等精度测频原理.
等精度测频

等精度测频方法是在直接测频方法的基础上发展起来的。
它的闸门时间不是固定的值,而是被测信号周期的整数倍,即与被测信号同步,因此,避除了对被测信号计数所产生±1个字误差,并且达到了在整个测试频段的等精度测量。
其测频原理如图1所示。
在测量过程中,有两个计数器分别对标准信号和被测信号同时计数。
首先给出闸门开启信号(预置闸门上升沿),此时计数器并不开始计数,而是等到被测信号的上升沿到来时,计数器才真正开始计数。
然后预置闸门关闭信号(下降沿)到时,计数器并不立即停止计数,而是等到被测信号的上升沿到来时才结束计数,完成一次测量过程。
可以看出,实际闸门时间t与预置闸门时间t1并不严格相等,但差值不超过被测信号的一个周期[4]。
图1 等精度测频原理波形图等精度测频的实现方法可简化为图2所示。
CNT1和CNT2是两个可控计数器,标准频率信号从CNT1的时钟输入端CLK输入;经整形后的被测信号从CNT2的时钟输入端CLK输入。
当预置门控信号为高电平时,经整形后的被测信号的上升沿通过D触发器的Q端同时启动CNT1和CNT2。
CNT1、CNT2同时对标准频率信号和经整形后的被测信号进行计数,分别为N S与N X。
当预置门信号为低电平的时候,后而来的被测信号的上升沿将使两个计数器同时关闭,所测得的频率为(F S/N S)*NX。
则等精度测量方法测量精度与预置门宽度的标准频率有关,与被测信号的频率无关。
在预置门时间和常规测频闸门时间相同而被测信号频率不同的情况下,等精度测量法的测量精度不变。
图2 等精度测频实现原理图误差分析设在一次实际闸门时间t中计数器对被测信号的计数值为Nx,对标准信号的计数值为Ns。
标准信号的频率为fs,则被测信号的频率如式(1):fx=(Nx/Ns)·fs (1) 由式1-1可知,若忽略标频fs的误差,则等精度测频可能产生的相对误差如式(2-2):δ=(|fxe-fx|/fxe)×100% (2) 其中fxe为被测信号频率的准确值。
第八讲 等精度测频

第八讲三、设计实例等精度频率、占空比测量仪1.综述传统频率测量方法是对设定的闸门时间内脉冲进行计数,有两个主要因素影响精度,其一是闸门时间的准确度,其二是对低频信号的取整误差,为了消除以上两个因素的影响可选择等精度测频法。
但等精度测频法占用可编程器件资源量大,如选用24位计数器的频率计,仅测频部分就占用了EPM7128芯片的百分之九十以上的资源;若选用100MHz标准时钟,其闸门时间仅能选择在0.168s以下,测频范围在6Hz以上,限制了对低频的测量。
若要扩大低频量程,需要相应增大可编程器件容量,则体积、功耗和价格相应增加。
本文所述等精度频率、占空比测量仪采用将复杂可编程逻辑器件(CPLD)与低功耗单片机相结合,由CPLD完成高频信号计数,单片机完成低频信号计数、频率和占空比计算和显示控制等功能,即简化了仪器的结构,又扩大了低频量程。
如单片机采用长整形变量计数(32位),再加上CPLD中16位计数器,等效为48位计数器构成的等精度测量仪,当选用100MHz标准时钟时,低频范围可达3.55×10-7Hz。
本文所述等精度频率、占空比测量仪结构框图如图8-1所示,CPLD可编程逻辑器件选用的是EPM7064芯片,单片机可根据实际情况选用。
图8-1 等精度频率、占空比测量仪结构框图单片机发出如下所示控制信号:CLEAR:SLCE为高时CPLD芯片内各计数器清零信号;SLCE为低时占空比清零和测量启动信号。
SLCE:功能选择控制信号。
高电平测频;低电平测占空比。
CONTRL:闸门时间信号。
高电平测频;低电平测占空比。
S[2..0]:输出选择控制信号。
000—CPLD 输出标准时钟信号四位计数值最低位;001—CPLD 输出标准时钟信号计数值次低位;010—CPLD 输出标准时钟信号计数值第三位;011—CPLD 输出标准时钟信号计数值第四位;100—CPLD 输出被测信号四位计数值最低位;101—CPLD 输出被测信号计数值次低位;110—CPLD 输出被测信号计数值第三位;111—CPLD 输出被测信号计数值第四位。
实验四 等精度测频

实验四 等精度测频一、实验目的1. 掌握Quartus II 软件的基本应用。
