第三章_一元一次方程_数学活动

合集下载

人教版七年级数学《一元一次方程数学活动》教学设计

人教版七年级数学《一元一次方程数学活动》教学设计

《一元一次方程数学活动》教学设计一、内容和内容解析1.内容活动1:阅读一段选自新闻报道中的统计数据,运用一元一次方程求出某些数据.活动2:通过动手操作,发现杠杆的平衡条件,学生进一步根据规律,用一元一次方程求杠杆平衡状态时的物体位置.2.内容解析活动1,学生结合统计内容,得到一些信息,再将实际问题转化为数学问题,运用一元一次方程求出某些数据. 其核心是:从实际问题中抽象出数学问题,用数学符号建立方程,求出结果并解释问题,也就是数学建模的思想.活动2,通过动手操作,运用由特殊到一般的方法,发现规律,再运用规律,通过数学建模解决实际问题.基于以上分析,确定本节课的教学重点:用一元一次方程解决实际问题,体会数学建模的思想方法.运用从特殊到一般的方法发现规律.二、目标和目标解析1.目标(1)从实际问题中抽象出数学问题,根据等量关系列出一元一次方程,从而解决实际问题;会解含有字母系数的方程.(2)体会数学建模的思想方法;掌握由特殊到一般的方法,发现规律.(3)在积极参与数学活动中,合作交流,体验用数学解决实际问题的乐趣,获得成功的乐趣.2.目标解析达成目标(1)的标志是:学生阅读题目,分析题目中的量,分清已知量、未知量,设未知量为x,根据等量关系列出方程,解出方程,能解释实际问题。

活动2的方程中x,n,l为字母,其中,n,l为已知数,学生要正确解出x.目标(2)是活动中蕴含的思想方法,学生解题过程中,体会从实际问题抽象出数学问题,用数学符号建立方程,求出结果并解释实际问题;在实验操作中,从记录的特殊数据入手,再扩展到一般,感受由一般到特殊的发现规律的方法.达成目标(3)的标志是:学生在小组活动中积极思考,敢于表达,合作解决问题,感受数学在解决实际问题中的价值.三、教学问题诊断分析活动1中的题意理解,“扣除价格上涨因素”不容易理解,学生充分理解后才能将其转化为数学问题.活动2,学生要在操作中分析哪些数据需要记录,把它转化为数学问题进一步分析.本节课的教学难点是:从实际问题中抽象出数学问题.四、教学支持条件分析根据本节课的特点,学生需要一步智能手机,教师录制微课,提前发布在UMU互动上,制作PPT,从物理实验室借杠杆的相关器材.五、教学过程设计数学活动1统计资料表明,山水市去年的人均收入为11664元,与前年相比增长8%,扣除价格上涨因素,实际增长6.5%.根据上面的数据,你能用一元一次方程解决下面的问题吗?(1)山水市前年居民的人均收入为多少元?(2)在山水市,去年售价为1000元的商品在前年的售价为多少元?师生活动学生阅读题目,理解题意,由多名学生发言,理解“扣除价格上涨因素”.小组合作,解决(1)(2)问.将分析解题的过程写在学案卷上,并拍照上传至UMU互动,由小组代表展示解题过程.学生在探究过程中,教师可以帮助理清思路,题目中涉及了哪些量?哪些是已知量,哪些是未知量?三个量之间有什么等量关系?将未知量设为x,根据等量关系列方程解题.师生共同总结活动1,列方程解题的步骤是什么?在解题过程中运用了什么思想方法?运用了什么数学知识?数学活动2用一根质地均匀的木杆和一些等重的小物体做下列实验:(1)在木杆中间处栓绳,将木杆吊起并使其左右平衡,吊绳处为木杆的支点;(2)在木杆两端各悬挂一重物,看看左右是否保持平衡;(3)在木杆左端小物体下加挂一重物,然后把这两个重物一起向右移动,直至左右平衡,记录此时支点到木杆左右两边挂重物处的距离;(4)在木杆左端两小物体下再加挂一重物,然后把这三个重物一起向右移动,直至左右平衡,记录此时支点到木杆左右两边挂重物处的距离;(5)在木杆左边继续加挂重物,并重复以上操作和记录.根据记录你能发现什么规律?如图,在木杆右端挂一个重物,支点左边挂n个重物,并使左右平衡.设木杆长为l cm,支点在木杆中点处,支点到木杆左边挂重物处的距离为xcm,把n,l作为已知数,列出关于x的一元一次方程.师生活动学生动手操作(1)(2)两步,教师引导学生思考,在操作过程中,哪些量是需要记录的?协助学生用表格记录操作数据.学生动手操作,并记录填表,小组合作发现规律,将表格,发现规律,一起拍照上传至UMU互动.小组代表展示发言.然后利用规律,尝试应用规律解决问题.将解题过程上传至UMU互动,一名学生上前展示解题过程.在探究规律时,需要记录哪些量,怎样清晰的记录,以便易于发现规律,教师协助学生分析.在解含有字母系数的方程时,教师引导学生思考,怎么变形的?依据什么性质?使学生注意到,在解带有字母系数的方程,系数化为1时,应考虑字母系数不能为0.师生共同总结活动2,活动2发现规律经历了什么过程?在活动2中,运用了什么数学思想方法?运用了什么数学知识?小结教师和学生一起回顾本节课内容,并请学生谈收获.课堂反馈“丰收1号”油菜籽的平均每公顷产量为2400kg,含油率为40%.“丰收2号”油菜籽比“丰收1号”的平均每公顷产量提高了300kg,含油率提高了10个百分点.某村去年种植“丰收1号”油菜,今年改种“丰收2号”油菜,虽然种植面积比去年减少32hm,但是所产油菜籽的总产油量比去年提高3750kg.这个村去年和今年种植油菜的面积各是多少公顷?布置作业再收集一些数据资料,想一想利用这些数据之间的关系,利用一元一次方程,能否从中再计算出一些新数据.教学反思平时的教学,更注重知识的学习和方法的训练,而数学活动课,更开放,让学生体会到,数学是可以解决实际问题的,数学也是学习其它学科的重要工具,所以,这一课,学生和我都是很期待的。

