材料力学-压杆稳定
材料力学-压杆稳定

176 .2
查表9 1,得: 0.234
SOUTHEAST UNIVERSITY
例:厂房钢柱长7m,由两根16b号Q235槽钢组成.端部截面 上有四个直径为30mm的螺栓孔.μ=1.3,F=195KN,nst=2.4, [σ]=170MPa, σp=200MPa, E=206GPa。 (1)求两槽钢间距h;(2)校核钢柱的稳定性和强度。
i1
F F
F
l1 0.25m, d 1 20mm,
1 l1 I d1 5.0mm, 1 104 A 4 i1 d1
l 2 0.5m, d 2 40mm,
d2
l1
l2
d3 l3
杆2, 2 1,
d2 2l2 i2 10mm, 2 50 4 i2
cr
Fcr 2 EI A A( l ) 2
i
I A
(惯 性 半 径 )
l
i
(柔度或长细比)
cr
2E 2
cr
2E 2 p
2E p p
p
二、非细长压杆的临界载荷
SOUTHEAST UNIVERSITY 当 p时(即非细长压杆),由经验公 式确定临界应力:
w x 0 kA 0 (2)
x l , w 0, w 0
w
x l
A sin kl B cos kl
m 0 ( 3) F
SOUTHEAST UNIVERSITY
w x l Ak coskl Bk sinkl 0 (4)
由(1)、(2)、(3)、(4)得:
Fcr
Q
挠曲线微分方程为:
材料力学-压杆稳定

Pcr
2 EI
l2
此时若杆件横截面不同时 ,取 I I m in ,弯曲发生在抗弯 能力最弱的平面内。称最小刚度平面。 对于其他约束条件,常数 c1, c2 , k 由约束条件确定,经推导得: 两端铰支: 1 微弯曲线为正弦半波形状 2 EI 一端固定一端自由: 2 微弯曲线为半个正弦半波 pcr 2 ( l ) 两端固定: 0.5 一端固定一端铰支: 0.7
n0 p 0
不符合情况
n 1 pcr
2 EI
l2
这就是确定两端铰支压杆临界载荷的 欧拉公式,其临界力称欧拉临界力。它 与抗弯刚度EI成正比,与杆长L2成反比。 这公式只适用于弹性稳定问题
7
此时挠度
n y ( x) c1 sin k x c1 sin x l x y ( x) c1 sin (0 x l ) 正弦半波形 l
10
§13-5
临界应力与柔度、三类不同的压杆
杆件尺寸不同,其失稳的形式也不同。P335 对于“细长”杆:发生弹性失稳的可能性较大。 ---“弹性屈曲” 对于“粗短”杆:发生材料屈服的可能性较大。 ---“屈服” 对于“中长”杆:有可能发生失稳,但其临界应力已超过比例极 限, 局部区域已进入塑性。 ----“弹塑性屈曲” 怎样区分三类不同的压杆?即多长的杆会发生弹性屈曲、屈服 、弹—塑性屈服?下面引入“柔度”概念。 临界应力 cr : Pcr cr
3
当纵向力P较小时,可看到扰动除去后,杆经若干次振动 而恢复原来的直线形式,即表明此时压杆直线形式的弹性平衡 是稳定的。 当总向力P较大时,可看到扰动除去后,杆不能恢复原来 的直线形式,而且继续弯曲,最后转入新的稳定平衡形式。即 曲线形式或由于弯曲太甚而杆被折断,此表明原来的弹性平衡 不稳定。 这说明:当压力大于一定数值时,压杆存在两种可能的平衡 形式。即直线和弯曲的平衡形式。但直线形式是不稳定的。而 压杆从直线平衡形式到弯曲平衡形式的转变称为“失稳”或“ 弯曲”。 那么当压力多大时,直线平衡形式不稳定(被破坏)?