2. 掌握Modelsim 软件的基本应用,学习通过仿真波形观察各信号逻辑关系。
3. 练习例化,多模块连接,规划小型程序结构。
4. 掌握等精度测频原理及Verilog 程序实现方法。
二、实验仪器与软件1. 电脑2. FPGA 开发板FB1393. Quartus II 软件4. Modelsim 软件三、 实验原理频率是一个基本物理量,在各种物理实验及电路设计项目中经常对频率量进行测量,通常频率测量有三种方法:测周法、定时计数法和多周期同步测频法(等精度测频)。
1. 测周法被测信号系统时钟测周法,适用于低频信号图1 测周法原理图测周法即测量一个信号周期(上升沿到上升沿)内包含的系统时钟周期的个数N ,由于系统时钟周期为已知(系统频率fsys 的倒数),因此很容易算出被测信号的周期:T = N * (1 / fsys)进而得到被测信号频率: F = fsys / N从上述公式中可以得出,测周法适用于频率较低的信号,频率越低测量精度越高,同时测量时间也越慢。
2. 定时计数法 被测信号 闸门时间t定时计数法,适用于高频信号不同步图2 定时计数法定时计数法即在一个规定时间t (闸门)内,测量被测信号的周期个数N ,则被测信号周期为:T = t/N ,频率为:F = N/t 。
从上述公式可以看出,定时计数法时候与频率较高的信号,频率越高精度越高。
3. 多周期同步测量法被测信号系统时钟预置闸门同步闸门多周期同步测量(等精度)T = scnt * (1/fsys) / ecntF = ecnt * fsys / scnt图3 多周期同步测频法 多周期同步测频法原理如图3所示,预置闸门控制单次测量时间,当预置闸门开启(高电平)时,测频并没有真正开始,而是要等到被测信号的上升沿到来,才开启同步闸门,即开始真正的测频。
同样,当预置闸门关闭(低电平)时,测频并没有被终止,而是要等到被测信号的上升沿到来,才关闭同步闸门,停止测频。
基于单片机的等精度测频法及其应用研究

基于单片机的等精度测频法及其应用研究一、研究背景在许多电子测量中,频率是一个基本参数。
然而,频率测量是非常复杂的,特别是对于高频率和低频率的测量。
精确的频率测量对于各种电子设备的研究和制造都非常重要。
传统测频法中常用的是时间差测量法和计数测量法,这两种方法都具有测量精度不够高及难于自动化等缺点。
因此,需要研究一种更高精度的测频方法,这就是等精度测频法。
二、等精度测频法的基本原理等精度测频法是一种基于数字信号处理技术的测频方法。
该方法基于两个相邻的周期振荡信号之间的相位差求得信号的频率。
其基本原理如下:在相邻的周期T1和T2之间,通过计算第一个周期的信号与第二个周期信号之间的相位差$\\Delta\\phi$,反推出第二个周期信号的频率f:$$ f = \\frac{1}{2\\pi}\\cdot\\frac{\\Delta\\phi}{T_2-T_1} $$由上式可知,等精度测频法只需要获取两个相邻周期信号的相位差和两个周期的时间,即可求出信号的频率,测量精度较高。
三、等精度测频法的软件实现等精度测频法的实现需要用到数字信号处理技术,可以通过单片机结合C语言软件实现。
主要步骤如下:1.信号采样将需要测量的信号经过高精度的AD采集电路进行采样,将信号转换成对应的数字信号。
2.相位差计算通过数字信号处理技术,计算出相邻周期信号之间的相位差。
3.频率计算根据相邻周期信号的相位差和两个周期的时间,计算出信号的频率。
4.结果输出将计算出的结果输出到数码显示管等输出模块中,实现信号的频率测量功能。
四、等精度测频法的应用等精度测频法在电子设备制造、通信领域、科研实验等方面都具有重要应用价值。
例如:1.信号频率稳定性测试将需要测试的信号经过等精度测频法测量其频率稳定性,可用于评估设备的性能。
2.信号调制解调信号的调制解调中需要精确测量信号的频率,等精度测频法可以实现这一功能。
3.相位锁定在数字信号处理中,需要实现相位锁定功能来避免信号相位偏差造成的误差。
基于单片机的等精度数字测频装置的原理及实现

其中 Ä®’ 为计数器 ®’ 产生的量化误差 Œ最大为 ? ‘ 个 ´Ã "在实际设计中 Œ选择适当的时标周期 ´Ã 和 闸门宽度 ´Ç 可使 ®’ 始终足够大 Œ 并在 ÆØ的全频段 范围内得到足够多的有效位数的显示结果 "