人教版数学七年级上册单元教案-第三章《一元一次方程》

人教版数学七年级上册单元教案-第三章《一元一次方程》

第三章 一元一次方程3.1 从算式到方程3.1.1 一元一次方程01 教学目标1.能根据题意用字母表示未知数,然后分析出等量关系,再根据等量关系列出方程.2.理解方程、一元一次方程的定义及解的概念.3.掌握检验某个数值是不是方程的解的方法.02 预习反馈阅读教材P78~80,完成下列内容.1.含有未知数的等式叫方程.2.只含有一个未知数(元),未知数的次数都是1,等号两边都是整式,这样的方程叫做一元一次方程.3.解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解.4.判断下列各题是不是一元一次方程,是打“√”,不是打“×”.(1)x +3=4;(√)(2)42x +13=6-y ;(×)(3)1x=6;(×) (4)2x -8>-10.(×)5.根据下面实际问题中的数量关系,设未知数列出方程:(1)练习本每本0.8元,小明拿了10元钱买了若干本,还找回4.4元.问:小明买了几本练习本?解:设小明买了x 本,列方程得:0.8x =10-4.4.(2)长方形的周长为24 cm ,长比宽多2 cm ,求长和宽分别是多少.解:设长为x cm ,则宽为(x -2)cm ,依题意得方程:2(x +x -2)=24.03 名校讲坛例1 (教材补充例题)下列方程是一元一次方程的是(B)A .x 2+x =5B .x +x 3=4C .x +y =7 D.5x -9=2 【点拨】 一元一次方程的四个组成要素:(1)含有一个未知数;(2)未知数的次数是1;(3)是方程;(4)等号两边都是整式.【跟踪训练1】 (《名校课堂》3.1.1习题)已知式子:①3-4=-1;②2x -5y ;③1+2x =0;④6x +4y =2;⑤3x 2-2x +1=0,其中是等式的有①③④⑤,是方程的有③④⑤.例2 (教材补充例题)检验下列方程后面括号内的数是不是方程的解.(1)3x -1=2(x +1)-4;(x =-1)(2)6x -53=3(x -2).(x =13) 解:(1)把x =-1代入方程,左边=-3-1=-4,右边=2(-1+1)-4=-4,则左边=右边.故x =-1是方程的解.(2)把x =13代入方程,左边=6×13-53=2-53=-1, 右边=3(13-2)=-5, 左边≠右边,则x =13不是方程的解. 【点拨】 判断一个数是不是某个方程的解的方法:根据方程的解的定义,只要用这个数代替方程中的未知数,看方程左右两边的值是否相等即可,如果左边=右边,那么这个数就是方程的解;否则,这个数就不是方程的解.【跟踪训练2】 (《名校课堂》3.1.1习题)检验下列各题括号内的值是否为相应方程的解:(1)2x -3=5(x -3){x =6,x =4};解:x =6不是方程的解,x =4是方程的解.(2)4x +5=8x -3{x =3,x =2}.解:x =3不是方程的解,x =2是方程的解.例3 (教材P79例1)根据下列问题,设未知数并列出方程:(1)用一根长24 cm 的铁丝围成一个正方形,正方形的边长是多少?(2)一台计算机已使用1 700 h ,预计每月使用150 h ,经过多少月这台计算机的使用时间达到规定的检修时间 2 450 h?(3)某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?解:(1)设正方形的边长为x cm.列方程 4x =24.(2)设x 月后这台计算机的使用时间达到2 450 h ,那么在x 月里这台计算机使用了150x h.列方程 1 700+150x =2 450.(3)设这个学校的学生数为x ,那么女生数为0.52x ,男生数为(1-0.52)x.列方程 0.52x -(1-0.52)x =80.【点拨】 设未知数,找等量关系,用方程表示简单实际问题中的相等关系.【跟踪训练3】 (《名校课堂》3.1.1习题)根据题意列出方程:(1)《文摘报》每份0.5元,《信息报》每份0.4元,小刚用7元钱买了两种报纸共15份,他买的两种报纸各多少份?(2)水上公园某一天共售出门票128张,收入912元,门票价格为成人每张10元,学生可享受六折优惠.这一天出售的成人票与学生票各多少张?解:(1)设买《文摘报》x 份,则买《信息报》(15-x)份,根据题意列方程,得0.5x +0.4(15-x)=7.(2)设出售成人票x 张,则出售学生票(128-x)张,根据题意列方程,得10x +60%×10×(128-x)=912.04 巩固训练1.下列方程的解为x =2的是(C)A .5-x =2B .3x -1=4-2xC .3-(x -1)=2x -2D .x -4=5x -22.在2+1=3,4+x =1,y 2-2y =3x ,x 2-2x +1中,一元一次方程有(A)A .1个B .2个C .3个D .4个3.“一个数比它的相反数大-4”,若设这个数是x ,则可列出关于x 的方程为(B)A .x =-x +4B .x =-x +(-4)C .x =-x -(-4)D .x -(-x)=44.小丁今年5岁,妈妈今年30岁,几年后,妈妈的年龄是小丁的2倍?设x 年后,妈妈的年龄是小丁的2倍,则x 年后小丁的年龄为(x +5)岁,妈妈的年龄为(x +30)岁.根据题意列出方程为2(x +5)=(x +30).05 课堂小结1.方程及一元一次方程的定义.2.如何列方程,什么是方程的解.3.1.2 等式的性质01 教学目标1.了解等式的两条性质.2.会用等式的性质解简单的一元一次方程.02 预习反馈阅读教材P81~82,完成下列内容.1.等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.如果a =b ,那么a±c =b±c .2.等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.如果a =b ,那么ac =bc ;如果a=b(c ≠0),那么a c =b c. 3.已知a =b ,请用“=”或“≠”填空:(1)3a =3b ; (2)a 4=b 4; (3)-5a =-5b. 4.利用等式的性质解下列方程:(1)x -9=6; (2)-0.2x =10.解:(1)x =15. (2)x =-50.03 名校讲坛例1 (教材补充例题)(1)若m +2n =p +2n ,则m =p ,依据等式的性质1等式两边都减去2n ;(2)若2a =2b ,则a =b ,根据等式的性质2,等式两边都除以2.【点拨】 利用等式的性质对等式进行恒等变形的“三点注意”:(1)等式性质1和等式性质2是等式恒等变形的重要依据;(2)利用等式的性质1,等式的两边必须同加或同减一个数(或式子);(3)利用等式的性质2,等式两边必须同乘或同除以一个不为0的数.【跟踪训练1】 (《名校课堂》3.1.2习题)说出下列各等式变形的依据:(1)由x -5=0,得x =5;解:根据等式的性质1,等式两边同时加5.(2)由-y 3=10,得y =-30; 解:根据等式的性质2,等式两边同时乘-3.(3)由2=x -3,得-x =-3-2.解:根据等式的性质1,等式两边同时减(x +2).例2 (教材P82例2)利用等式的性质解下列方程:(1)x +7=26;(2)-5x =20;(3)-13x -5=4. 分析:要使方程x +7=26转化为x =a(常数)的形式,需去掉方程左边的7,利用等式的性质1,方程两边减7就得出x 的值,你可以类似地考虑另两个方程如何转化为x =a 的形式.解:(1)两边减7,得x +7-7=26-7.于是x =19.(2)两边除以-5,得-5x -5=20-5. 于是x =-4.(3)两边加5,得-13x -5+5=4+5. 化简,得-13x =9. 两边乘-3,得x =-27.【点拨】 利用等式的性质解一元一次方程ax +m =n 的步骤:(1)利用等式性质1将已知方程化为ax =b 的形式(即方程左边只含未知项,右边是常数);(2)利用等式的性质2将方程ax =b(a ≠0)化为x =b a的形式(即方程左边未知数的系数是1,右边是常数). 【跟踪训练2】 (《名校课堂》3.1.2习题)利用等式的性质解方程:(1)8+x =-5;解:两边减8,得x =-13.(2)4x =16;解:两边除以4,得x =4.(3)3x -4=11.解:两边加4,得3x =15.