们能承受的压力与 原压相的相当长度 l 的平方成反比, 其中, 为与约束情况有关的长
度系数。
(a) l 1 5 5m
(b) l 0.7 7 4.9m
(c) l 0.5 9 4.5m
(d) l 2 2 4m
(e) l 1 8 8m
解: 挠曲线微分方程与坐标系的 y 轴正向规定有关,与挠曲线的位置无关。
因为( b)图与( a)图具有相同的坐标系,所以它们的挠曲线微分方程相同,都是
"
EIw
M ( x) 。( c )、 (d) 的坐标系相同,它们具有相同的挠曲线微分方程:
EIw " M ( x) ,显然,这微分方程与( a)的微分方程不同。
看作下端固定 (固定于底座上) 、上端自由、 长度为 l 的压杆不是偏于安全, 而是偏于危险。
[ 习题 9-4] 试推导两端固定、弯曲刚度为
Pcr 的欧拉公式。
EI ,长度为 l 的等截面中心受压直杆的临界应力
4
[ 解 ] : 设压杆向右弯曲。压杆处于临界状态时,两端的竖向反
力为 Pcr ,水平反力为 0,约束反力偶矩两端相等,用 M e 表示,
上述微分方程的通解为:
v
Asin kx B coskx
Me
……………………………
.(a)
Pcr
v' Ak cos kx Bk sin kx
边界条件:① x 0; v 0 : 0 A sin 0 B cos0 M e ; B Pcr
Me。 Pcr
② x 0 v' 0 : 0 Ak cos0 Bk sin 0 ; A 0 。
M
EI 20

l
且无侧向位移,则:
EIw " M (x) Fcr ( w)
令 Fcr EI
k 2 ,得:
w" k 2 w k 2
微分方程的通解为: w Asin kx B coskx
w ' Ak coskx Bk sin kx
由边界条件: x 0 , w 0, w '
M Fcr ; x l , w CC
弹性支座较合适。这种情况,
2 ,算出来的临界力比“把它看作下端固定(固定于底座
上)、上端自由、 长度为 l 的压杆” 算出来的临界力要小。 譬如,设转动刚度 C M
EI 20

l
则:
Pcr固端 Pcr弹簧
2.12 22
1.1025 , Pcr固端
1.1025 Pcr ,弹簧 。因此,校核丝杆稳定性时,把它
临界力只与压杆的抗弯刚度、 长度与两端的支承情况有关, 与坐标系的选取、 挠曲线的
位置等因素无关。因此,以上四种情形的临界力具有相同的公式,即:
2 EI
Pcr
l2 。
1
[ 习题 9-2] 图示各杆材料和截面均相同,试问杆能承受的压力哪根最大,哪根最小(图
f
所示杆在中间支承处不能转动)?
解:压杆能承受的临界压力为:
(f ) l 0.7 5 3.5m (下段); l 0.5 5 2.5m (上段)
故图 e 所示杆 F cr 最小,图 f 所示杆 Fcr 最大。
[ 习题 9-3] 图 a,b 所示的两细长杆均与基础刚性连接, 但第一根杆 (图 a)的基础放在弹性
地基上,第二根杆(图 b)的基础放在刚性地基上。 试问两杆的临界力是否均为 Pcr
下标 e 表示端部 end 的意思。 若取下截离体为研究对象, 则 M e 的
转向为逆转。
M ( x) Pcr v( x) M e
EIv "
M (x) M e Pcr v( x)
EIv " Pcr v( x) M e
"
v
Pcr v(x)
Me
,令
2
k
Pcr ,则 k 2
1
EI
EI
EI
Pcr EI
v" k 2v k旋千斤顶的底座与地面不是刚性连接,即不是固定的。它们之间是靠摩擦力来维持相
对的静止。当轴向压力不是很大,或地面较滑时,底座与地面之间有相对滑动,此时,不能
看作固定端;当轴向压力很大,或地面很粗糙时,底座与地面之间无相对滑动,此时,可以
看作是固定端。 因此,校核丝杆稳定性时,把它看作上端自由,下端为具有一定转动刚度的
5
其最小解是: kL 2 ,或 k
2 。故有: k 2 L
2
(0.5L) 2
Pcr ,因此: EI
2 EI Pcr (0.5L ) 2 。
2 EI min (2.l ) 2
?为什么?并由此判断压杆长因数
是否可能大于 2。
2
螺旋千斤顶(图 c)的底座对丝杆(起顶杆)的稳定性有无影响?校核丝杆稳定性时,
把它看作下端固定(固定于底座上)、上端自由、长度为
l 的压杆是否偏于安全?
解:临界力与压杆两端的支承情况有关。 因为 (a) 的下支座不同于 (b) 的下支座, 所以它们的
解得:
A Fcr , B Ck

F cr sin kl
cos kl
Ck
整理后得到稳定方程: kl tan kl
C
20
EI / l
用试算法得:
kl 1.496
故得到压杆的临界力: Fcr
(1.496)2 EI l
2 EI ( 2.1l )2 。
因此,长度因素
当 C 0 时,
可以大于 2。这与弹性支座的转动刚度 。
相关文档
最新文档