“ 基于单片机的等精度数字测频方案
- £³ • •‘ 系列单片机具有两个 ‘– 位的定时器• 计数器 ´‘ 和 ´• Œ它们可分别代替图 ’ 中的计数器 ®‘ 和 ®’ › 单片机的外部中断功能可方便地实现闸门开 关与被测信号的跳变沿同步 › 利用单片机的数据运 算能力可编制相应的乘除法程序 Œ 并实现测量结果 的等精度显示 "
等精度法测频测量原理M法

等精度法测频一、 测量原理M 法、T 法的测量精度不仅取决于基准时间和计数器的计数误差,还取决于频率的高低,频率不同则精度不一样,M 法在高频段的准确度相对较高,T 法在低频段的准确度较高.M/T 法(等精度测量法)则在整个测试频段的精度一样,闸门信号是被测信号周期的整数倍,即与被测信号同步,因此大大减少了误差,但由于只与被测信号同步,而不与标准时钟同步,因此还是存在着±1计数误差.其测频原理图如图1所示,误差计算为'00000||||11100%x x x f f M f M M t f σ-∆=⨯=≤= 式中:x f 是被测信号频率真实值,'x f 是被测信号频率测量值,0t 为闸门时间,0f 为标准时钟频率。
由上式可知,误差与闸门时间和标准时钟频率有关,闸门时间越长,标准时钟频率越高,误差越小。
由于用等精度测频法时所采取的标准时钟频率比较高(10MHz 以上),因此±1计数误差相对很小。
二、 基于FPGA 的实现采用FPGA 设计,主要产生如下时序: StartClrTclkLockFclk其中,Start 作为闸门信号,Clr 是清零信号,Tclk 是被测信号,Lock 是锁存信号,Fclk 是标准频率信号。
当检测到Start 为高时,测量开始。
开始后Tclk 的第一个周期将Clr 和Lock 置高,将两个计数器全部清零。
当下一个Tclk 上升沿来临时将Clr 置低,同时开启两个计数器,开始计数。
待检测到Start 为低时,在Tclk 的下一个上升沿停止计数,将结果锁存,得到N t 和N 0,则可换算出被测信号的频率为:00t t N f f N = 测量电路如下:仿真时,clk1周期为20ns,频率为50M;clk2周期为203ns,频率为4.92611M。
当gate取值为50us时仿真结果波形如下,计算得测量的频率为4.92620M,误差为0.00009MHz.当gate取值为100us时仿真结果波形如下,计算得测量频率为4.92606M,误差为0.00005MHz。
1、等精度频率测量解析

二、 等精度频率计的测量过程
1. 测量准备 P1.3发出复位信号,使计数器清零;同时P1.1也发复位信号,使同步D触 发器的Q 端为低电平,则主门Ⅰ和主门Ⅱ关闭。这时P1.0的初状态为“1”,使 D触发器的D 2. 测量开始 P1.0从高电平跳到低电平,使D触发器的D端为“0”,这时被测信号一旦 到达CK端,触发器Q立即由“0”→“1”,同步门被打开,被测信号和时间信号分 别进入相应的计数器进行计数。的P1.0从高电平跳到低电平的同时,也启动了
(3)中界频率
测频误差及测周 10- 1
误差与被测信号频率 的关系如图示,图中 10- 2 测频和测周两条误差 10- 3
曲线交点所对应的频 10- 4
率称中界频率fxm 。10- 5
N N
测频 量化 误差
闸门T=0.1 s 1 s 10 s
10- 6
测周 量化 误差
0.1 s 10 ns 时标 1 ns
等精度测量法的时序波形图
预置闸门时间产生电路产生预置的闸门时间TP,TP经同 步电路产生与被测信号(fx)同步的实际闸门时间T。
主门Ⅰ与主门Ⅱ在时间T内被同时打开,于是计数器Ⅰ 和计数器Ⅱ便分别对被测信号 (fx)和时钟信号(f0)的周 期数进行累计。
在T内,计数器Ⅰ的累计数NA=fx×T;计数器Ⅱ的累计数NB=f0×T。
2. 通道部分
主要由放大、整形和 一个十分频的预分频电路 组成。本机设计测频范围
20Hz~100MHz,当 被测频率大于10MHz时, 需先经预分频电路分频后 再送入计数器电路。
3. 同步电路
由主门Ⅰ、Ⅱ及同步控制电路组成。主门Ⅰ控制被测信号fx的通过,主门
Ⅱ
fO的通过,两门的启闭都由同步控制电路控制。
等精度测频 (2)