材料力学压杆稳定

D 0, C 1 l 2
3
x 0, w
1 Fa l 2
3 EIl
3EI Fcr al
§14.7 纵横弯曲旳概念
❖9.15
作业9-2
在图示铰接杆系ABC中,AB和BC皆为细长压杆, 且截面相同,材料一样。若因在ABC平面内失稳而 破坏,并要求0<</2,试拟定F为最大值时旳角。
Fcr
2 EI ( l )2
截 面
F
F
材
料
相
同 ,
1.5l
2l
拟
定
失
稳
顺 l 3l
2l
序 。
(1)
(4)
F
F
F
4l
5l
3l
2.8l
2.5l
1.5l
(2)
(3)
(5)
Fcr
2 EI ( l )2
图示托架中AB杆旳直径
d=30mm,长度l=800mm,
两端可视为铰支,材料为
F
A3钢,s=240MPa。试求
第九章 压杆稳定
§9.1 压杆稳定旳概念 §9.2 两端铰支细长压杆旳临界压力 §9.3 其他支座条件下细长压杆旳临界压力 §9.4 欧拉公式旳合用范围 经验公式 §9.5 压杆旳稳定校核 §9.6 提升压杆稳定性旳措施 §9.7 纵横弯曲旳概念
§9.1 压杆稳定旳概念
1. 平衡旳稳定性
a)稳定平衡
B = 0 sinkl=0 kl = n k = n/l
F
k 2 EI
n
2
EI
l
Fcr
2 EI l2
w
A
sin
x
l
§9.3 其他支座条件下细长压杆 旳临界压力
材料力学之压杆稳定

材料力学之压杆稳定引言材料力学是研究物体内部受力和变形的学科,压杆稳定是其中的一个重要内容。
压杆稳定是指在受到压力作用时,压杆能够保持稳定,不发生失稳或破坏的现象。
本文将介绍压杆稳定的基本原理、稳定条件以及一些常见的失稳形式。
压杆的受力分析在进行压杆稳定分析前,我们首先需要对压杆受力进行分析。
压杆通常是一根长条形材料,两端固定或铰接。
在受到外部压力作用时,压杆会受到内部的压力,这些压力会导致杆件产生变形和应力。
在分析压杆稳定性时,我们主要关注压杆的弯曲和侧向稳定性。
压杆的基本原理压杆的稳定性是由杆件的弯曲和侧向刚度共同决定的。
当压杆弯曲和侧向刚度足够大时,压杆能够保持稳定。
所以,为了提高压杆的稳定性,我们可以采取以下几种措施:1.增加杆件的截面面积,增加抗弯能力;2.增加杆件的高度或长度,增加抗弯刚度;3.增加杆件的横向剛性,增加抗侧向位移能力;4.添加支撑或加固结构,增加整体稳定性。
压杆的稳定条件压杆稳定的基本条件是在承受外部压力时,内部应力不超过材料的极限强度。
当内部应力超过材料的极限强度时,压杆将会发生失稳或破坏。
在实际工程中,我们一般采用压杆的临界压力比来判断压杆的稳定性。
临界压力比是指杆件在失稳前的临界弯曲载荷与临界弯曲载荷之比。
当临界压力比大于1时,压杆是稳定的;当临界压力比小于1时,压杆是不稳定的。
临界压力比的计算可以采用欧拉公式或者Vlasov公式等方法。
这些方法能够给出压杆在不同边界条件下的临界压力比。
在工程实践中,我们可以根据具体问题选择合适的方法来计算临界压力比。
压杆的失稳形式压杆失稳通常有两种形式:弯曲失稳和侧向失稳。
弯曲失稳压杆的弯曲失稳是指杆件在受到外部压力作用时,发生弯曲变形并导致失稳。
在弯曲失稳中,压杆的弯曲形态可以分为四种:1.局部弯曲失稳:杆件出现弯曲局部失稳,形成凸起或凹陷;2.局部弯扭失稳:杆件出现弯曲和扭曲共同失稳;3.全截面失稳:整个杆件截面均发生失稳;4.全体失稳:整个杆件完全失稳并失去稳定性。
材料力学_压杆稳定

π 2E λp = σp
欧拉公式仅适用于细长压杆的稳定计算
对Q235 钢,E=200GPa,σp=200MPa,则 , ,
200 × 109 λp = π ≈ 100 6 200 × 10
9.2 压杆的临界应力
二,临界应力总图 大柔度压杆(细长压杆 : 大柔度压杆 细长压杆): 细长压杆
σ cr σs
π 2 EI π 2E Fcr σ cr = = = 2 A (l / i )2 A(l )
其中
记
λ=
l
i