两边除以3,得x =5.04 巩固训练1.方程-6x =3的两边都除以-6,得(C)A .x =-2B .x =12C .x =-12D .x =2 2.下列结论中,正确的是(B)A .在等式3a -6=3b +5的两边都除以3,可得等式a -2=b +5B .如果2=-x ,那么x =-2C .在等式5=0.1x 的两边都除以0.1,可得等式x =0.5D .在等式7x =5x +3的两边都减去x -3,可得等式6x -3=4x +63.如果am =an ,那么下列等式不一定成立的是(C)A .am -3=an -3B .5+am =5+anC .m =nD .0.5am =0.5an4.利用等式的性质解下列方程:(1)-a 2-3=5; (2)3x +6=31+2x. 解:(1) a =-16.(2)x =25.05 课堂小结1.等式有哪些性质?2.应用等式的性质对等式进行变形时的注意点:(1)等式两边都要参加运算,并且是做同一种运算;(2)等式两边加、减、乘、除的数或式子一定相同;(3)0不能作除数;(4)不能像算式那样写连贯的等号.3.2 解一元一次方程(一)——合并同类项与移项第1课时 利用合并同类项解一元一次方程01 教学目标经历把方程等号两边分别合并同类项的过程,能用合并同类项解一元一次方程.02 预习反馈阅读教材P86~87“问题1及例1”,完成下列内容.1.形如“ax +bx =c ”的方程,先合并同类项,再把未知数系数化为1.2.补全下列解方程的过程:(1)6x -x =4;解:合并同类项,得 5x =4.系数化为1,得x =45. (2)-4x +6x -0.5x =-0.3.解:合并同类项,得1.5x =-0.3.系数化为1,得x =-15. 03 名校讲坛例 (教材P87例1变式)解下列方程:(1)x 2+x +2x =140; (2)3x -1.3x +5x -2.7x =-12×3-6×4.解:(1)x =40. (2)x =-15.【点拨】 用合并同类项解一元一次方程的步骤:(1)合并同类项,把原方程化为ax =b(a ≠0)的形式;(2)系数化为1,若合并后未知数的系数是1,则没有这个步骤.系数化为1的技巧:①若未知数的系数是不等于0和1的整数,则方程两边除以这个整数;②若未知数的系数是分数m n ,则方程两边乘它的倒数,即乘n m; ③若未知数的系数是带分数(小数),则先化为假分数(分数),再按情形②处理.总之,不要一律地除以未知数的系数,要视具体情况灵活处理.【跟踪训练】 (《名校课堂》3.2第1课时习题)解下列方程:(1)6x -5x =3;解:合并同类项,得x =3.(2)-x +3x =7-1;解:合并同类项,得2x =6.系数化为1,得x =3.(3)x 2+5x 2=9; 解:合并同类项,得3x =9.系数化为1,得x =3.(4)6y +12y -9y =10+2+6.解:合并同类项,得9y =18.系数化为1,得y =2.04 巩固训练1.对于方程8x +6x -10x =6进行合并正确的是(C)A .3x =6B .2x =6C .4x =6D .8x =62.方程18x -3x +5x =11的解是(C)A .x =2611B .x =-2011C .x =1120D .x =11103.方程10x -2x =6+1两边合并后的结果为8x =7,其解为x =78. 4.解下列方程:(1)-10x -6x =-7+15; (2)23x -56x =-67; (3)14x -12x =-7-6; (4)-32y -3y =52-2. 解:(1)x =-12. (2)x =367. (3)x =52. (4)y =-19. 05 课堂小结1.你今天学习的解方程有哪些步骤?合并同类项,系数化为1(等式的性质2).2.合并同类项即是将方程中含未知数的项和常数项分别合并,系数化为1的依据是等式的性质2.第2课时 利用合并同类项解一元一次方程的实际问题01 教学目标经历用“总量=各部分量的和”这一基本关系列一元一次方程解决实际问题的过程,掌握一元一次方程的简单应用.02 预习反馈阅读教材P86“例1”,完成下列内容.学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,求今年购置计算机的数量.解:设今年购置计算机x 台,则去年购置计算机13x 台.根据题意,得x +13x__=100,解得x =75. 答:今年购置计算机75台.03 名校讲坛例 (教材P86例1变式)中国某明星与麦当劳公司签约,该明星作为麦当劳的形象代言人,三年获酬金1 400万美元,若前一年的酬金是后一年的一半,且不考虑税金,则他第一年应得酬金多少万美元?解:设该明星第一年的酬金为x 万美元,则第二年的酬金为2x 万美元,第三年的酬金为4x 万美元,由题意,得 x +2x +4x =1 400,即7x =1 400.等式两边都除以7,得x =200.答:该明星第一年应得酬金200万美元.【点拨】【跟踪训练】 (《名校课堂》3.2第2课时习题)麻商集团三个季度共销售冰箱2 800台,第一个季度销售量是第二个季度的2倍,第三个季度销售量是第一个季度的2倍,试问麻商集团第二个季度销售冰箱多少台?解:设麻商集团第二个季度销售冰箱x 台,则第一个季度销售量为2x 台,第三个季度销售量为4x 台.根据总量等于各分量的和,得x +2x +4x =2 800.解得x =400.答:麻商集团第二个季度销售冰箱400台.04 巩固训练1.已知某数的3倍与这个数的2倍的和是30,求这个数.解:设这个数是x.根据题意,得3x +2x =30.解得x =6.答:这个数是6.2.据某统计数据显示,在我国的700座城市中,按水资源情况可分为三类:暂不缺水城市、一般缺水城市和严重缺水城市,其中,暂不缺水城市数是严重缺水城市数的4倍,一般缺水城市数是严重缺水城市数的2倍,求严重缺水的城市有多少座?解:设严重缺水的城市有x 座.根据题意,得4x +2x +x =700.解得x =100.答:严重缺水的城市有100座.3.蜘蛛有8条腿,蜻蜓有6条腿,现有蜘蛛、蜻蜓若干只,它们共有120条腿,且蜻蜓的只数是蜘蛛的2倍,蜘蛛、蜻蜓各有多少只?解:设蜘蛛有x 只,则蜻蜓有2x 只,根据题意,得8x +6×2x =120.解得x =6.所以蜻蜓有:6×2=12(只).答:蜘蛛有6只,蜻蜓有12只.05 课堂小结如何列方程?分哪些步骤?(1)设未知数;(2)分析题意找出等量关系;(3)根据等量关系列方程.第3课时 利用移项解一元一次方程01 教学目标1.经历利用等式的性质解一元一次方程的过程,通过观察、比较、归纳出移项的法则.2.能用移项解一元一次方程.02 预习反馈阅读教材P88~89“问题2及例3”,完成下列内容.1.把等式一边的某项变号后移到另一边,叫做移项.2.补全下列解方程的过程:(1)5x -8=-3x -2;解:移项,得5x +3x =-2+8.合并同类项,得8x =6.系数化为1,得x =34. (2)3x +7=32-2x.解:移项,得3x +2x =32-7.合并同类项,得5x =25.系数化为1,得x =5.03 名校讲坛例1 (教材P89例3变式)解下列方程:(1)x -2=3-x ;(2)-x =1-2x ;(3)x -2x =1-23x ; (4)x -3x -1.2=4.8-5x.解:(1)x =52. (2)x =1. (3)x =-3. (4)x =2. 【点拨】 移项时要改变项的符号,通常把含未知数的项移到方程的左边,而常数项移到方程的右边.【跟踪训练】 (《名校课堂》3.2第3课时习题)解下列方程:(1)4x =9+x ;解:移项,得4x -x =9.合并同类项,得3x =9.系数化为1,得x =3.(2)4-35m =7; 解:移项,得-35m =7-4. 合并同类项,得-35m =3. 系数化为1,得m =-5.(3)4x +5=3x +3-2x ;解:移项,得4x -3x +2x =-5+3.合并同类项,得3x =-2.系数化为1,得x =-23.(4)8y -3=5y +3.解:移项,得8y -5y =3+3.合并同类项,得3y =6.系数化为1,得y =2.04 巩固训练1.下列变形过程中,属于移项的是(C)A .由3x =-1,得x =-13B .由x 4=1,得x =4 C .由3x +5=0,得3x =-5D .由-3x +3=0,得3-3x =02.