毕业设计(论文)摘要频率是电子技术领域内的一个基本参数,同时也是一个非常重要的参数。
稳定的时钟在高性能电子系统中有着举足轻重的作用,直接决定系统性能的优劣。
随着电子技术的发展,测频系统使用时钟的提高,测频技术有了相当大的发展,但不管是何种测频方法,士1个计数误差始终是限制测频精度进一步提高的一个重要因素。
本设计采用等精度频率设计原理和8051软核做微处理器。
通过分析士1个计数误差的来源得出了一种新的测频方法:检测被测信号,时基信号的相位,当相位同步时开始计数,相位再次同步时停止计数,通过相位同步来消除计数误差,然后再通过运算得到实际频率的大小。
充分利用8051软核简化外围电路及降低系统设计的复杂度。
采用VHDL语言,成功的编写出了设计程序,并在Qutus II软件环境中,对编写的VHDL程序进行了仿真,得到了很好的效果。
最,给出了较详细的设计方法和完整的程序设计以及调试结果。
关键词:EDA、FPGA、全同步、数字频率计、VHDL语言、8051ABSTRACTFrequency is a basic parameter of elcetornics field,meanwhile,it’saver important Param ete.Stable clock is very important in high electronics syetem.determining the syetem perfermance directly.With the development of technology of electronics,the frequency measurement System using higher clock,the frequency measurement technology has very nice development .In despite of using all other advanced ftequency measurement methods,the Positive and negativel errors was a very important factor that stop frequency measurement precision improving all through. This design uses the design principle and the frequency of such precision 8051 soft nuclear do microprocessors.Through analyzing the origin of the Positive and negative got a new frequency measurement methods: checkingt measured and standard signal’s Phase,if the Phase is synchronous.then the counters start counting when the signal’s Phase is synchronous again. The counters to stopping working by Phase in一Phase to eliminate counting erors,then getting the real frequency through calculating. Make full use of the 8051 soft IP simplified peripheral circuit and reduce the complexity of the system design. the design of complete digital cymometer was successful using VHDL language, successful writing out design program, and in Qutus II software environment ,and procedures obtained good effect. The detail is