压杆的柔度或 压杆的柔度或长细比 欧拉临界应力
i=
I A
π 2E σ cr = 2 λ
(λ = λmax )
π 2E π 2E σ cr = 2 ≤ σ p λ ≥ λ σp
大柔度压杆(细长压杆 : 大柔度压杆 细长压杆): λ ≥ λ p 细长压杆
σp
σ cr = σ s
σcr = a1 b1λ
2
π 2E σ cr = 2 λ
直线经验公式: 直线经验公式:
(λ ≥ λ p )
σ cr = a bλ
σ cr = π E λ2
2
中柔度压杆(中长压杆 中柔度压杆 中长压杆) 中长压杆
σ cr = a bλ (λs ≤ λ ≤ λ p )
σ cr ≤ σ s (σ b ) λs =
2
d y = M ( x) = M B + FBy (l x) Fy 2 dx
2
k2 =
F EI ~ M M= B F
y
A
y (0) = 0 y′(0) = 0 y (l ) = 0 y′(l ) = 0 ~ ~ B + M + F l = 0 0 1 1 l ~ k 0 0 1 A k F = 0 =0 ~ sin kl cos kl 1 0 A sin kl + B cos kl + M = 0 ~ k cos kl k sin kl 0 1 kA cos kl kB sin kl F = 0 kl sin = 0 or Det = k[kl sin kl 2(1 cos kl )] 2 kl kl kl kl kl = 2k sin ( kl cos 2 sin ) = 0 (kl cos 2 sin ) = 0 2 2 2 2 2
材料力学 第九章 压杆稳定

cr s cr a b
cr
小柔度杆 中柔度杆
O
π2 E
2
大柔度杆
2
1
l
i
大柔度杆—发生弹性失稳 中柔度杆—发生非弹性失稳 小柔度杆—不发生失稳,而发生强度失效
Fuzhou University
杆类型
大柔度杆
定义
1
临界力
π EI Fcr ( l ) 2
n 0,1, 2
取
n 1
π 2 EI Fcr 2 l
细长压杆的临界载荷的欧 拉公式 (两端铰支)
Fuzhou University
材料力学课件
w A sin kx B co s kx
kl n , n 0,1, 2
F x l w F x
取 n 1
π 2 EI Fcr 2 l
2
临界应力
cr π2E性质Fra bibliotek2
稳定 稳定 强度
中柔度杆 2 1 Fcr A(a b ) 小柔度杆
cr a b
2
Fcr A s
cr s
l
i
1 π
i
E
I A
1.0, 0.5, 0.7, 2.0
a s 2 b
Fcr
Fcr
π 2 EI
2l
2
π 2 EI
0.7l
2
π 2 EI Fcr 2 (l )
欧拉公式的普遍形式
Fuzhou University
材料力学课件 讨论:
π 2 EI Fcr ( l )2
材料力学第九章 压杆稳定

02
创新研究方法与手段
积极探索新的实验技术和数值模拟方法,提高压杆稳定研究的精度和可
靠性。
03
拓展应用领域
将压杆稳定研究成果应用于更多领域,解决实际工程问题,推动科学技
术进步。
THANKS
感谢观看
稳定性取决于压杆的初始弯曲程度、压力的大小 和杆件的材料特性。
当压杆受到微小扰动时,如果能够恢复到原来的 平衡状态,则称其为稳定;反之,则为不稳定。
压杆的临界载荷
临界载荷是指使压杆由稳定平衡 状态转变为不稳定平衡状态的载
荷。
当压杆所受压力小于临界载荷时, 压杆保持稳定平衡状态;当压力 大于临界载荷时,压杆将失去稳
相应措施进行解决。
建筑结构中的压杆问题
02
高层建筑、大跨度结构等建筑中的梁、柱等部件可能发生失稳,
需要加强设计和施工控制。
压力容器中的压杆问题
03
压力容器中的管道、支撑部件等可能发生失稳,需要采取相应
的预防和应对措施。
05
压杆稳定的未来发展与展望
压杆稳定研究的新趋势
跨学科交叉研究
压杆稳定与材料科学、计算科学、工程结构等领域相互渗透,形 成多学科交叉的研究趋势。