对方程2x -3+x =6进行移项,下列正确的是(C)A .2x -x =6+3B .2x -x =6-3C .2x +x =6+3D .2x +x =6-33.方程3x +1=2x 的解是(A)A .x =-1B .x =1C .x =-2D .x =24.解下列方程:(1)5x =3x -12;(2)8x -5=7x +2;(3)12x -7=8x -3;(4)7y +8=2y -5-3y.解:(1)x =-6.(2)x =7.(3)x =1.(4)y =-138. 05 课堂小结1.今天你又学会了解方程的哪些方法?有哪些步骤?每一步的依据是什么?2.移项的“两注意”:(1)“两变”,即一变位置(从方程的一边移到另一边),二变符号,不要只变位置而不变符号;(2)要与交换律加以区别,在方程的同一边交换项的位置时,符号不变.第4课时 利用移项解一元一次方程的实际问题01 教学目标经历用“表示同一个量的两个不同的式子相等”这一基本关系列一元一次方程解决实际问题的过程,掌握一元一次方程的简单应用.02 预习反馈阅读教材P90“例4”,完成下列内容.某果园12的面积种植了苹果树,14的面积种植了葡萄树,其余40 000 m 2的面积种植了桃树.求这个果园的面积. 解:设这个果园的面积是x m 2,根据题意,得12x +14x +40 000=x . 解得x =160__000.答:这个果园的面积是160__000__m 2.03 名校讲坛例 (教材P90例4变式)将一堆糖果分给幼儿园某班的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗,这个班共有多少名小朋友?解:设这个班共有x 名小朋友.根据题意,得2x +8=3x -12,解得x =20.答:这个班共有20名小朋友.【点拨】 用“表示同一个量的两个不同的式子相等”列一元一次方程解决实际问题的步骤:(1)设两个未知量中的一个为未知数x ;(2)用含x 的两个不同式子表示另一个未知量;(3)建立一元一次方程;(4)解方程;(5)检验,作答.【跟踪训练】 (《名校课堂》3.2第4课时习题)清明节期间,七(1)班全体同学分成若干小组到革命传统教育基地缅怀先烈,若每小组7人,则余下3人;若每小组8人,则少5人.该班共有多少名同学?解:设一共分为x 个小组.由题意,得7x +3=8x -5.解得x =8.则7x +3=7×8+3=59.答:该班共有59名同学.04 巩固训练1.用大小两台拖拉机耕地,每小时共耕地30亩.已知大拖拉机的效率是小拖拉机的1.5倍,问小拖拉机每小时耕地多少亩?解:设小拖拉机每小时耕地x 亩.根据题意,得30-x =1.5x.解得x =12.答:小拖拉机每小时耕地12亩.2.学校举办秋季田径运动会,八年级(1)班班委会为班上参加比赛的运动员购买了8箱饮料,如果每人发2瓶,那么剩余16瓶;如果每人发3瓶,那么少24瓶.问该班有多少人参加比赛?解:设该班有x 人参加比赛.依题意,得2x +16=3x -24.解得x =40.答:该班有40人参加比赛.3.根据图中的信息,求梅花鹿和长颈鹿现在的高度.解:设梅花鹿现在高x m.根据题意,得3x +1=x +4.解得x =1.5.所以x +4=5.5.答:梅花鹿现在高1.5 m ,长颈鹿现在高5.5 m.05 课堂小结1.学生试述本节课学了哪些内容?2.本节课讨论的问题中的相等关系又有何共同特点?3.3 解一元一次方程(二)——去括号与去分母第1课时 利用去括号解一元一次方程01 教学目标1.经历从实际问题中抽象出一元一次方程,且用去括号法则化简、求解方程的过程.2.会解含有括号的一元一次方程.02 预习反馈阅读教材P93~94“问题1及例1”,完成下列内容.1.要去括号,就要根据去括号法则及乘法分配律,特别是当括号前是“-”号时,去括号时,各项都要变号,若括号前有数字,则要乘遍括号内所有项,不能漏乘并注意符号.2.补全下列解方程的过程:(1)2(x -2)=-(x +3);解:去括号,得2x -4=-x -3.移项,得2x +x =-3+4.合并同类项,得3x =1.系数化为1,得x =13. (2)2(x -4)+2x =7-(x -1).解:去括号,得2x -8+2x =7-x +1.移项,得2x +2x +x =7+1+8.合并同类项,得5x =16.系数化为1,得x =165. 03 名校讲坛例 (教材P94例1变式)解方程:(1)4x +2(x -2)=12-(x +4);(2)6(12x -4)+2x =7-(13x -1); (3)3(x -2)+1=x -(2x -1).解:(1)x =127. (2)x =6. (3)x =32.【点拨】【跟踪训练】 (《名校课堂》3.3第1课时习题)解下列方程:(1)3(x -4)=12;解:去括号,得3x -12=12.移项,得3x =12+12.合并同类项,得3x =24.系数化为1,得x =8.(2)2(3x -2)-5x =0;解:去括号,得6x -4-5x =0.移项,得6x -5x =4.合并同类项,得x =4.(3)5-(2x -1)=x ;解:去括号,得5-2x +1=x.移项,得-2x -x =-5-1.合并同类项,得-3x =-6.系数化为1,得x =2.(4)12(x -2)=3-12(x -2). 解:去括号,得12x -1=3-12x +1. 移项,得12x +12x =3+1+1. 合并同类项,得x =5.04 巩固训练1.将方程3(x -1)=6去括号,正确的是(D)A .3x -1=6B .x -3=6C .3x +3=6D .3x -3=62.方程2(x -1)=x +2的解是(D)A .x =1B .x =2C .x =3D .x =43.解方程:3(3x +5)=2(2x -1).解:去括号,得9x +15=4x -2.移项,得9x -4x =-2-15.合并同类项,得5x =-17.系数化为1,得x =-175. 4.解下列方程:(1)2-(1-x)=-2; (2)4(2-x)-4(x +1)=60.解:(1)x =-3. (2)x =-7.05 课堂小结用去括号解一元一次方程的步骤:(1)去括号;(2)移项;(3)合并同类项;(4)系数化为1.第2课时 利用去括号解一元一次方程的实际问题01 教学目标经历解决在水中航行的问题的过程,会列含括号的一元一次方程解决实际问题.02 预习反馈阅读教材P94“例2”,完成下列内容.学校团委组织65名团员为学校建花坛搬砖,初一的同学每人搬6块,其他年级的同学每人搬8块,总共搬了400块,问初一的同学有多少人参加了搬砖?解:设初一的同学有x 人参加了搬砖.根据题意,得6x +8(65-x)=400.去括号,得6x +520-8x =400.移项,得6x -8x =400-520.合并同类项,得-2x =-120.系数化为1,得x=60.答:初一的同学有60人参加了搬砖.03名校讲坛例(教材P94例2变式)一艘船从甲码头到乙码头顺流而行,用了2 h;从乙码头返回甲码头逆流而行,用了2.5 h.已知水流的速度是3 km/h,求甲、乙两码头之间的距离.解:设船在静水中的速度为x km/h,则,顺流速度为(x+3)km/h,逆流速度为(x-3)km/h,依题意,得2(x+3)=2.5(x-3),解得x=27,2(x+3)=60.答:甲、乙两码头之间的距离为60 km.【点拨】解决水中航行问题的关键:(1)弄清以下数量关系:①路程=速度×时间.②顺流行驶速度=静水中的速度+水的速度,即v顺=v静+v水;逆流行驶速度=静水中的速度-水的流速,即v逆=v静-v水.③v顺-v水=v逆+v水.(2)确定建立方程的根据:①求速度时,根据往返的路程相等列方程.②求两码头间的距离时,既可设间接未知数,也可设直接未知数,若是前者,则根据往返路程相等列方程;若是后者,则根据“表示静水中速度的两个不同的式子相等”列方程.【跟踪训练】(《名校课堂》3.3第2课时习题)丽水市为打造“浙江绿谷”品牌,决定在省城举办农副产品展销活动.某外贸公司推出品牌产品“山山牌”香菇、“奇尔”惠明茶共10吨前往参展,用6辆汽车装运,每辆汽车规定满载,且只能装运一种产品.因包装限制,每辆汽车满载时能装香菇1.5吨或茶叶2吨.问装运香菇、茶叶的汽车各需多少辆?解:设装运香菇的汽车需x辆.根据题意,得1.5x+2(6-x)=10.解得x=4.所以6-x=2.答:装运香菇、茶叶的汽车分别需要4辆和2辆.04巩固训练1.一艘船从甲码头到乙码头顺流而行,用了2 h;从乙码头返回甲码头逆流而行,用了2.5 h.已知船在静水中的平均速度为27 km/h,求水流的速度.解:设水流的速度为x km/h.根据题意,得2(27+x)=2.5(27-x)解得x=3.答:水流的速度为3 km/h.2.甲粮仓存粮1 000吨,乙粮仓存粮798吨,现要从两个粮仓中共运走212吨粮食,使两仓库剩余的粮食数量相等,那么应从这两个粮仓各运出多少吨?解:设从甲粮仓运出x吨,则从乙粮仓运出(212-x)吨.由题意,得1000-x=798-(212-x).解得x=207.212-207=5(吨).答:从甲仓库运出207吨,从乙仓库运出5吨.3.杭州新西湖建成后,某班40名同学去划船游湖,一共租了8条小船,其中有可坐4人的小船和可坐6人的小船,40名同学刚好坐满8条小船,问这两种小船各租了几条?解:设可坐4人的小船租了x条.根据题意,得4x+6(8-x)=40.解得x=4,所以8-x=4.答:可坐4人的小船租了4条,可坐6人的小船租了4条.05课堂小结通过这节课,你在用一元一次方程解决实际问题方面又有哪些收获?第3课时利用去分母解一元一次方程01教学目标1.经历利用等式的性质2,将方程中系数都化为整数并求解的过程,会解含有分母的一元一次方程.2.经历用一元一次方程解决实际问题的过程,会列含分母的一元一次方程解决实际问题.02 预习反馈阅读教材P95~97“问题2及例3”,完成下列内容.1.解一元一次方程的一般步骤包括:去分母、去括号、移项、合并同类项、系数化为1等.通过这些步骤可以使以x 为未知数的方程逐步向着x =a 的形式转化,这个过程主要依据等式的基本性质和运算律等.2.解方程:3x +x -12=x +14-2x -13. 解:两边都乘12,去分母,得12×3x +6(x -1)=3(x +1)-4(2x -1).去括号,得36x +6x -6=3x +3-8x +4.移项,得36x +6x -3x +8x =3+4+6.合并同类项,得47x =13.系数化为1,得x =1347. 3.碧空万里,一群大雁在飞翔,迎面又飞来一只小灰雁,它对群雁说:“你们好,百只雁!你们百雁齐飞,好气派!可怜我是孤雁独飞.”群雁中一只领头的老雁说:“不对!小朋友,我们远远不足100只.将我们这一群加倍,再加上半群,又加上四分之一群,最后还得请你也凑上,那才一共是100只呢”.请问这群大雁有多少只? 解:设这群大雁有x 只.由题意,得2x +12x +14x +1=100. 解得x =36.答:这群大雁有36只.03 名校讲坛例1 (教材P97例3变式)解方程:(1)5x -14=3x +12-2-x 3; (2)2x +13-x +26=1; (3)3x -2x -12=2-x -25. 解:(1)x =-17. (2)x =2.(3)x =1922. 【点拨】 解含分母的一元一次方程的注意点:(1)去分母时,如果分子是一个多项式,要将分子作为一个整体加上括号;(2)去分母时,整数项不要漏乘各分母的最小公倍数;(3)去括号时容易出现漏乘现象和符号错误.【跟踪训练1】 (《名校课堂》3.3第3课时习题)解下列方程:(1)2x -13=x +24; 解:去分母,得8x -4=3x +6.移项,得8x -3x =4+6.合并同类项,得5x =10.系数化为1,得x =2.(2)2x -12=x +24-1; 解:去分母,得4x -2=x +2-4.移项,得4x -x =2+2-4.合并同类项,得3x =0.系数化为1,得x =0.(3)x -32-4x +15=1; 解:去分母,得5(x -3)-2(4x +1)=10.去括号,得5x -15-8x -2=10.移项,得5x -8x =15+2+10.合并同类项,得-3x =27.系数化为1,得x =-9.(4)2x +13=1-x -15. 解:去分母,得5(2x +1)=15-3(x -1).去括号,得10x +5=15-3x +3.移项,得10x +3x =-5+15+3.合并同类项,得13x =13.系数化为1,得x =1.例2 (教材补充例题)书正和子轩两人登一座山,书正每分钟登高10米,并且先出发30分钟,子轩每分钟登高15米,两人同时登上山顶.这座山有多高?解:设这座山高x 米,依题意,有x -10×3010=x 15,解得x =900. 答:这座山高900米.【跟踪训练2】 某船从A 地顺流而下到达B 地,然后逆流返回,到达A 、B 两地之间的C 地,一共航行了7小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时.A 、C 两地之间的距离为10千米,求A 、B 两地之间的距离.解:设A 、B 两地之间的距离为x 千米,则B 、C 两地之间的距离为(x -10)千米,由题意,得x 8+2+x -108-2=7,解得x =32.5. 答:A 、B 两地之间的距离为32.5千米.04 巩固训练1.解方程3x -72-1+x 3=1,去分母后的方程为(D) A .3(3x -7)-2+2x =6 B .3x -7-(1+x)=1C .3(3x -7)-2(1-x)=1D .3(3x -7)-2(1+x)=62.如果式子1-2x 3的值等于5,那么x 的值是(B) A .-5 B .-7 C .3 D .53.解下列方程:(1)y -12=y +25; (2)2x -23-2x -36=1. 解:(1)y =3. (2)x =72. 4.一块金银合金重770克,金放在水中质量减轻119,银放在水中质量减轻110,这块合金放在水中质量一共减轻50克,这块合金中金、银各多少?解:设合金中含金x 克,则含银(770-x)克.根据题意,得119x +110×(770-x)=50. 解得x =570.所以770-x=770-570=200.答:这块合金中含金570克,含银200克.05课堂小结1.去分母解一元一次方程时要注意什么?2.去分母解一元一次方程时,在方程两边同时乘各分母最小公倍数的目的是什么?3.4实际问题与一元一次方程第1课时和差倍分问题01教学目标能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列一元一次方程解决和差倍分问题.02预习反馈出青林场今年植树2 800棵,比去年植树的2倍还多400棵,去年植树多少棵?(1)这个题目中的已知量是今年植树棵树,未知量是去年植树棵树;(2)这个题目中的等量关系是今年植树棵树=2×去年植树棵树+400棵;(3)列出方程解答这个问题.解:设去年植树x棵.根据题意,得2 800=2x+400.解得x=1 200.答:去年植树1 200棵.03名校讲坛例清池中学少年宫为鼓励阳光少年自尊自爱,勤奋学习,准备对五名表现相当优秀的阳光少年进行奖励.通过了解,好乐多超市每支钢笔的价格比每本笔记本高8元,用124元恰好可以买到3支钢笔和2本笔记本.每支钢笔和每本笔记本的价格各是多少元?【分析】设每支钢笔的价格为x元,则每本笔记本的价格为(x-8)元.根据用124元恰好可以买到3支钢笔和2本笔记本,列一元一次方程求解.【解答】设每支钢笔的价格为x元,则每本笔记本的价格为(x-8)元.根据题意,得3x+2(x-8)=124.解得x=28.则x-8=20(元).答:每支钢笔的价格为28元,每本笔记本的价格为20元.【点拨】用“各分量之和等于总量”列一元一次方程.【跟踪训练】为促进教育均衡发展,A市实行“阳光分班”,某校七年级一班共有新生45人,其中男生比女生多3人,求该班男生、女生各有多少人.解:设女生有x人,根据题意,得x+x+3=45.解得x=21.则x+3=24.答:该班男生有24人,女生有21人.04巩固训练1.某市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等,如果每隔5米栽1棵,那么树苗缺21棵;如果每隔6米栽1棵,那么树苗正好用完,设原有树苗x 棵,则根据题意列出方程正确的是(A)A.5(x+21-1)=6(x-1) B.5(x+21)=6(x-1)C.5(x+21-1)=6x D.5(x+21)=6x【点拨】用表示同一个量的两个不同的式子相等列一元一次方程.2.把300个苹果按4∶5∶6分给幼儿园的小、中、大三个班.小班、中班、大班各分得多少个苹果?解:设一份为x个苹果,则小班、中班、大班分别为4x、5x、6x.根据题意,得4x+5x+6x=300.解方程,得x=20.则4x=80,5x=100,6x=120.。