工程中常见的压杆问题
1 2
细长杆失稳
细长杆在压力作用下容易发生弯曲,导致失稳。
短粗杆失稳
短粗杆在压力作用下可能发生局部屈曲,导致失 稳。
3
弹性失稳
材料在压力作用下发生弹性变形,当压力超过某 一临界值时,杆件发生失稳。
解决压杆失稳的方法与措施
加强材料质量
选择优质材料,提高材料的弹 性模量和抗拉强度,以增强压
材料力学第九章 压杆稳 定
• 引言 • 压杆稳定的基本理论 • 压杆稳定的实验研究 • 压杆稳定的工程应用 • 压杆稳定的未来发展与展望
材料力学:压杆稳定

坍塌后的奎拜克桥
材料力学教学课件
韩国汉城
1995年6月29日下午,韩国汉城三 丰百货大楼,由于盲目扩建、加层, 致使大楼四五层立柱不堪重负而产 生失稳破坏,大楼倒塌,死502人, 伤930人,失踪113人。
2020年2月3日星期一
10
第九章 压杆稳定
中国南京 2000年10月25日上午10时,南京电视台演播中 心演播大厅的屋顶的施工中,由于脚手架失稳, 造成屋顶模板倒塌,死6人,伤34人。
材料力学教学课件
2020年2月3日星期一
26
第九章 压杆稳定
1)、细长杆的临界应力
cr
2E 2
p
2E p
引入记号 1
2E p
欧拉公式的适用范围
l
i
1
2E p
2)、中长杆的临界应力(经验公式)
cr a b, 2 1
sin
kl
l
coskl
0
2020年2月3日星期一
19
第九章 压杆稳定
由于杆在微弯状态下保持平衡时,
Fy不可能等于零,故由上式得
1 sin kl l coskl 0 k 亦即 tan kl kl
满足此条件的最小非零解为kl=4.49,亦即 Fcr l 4.49 EI
从而得到此压杆求临界力的欧拉公式:
受均匀压力的球形薄壳或薄圆环,当压力超过一定数值时,圆环将 不能保持圆对称的平衡形式,而突然变为非圆对称的平衡形式。
材料力学教学课件
2020年2月3日星期一
9
第九章 压杆稳定
由于构件的失稳往往是突然发生的,因而其危害性也较大。 历史上曾多次发生因构件失稳而引起的重大事故。如1907年 加拿大劳伦斯河上,跨长为548米的奎拜克大桥,因压杆失 稳,导致整座大桥倒塌。近代这类事故仍时有发生。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.直线型经验公式
对于柔度(λs≤λ<λp)的中柔 度杆(中长压杆),临界应力 与λ的关系采用直线公式:
cr a b 13 8
式(13-8)中的系数a,b可查书中表 13-1。 λ的最低界限:
s
a
s
b
(塑性材料)
b
a
b
b
(脆性材料)
---------(13-9)
图13-3
2.抛物线型经验公式
式中有c1,c2,k三个未知量。根据边界条件:当x=0时, yA=0;代入式(c)得c2=0。式(c)成为
y c1 sinkx (d )
当x=l时,yB=0;代入式(d)后可得 c1 sinkl 0 (e)
要满足式(e),必然是c1或sinkl等于零,若c1=0,则压杆 上各点的位移都为零,这显然与压杆在微弯状态下保持平衡 的前提不符,故必须是sinkl=0。要满足这一条件的kl值为:
kl 0, ,2 ,L ,n (n为正整数)
由k P n 可得:
EI l
P
n2 2 EI
l2
(
f
)
使压杆可能在微弯状态下保持平衡的最大轴向压力,应
该是式(f) 中n=1时的P值,这就是所求的两端铰支压杆的临
界力Pcr,即
Pcr
2 EI
l2
(13 1)
式(13-1)习惯上称为两端铰支压杆的欧拉公式。当各个 方向的支承情况相同时(如两端为球铰),压杆总是在它的 抗弯能力最小的纵向平面内失稳,所以式(13-1)中的EI是压 杆的最小抗弯刚度,即I应取截面的最小形心主惯性矩Imin。
2
图13-4 对于柔度(λ<λc)的杆件,临界应力与λ的关系采用抛物线公式:
cr a' b'2 13 10
抛物线与欧拉公式的交点C,相应的柔度λc为
c
E 13 11