第三章《一元一次方程》教学设计(人教版初中数学七年级上册)

第三章《一元一次方程》教学设计(人教版初中数学七年级上册)

新人教版七年级上学期数学第三章一元一次方程教学内容本章主要内容包括:一元一次方程及其相关概念,一元一次方程的解法,利用一元一次方程分析和解决实际问题。

分析实际问题中的数量关系并用一元一次方程表示是始终贯穿这些内容的主线,而且始终渗透着“数学建模”和“化归”的思想方法。

通过丰富实例,从算式到方程建立一元一次方程,展开方程是刻划现实生活的有效数学模型;通过观察、归纳引出不等式的两条性质,为进一步讨论较复杂的一元一次方程的解法准备理论依据;从实际问题出发,运用等式的性质解方程,归纳“移项”、“合并”、“去括号”等法则,逐步展现求解方程的一般步骤;运用方程解决实际问题,通过探究活动,加强数学建模思想,提高学生分析问题和解决问题的能力。

本教案对列方程解决实际问题的内容作了较集中的归类讨论。

教学目标〔知识与技能〕1、理解一元一次方程及有关概念和等式的基本性质;2、熟练掌握一元一次方程的解法(数字系数)并学会运用一元一次方程解决简单的实际问题。

〔过程与方法〕经历解一元一次方程和列一元一次方程解决实际问题的过程,明确解一元一次方程和列一元一次方程的基本步骤,初步树立数学建模思想和体会化归思想的运用。

〔情感、态度与价值观〕在解决实际问题中,体会数学的应用价值,激发学习数学的欲望,提高分析问题和解决问题的能力。

重点难点一元一次方程的解法和运用是重点,列一元一次方程解决实际问题是难点。

课时分配3.1 从算式到方程…………………………………………2课时3.2 解一元一次方程的讨论(一)…………………………3课时3.3 解一元一次方程的讨论(一)…………………………4课时3.4 实际问题与一元一次方程…………………………3课时本章小结………………………………………… 2课时3.1.1一元一次方程[教学目标]理解一元一次方程的概念,会识别一元一次方程;了解方程的解,会验证方程的解;知道怎样列方程解决实际问题,感受方程作为刻画现实世界有效模型的意义。