0.57 s
3.临界应力总图及临界应力的计算
2
图13-3
图13-4
图13-3和图13-4表示了压杆的临界应力与压杆的柔度λ 间的关系,称为塑性材料压杆的临界应力总图。它表示了 临界应力随柔度λ变化的规律。从图中可看出,临界应力随 柔度的增大而减小。
cr
2E 2
p
即 2E E (13 7)
p
p
图13-2表示了欧拉临界应力与λ的关系。欧拉临界应力为 一双曲线,只有当λ≥λp时,才能满足的条件,欧拉公式才有 效;当λ≤λp时,该曲线就无效了。
图13-2
三、临界应力总图
当λ问题。其临界应力一般运用由实验所得的经验公式 来计算。常用的经验公式有二种,一种是直线型经验公式, 另一种是抛物线型经验公式。
EI
d2y dx 2
M
x
Py
即:
d2y dx2
Py EI
(a)
若令 k 2 P ,则式(a)可写作
EI
d2y dx2
k
2
y
0
(b)
此微分方程的通解为:
y c1 sinkx c2 coskx (c)
y c1 sinkx c2 coskx (c)
Pcr
2 EI
l 2
(13 5)
式(13-5)中的μ称为长度系数。不同的杆端约束的长度系数如下: a.两端铰支:μ=1
b.一端固定,一端自由:μ=2 c.两端固定:μ=0.5 d.一端固定,一端铰支:μ=0.7
Pcr
2 EI
l 2
(13 5)
当压杆杆端的约束情况在最大和最小抗弯刚度平面内
材料力学
压杆稳定
一、细长压杆的临界力
1.两端铰支细长压杆的临界力(欧拉公式) 为了确定压杆的临界力,先研究压杆在微弯情况下的挠
曲线(图13-1a)。压杆在任意截面上的弯矩为M(x)= -Py (图13-1b),只要杆内应力不超过材料的比例极限 p,就 可以利用挠曲线的近似微分方程:
图13-1
挠曲线近似微分方程:
2
图13-3
图13-4
a.对于柔度较小的短粗杆,可取作为临界应力,即以强度计 算为主。
b.对于λ较大的细长杆,稳定问题是主要矛盾,应用欧拉 公式计算临界应力。
c.对于λs≤λ<λp的中长杆,则应为应力超过比例极限后 的稳定问题,一般用经验公式计算临界应力。
临界力计算的步骤
例1.截面为120×200mm 的矩形木柱,材料的弹性 模量E=1×104Mpa,。其支 承情况为:在xoz平面失 稳(即绕y轴失稳)时柱 的两端可视为固定端(例 1图a);在xoy平面失稳 (即绕z轴失稳)时,柱 的两端可视为铰支端(例 1图b)。试求该木柱的临 界力。
在临界力作用下,压杆横截面上的平均压应力称作临界
应力,以 cr 表示,由欧拉公式(13-5)可得:
cr
Pcr A
2 EI
l 2 A
引入惯性半径 i I ,则有 A
cr
2E
l 2
i2
2E l 2
2E 2
(13 6)
i
cr
2E
l 2
i2
2E l 2
2E 2
(13 6)
i
式(13-6)中 l 称为压杆的柔度(或长细比)。它
i
反映了杆端的约束情况(μ)、杆件的尺寸及截面的形状等因素 对临界应力的综合影响。
式(13-6)是欧拉公式的另一种形式,只要当临界应力 cr 不超过材料的比例极限 p 时,用欧拉公式求得的临界力才是 正确的,其条件为:
2.一端固定,一端自由细长压杆的临界力
Pcr
2 EI
2l 2
(13 2)
3.两端固定细长压杆的临界力
Pcr
2 EI
0.5l 2
(13
3)
4.一端固定,一端铰支细长压杆的临界力
Pcr
2 EI
0.7l 2
(13 4)
5.临界力的统一表达式
完全相同时,则式(13-5)中的I应取压杆横截面的最小形心 主惯性矩Imin。如果压杆在最大和最小抗弯刚度平面内的约 束情况不相同时,则应分别计算在两个形心主惯性平面内 失稳时的临界力,然后再确定该压杆的临界力。
二、临界力(欧拉公式)的适用范围
欧拉公式是以压杆的挠曲线的近似微分方程式为依据导
出的,这个微分方程只是在材料服从虎克定律的条件下才成 立。因此,只有在压杆内的应力超过材料的比例极限 p时, 才能用欧拉公式来计算临界力。