初中数学人教七年级上册第三章 一元一次方程一元一次方程教案

初中数学人教七年级上册第三章 一元一次方程一元一次方程教案

一元一次方程(1)一、教学目标:1.理解什么是方程,什么是一元一次方程.2.理解方程的解和解方程是两个不同的概念.3.根据条件列简单的一元一次方程.二、教学重点:方程与一元一次方程的概念三、教学难点:找等量关系列方程四、教学方法:读书指导法、观察归纳法、合作探究五、教学用具:PPT六、教学安排:1课时七、教学过程1、导入新课老师展出情景:欧拉是数学史上着名的数学家,在孩提时代他一点也不讨老师的喜欢,但是个很聪明的孩子。

有一天,回家后无事,他就帮助爸爸放羊。

他一面放羊,一面读书。

爸爸的羊群渐渐增多了,达到了100只。

原来的羊圈有点小了,爸爸决定建造一个新的羊圈。

他用尺量出了一块长方形的土地,长40米,宽15米,他一算,面积正好是600平方米,平均每一头羊占地6平方米。

正打算动工的时候,他发现他的材料只够围100米的篱笆,不够用。

若要围成长40米,宽15米的羊圈,其周长将是110米(15+15+40+40=110)父亲感到很为难,若要按原计划建造,就要再添10米长的材料;要是缩小面积,每头羊的面积就会小于6平方米。

小欧拉却向父亲说,不用缩小羊圈,也不用担心每头羊的领地会小于原来的计划。

他有办法。

父亲不相信小欧拉会有办法,听了没有理他。

小欧拉急了,大声说,只有稍稍移动一下羊圈的桩子就行了。

父亲听了直摇头,心想:“世界上哪有这样便宜的事情?”但是,小欧拉却坚持说,他一定能两全齐美。

父亲终于同意让儿子试试看。

小欧拉见父亲同意了,站起身来,跑到准备动工的羊圈旁。

他以一个木桩为中心,将原来的40米边长截短,缩短到25米。

父亲着急了,说:“那怎么成呢?那怎么成呢?这个羊圈太小了,太小了。

”小欧拉也不回答,跑到另一条边上,将原来15米的边长延长,又增加了10米,变成了25米。

经这样一改,原来计划中的羊圈变成了一个25米边长的正方形。

然后,小欧拉很自信地对爸爸说:“现在,篱笆也够了,面积也够了。

”父亲照着小欧拉设计的羊圈扎上了篱笆,100米长的篱笆真的够了,不多不少,全部用光。

湘教版七年级上册数学第3章 一元一次方程 用一元一次方程解实际问题的一般步骤

湘教版七年级上册数学第3章 一元一次方程 用一元一次方程解实际问题的一般步骤
例3 两桶内共有水48千克,如果甲桶给乙桶加水一倍, 然后乙桶又给甲桶加甲桶剩余水的一倍,那么两桶 内的水的质量相等.问:原来甲、乙两桶内各有多 少千克水?
感悟新知
2x-(48-x-x)
知3-讲
原来
第一次改变 后
甲桶内水的 质量 48-x
48-x-x
乙桶内水的 质量 x
2x
感悟新知
解:设乙桶内原来有水x千克, 则甲桶内原来有水(48-x)千克. 根据题意,得2(48-x-x)=2x-(48-x-x), 解得x=18,48-x=48-18=30. 答:甲桶内原来有水30千克, 乙桶内原来有水18千克.
感悟新知
知2-讲
(3)设圈出的四个数中,最小数为y,则另三个数 分别为:y+1、y+7、y+8,根据题意,得 y+(y+1)+(y+7)+(y+8)=56.
解这个方程,得y=10. 所以y+1=10+1=11,y+7=10+7=17, y+8=10+8=18. 答:这四天分别是10号、11号、17号、18号.
课堂小结
用一元一次方程解实际问题的一般步骤
1.①列方程解实际问题的关键是找等量关系. ②列方程时,方程两边所表示的量必须相等,并
且单位一定要统一. ③解出方程的解还要检验其是否符合实际意义. 2.列一元一次方程解应用题的一般步骤为:①审、
②设、③列、④解、⑤验、⑥答.
课后作业
作业1 必做:请完成教材课后习题 补充:
知1-导
感悟新知
(1)你认为小红和小华的做法正确吗?方程
知1-导
15%x+170=x与15%x=x-170有怎样的联系?

初一数学《一元一次方程》整章教案

初一数学《一元一次方程》整章教案

第三章一元一次方程章节分析内容分析本章内容主要分为以下三个部分:1、通过丰富的实例,从算式到建立一元一次方程,展开方程式刻画现实生活的有效数学模型。

2、运用等式的基本性质解方程,归纳移项法则。

运用分配率,归纳“合并”、“去括号”等法则,逐步展现求解方程的一般步骤,这些内容的学习不是孤立进行的,是从实际问题出发,使学生经历模型化的过程,激发学生的好奇心和主动学习的欲望。

3、运用方程解决丰富多彩的、贴近学生生活的实际问题,展现运用方程解决实际问题的一般过程。

为了使学生经历“建立方程模型”这一数学化的过程,理解学习方程的意义,培养学生的抽象概括的能力。

课文内容的呈现都以求解一个实际问题为切入点,让学生经历抽象、符号变号、应用等活动,在活动中激发学生解决问题的兴趣和培养学生抽象概括的能力,提高学生的思维水平和应用数学知识去解决实际问题的意识。

重点、难点与关键1、重点:一元一次方程友很多直接应用,解一元一次方程式解其他方程和方程组的基础,因此本章重点在于使学生能根据具体问题中的数量关系列一元一次方程,掌握解一元一次方程的基本方法,能运用一元一次方程解决实际问题。

2、难点:正确的列出一元一次方程解决实际问题。

3、关键:(1)熟悉地解一元一次方程的关键在于了解方程、方程解的意义和运用等式的两个性质。

(2)正确地列出方程的关键在于正确地分析问题中的已知数、未知数,并找出能够表示应用题全部含义的相等关系。

目标分析1、知识与技能:根据具体问题中的数量关系,解方程和运用方程解决实际问题的过程,体会方程式刻画现实世界的有效数学模型。

2、过程与方法:(1)了解一元一次方程及其相关概念,会解一元一次方程。

(2)能以一元一次方程为工具解决一些简单的实际问题,包括列方程,求解方程和解释结果的实际意义及合理性,提高分析问题、解决问题的能力。

3、情感、态度与价值:激发学生的好奇心和主动学习的欲望,体会数学的应用价值。

课时划分:3.1 从算式到方程------------------------------------------------4课时3.2解一元一次方程(一)——合并同类项与移项--------------------4课时3.3解一元一次方程(二)——去括号与去分母----------------------4课时3.4实际问题与一元一次方程--------------------------------------3课时数学活动-------------------------------------------------------2课时回顾与思考------------------------------------------------------2课时3.1从算式到方程(1)第一课时【教案目标】知识与技能1、通过处理实际问题,让学生体验从算术方法到代数方法是一种进步。

七年级数学上册第三章一元一次方程3.1.1一元一次方程(图文详解)

七年级数学上册第三章一元一次方程3.1.1一元一次方程(图文详解)

为x元,则依题意可列出下列哪一个一元一次方程式( )
(A)15(2x20)=900
(B)15x202=900
(C)15(x202)=900 (D)15x220=900
【解析】选C.每份礼物的价格是(x+202)元,15份礼
物的价格是15(x202)元.
人教版七年级数学上册第三章一元一次方程
人教版七年级数学上册第三章一元一次方程
七年级上册数学
第三章一元一次方程
人教版七年级数学上册第三章一元一次方程
第三章 一元一次方程
3.1 从算式到方程
3.1.1 一元一次方程
人教版七年级数学上册第三章一元一次方程
1.了解什么是方程、一元一次方程、方程的解. 2.体会字母表示数的好处、画示意图有利于分析问题、找 相等关系是列方程的重要一步、从算式到方程(从算式到 代数)是数学的一大进步. 3.会将实际问题抽象为数学问题,通过列方程解决问题.
4.已知数x-5与2x-4的值互为相反数,列出关于x的方程. 解:由题意得:(x-5)+(2x-4)=0.
人教版七年级数学上册第三章一元一次方程
1.方程、方程的解、一元一次方程的概念. 2.根据实际问题中的等量关系,用一元一次方程表示问 题中的数量关系. 注:分析实际问题中的数量关系,利用其中的相等关系 列出方程,是用数学解决实际问题的一种方法.
人教版七年级数学上册第三章一元一次方程
一般地,要检验某个值是不是方程的解,可以用这个 值代替未知数代入方程,看方程左右两边的值是否相等.
任取x的值 代入 不成立
1 700+150x=2 450 成立
得方程的解
求方程的解的过程,叫做解方程.
人教版七年级数学上册第三章一元一次方程

七年级数学上册第三章一元一次方程3.4实际问题与一元一次方程第二课时用一元一次方程解决销售问题与储蓄

七年级数学上册第三章一元一次方程3.4实际问题与一元一次方程第二课时用一元一次方程解决销售问题与储蓄
【解析】设每件羊绒衫的标价为 x 元,则售价为 60%x 元或 80%x 元, 从而得出进价为(60%x+110)题与一元一次方程
解:设每件羊绒衫的标价为 x 元,则根据进价不变可列方程: 60%x+110=80%x-70,解得 x=900. 60%x+110=650. 答:每件羊绒衫的标价是 900 元,进价是 650 元.
第12页
第3页
第2课时 销售问题、增加率问题与一元一次方程
目标突破
目标一 会用一元一次方程处理销售问题
例 1 教材“探究 1”针对训练 某商场因换季准备处理一批 羊绒衫,若每件羊绒衫按标价的六折出售,则每件将亏 110 元,而 按标价的八折出售,每件将赚 70 元,则每件羊绒衫的标价是多少 元,进价是多少元?
第三章 一元一次方程
基本性质
第1页
第三章 一元一次方程
第2课时 销售问题、增加率问题与一元
一次方程
知识目标
目标突破
总结反思
第2页
第2课时 销售问题、增加率问题与一元一次方程
知识目标
1.经过对销售问题分析、建模,会用一元一次方程处理销售问 题.
2.经过学习例题和对应习题训练,会用一元一次方程处理增加 率问题.
的解题过程.
第11页
第2课时 销售问题、增加率问题与一元一次方程
解:不正确,解答中把进价与标价弄混了,销售价=进价+利 润,销售价=标价×折扣,利润=进价×利润率.
正解:设这种商品的进货价是 x 元, 依题意,得 1540×0.9-x=10%x,解得 x=1260.
答:这种商品的进货价是 1260 元.
[点析] 此题若设进价为 y 元,则可列方程y-601%10=y8+0%70,解 得 y=650.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 一元一次方程
数学活动
活动1
1. 阅读 统计资料表明,山水市去年居民的人均收入 为 11 664元,与前年相比增长8%,扣除价 格上涨因素, 实际增长6.5%. 2.思考 (1)说说“增长8%”和“扣除价格因素,实际增 长 6.5%”的意思; (2)你能利用这些数据之间的关系从中再计算出 一些新的数据吗? 山水市前年居民的人均收入为多少元? 你能计算出物价上涨的百分比吗?
统计资料表明,山水市去年居民的人均收入为 11 664元, 与前年相比增长8%,扣除价格上涨因素, 实际增长6.5%.
请用一元一次方程解决下列问题: (1)山水市前年居民的人均收入为多少元?
解:设山水第前年居民人均收入为x 元,
列方程(1+8%)x=11664.
解得x=10800.
请用一元一次方程解决下列问题: (2)在山水市,去年售价为1000 元的商品在前年的售价为多少元?
设前年的售价为x元 X(1+1.5%)=1000 解方程的x=985.2元
活动2:
用一根质地均匀的尺子和一些棋子, 做下列实验:
(1)把直尺的中点放在一个支点上, 使直尺左右两边平衡;
(2)在直尺两端各放一枚棋子,看看 左右两边是否保持平衡;
(3)支点不动,在直尺一端的棋 子上再加放一枚棋子,然后把这两 枚摞在一起的棋子向支点移动,使 左右两边保持平衡,记录支点到左 右两边棋子中心位置的距离a 和b;
实验过程
支点右侧
挂重物个数 支点的距离(a)
支点左侧
挂重物个数 支点的距离(b)
次数
1
2 3 4 5
1
1 1 1 1
15.5
15.5 15.5 15.5 15.5
1
2 4 8 16
15.5
7.75 3.875 1.9375 0.96875
活动2
如图,在木杆右端挂一个重物,支点左边挂 n 个重物,并使左右平衡.设木杆长为l cm,支点 在木杆中点处,支点到木杆左边挂重物处的距 离为x cm,把n,l作为已知数,列出关于x的一 元一次方程. 从以上表格中我发现了杠杆平衡的条件 x 动力×动力臂=阻力×阻力臂
(4)在两枚摞在一起的棋子上再加 放一枚棋子,然后把这三枚摞在一 起的棋子向支点移动,使左右两边 保持平衡,记录支点到左右两边棋 子中心位置的距离a和b;
(5)在一摞棋子上继续加放棋子,
并重复以上操作和记录.
根据统计记录能发现什么规律?
如果直尺一端放一枚棋子,另 一端放n枚棋子,支点应在直 尺的哪个位置?设直尺长为l, 用一元一次方
相关文档
最新文档