presented, the design method and program design and commissioning of full results.Keywords:EDA、FPGA、、Complete ln-phase、DigtaICymomcter、VHDL、8051目录摘要..................................................................................................................................... I I ABSTRACT . (III)绪论 (1)第一章系统分析与方案论证 (3)第二章微处理器的简介 (5)2.1 FPGA简介 (5)2.1.1 FPGA的工作原理 (5)2.1.2 FPGA配置模式 (6)2.2 8051单片机IP软核应用系统构建 (7)2.2.1 8051单片机IP软核应用系统构建 (7)2.2.2 K8051单片机软核基本功能和结构 (7)第三章频率计的工作原理 (11)3.1 测频原理介绍 (11)3.2 测周原理 (13)第四章系统硬件的设计与实现 (14)4.1 系统的整体框图 (14)4.2 K8051单片机软核实用系统构建和软件测试 (14)4.3 测频模块的设计及调试 (15)第五章系统软件设计 (22)5.1 系统软件总体设计 (22)5.2 测频及测周程序设计 (22)5.3 显示程序设计 (24)第六章系统整体调试 (25)结束语 (26)致谢 (27)参考文献 (28)附录 (29)附件1.总体硬件图 (29)附件2 单片机控制程序 (30)绪 论随着 数 字 电路应用越来越广泛,传统的通用数字集成电路芯片已经很难满足系统功能的要求,而且随着系统复杂程度的不断增加,所需通用集成电路的数量呈爆炸性增长,使得电路板的体积迅速膨胀,系统可靠性难以保证。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 频率测量方法:若在一定时间间隔T(也 称闸门时间)பைடு நூலகம்测得一个周期性信号的 重复变化次数为N,则其频率可表示为 f=N/T --直接测频法
• 若时间间隔T取1s,则f=N。
• 测量准确度:设待测信号脉冲周期为Tx, 频率为Fx,当测量时间为T=1s时,测量 准确度为δ=Tx/T=1/Fx。
数字频率计设计
• 直接测频法的测量准确度与被测信号的 频率有关。
• 直接测频法只适合测量频率较高的信号, 不能满足在整个测量频段内的测量精度 保持不变的要求。 • 等精度测频是指频率计在所测量的整个 频段内部,均可实现相同精度的测量, 即测量精度与频率无关。
直接测频法的实现
采用直接测频法进行频率测量,具体要求: • 闸门时间固定为1s(分频得到),闸门 信号是一个0.5Hz的方波; • 在闸门有效(高电平)期间,对输入的 脉冲进行计数; • 在闸门信号的下降沿时刻,锁存当前的 计数值,并且将所有的频率计数器清零。 • 显示的频率是2s更新一次,且显示的内 容是闸门下降沿时锁存的值。
控制信号时序关系
测频实现框图
直接测频法的实现
• 被测频率通过一个拨动开关来选择是使 用系统中的数字时钟源模块的时钟信号 还是从外部输入一个信号进行频率测量。
• 当拨动开关为高电平时,测量从外部输 入的信号,否则测量系统数字时钟信号 模块的数字信号。
直接测频法的实现
• 在设计频率计的时候,八个七段码管最 多可以显示99,999,999Hz,因此在设计 时候用八个BCD码来表示。
• 该部分与清零脉冲协调工作用来控制两 个计数器的启动脉冲。
• 另外还必须有同样的八个BCD码来对输 入的频率进行计数,在闸门下降沿的时 候,将后者的值锁存到寄存器中。
等精度数字频率计设计
等精度测频实现框图
• 计数器1和计数器2分别用来给频标和被测 数字脉冲计数,设在同步门控制结束时 计数器1计数N1,计数器2计数N2,若频 标频率为F1,被测频率为Fx,则有公式: Fx/N2=F1/N1;…………………(1)
Fx=(F1/N1)* N2……………(2)
• 可见,测量精度与预置门时间无关,主 要由F1的频率稳定度来确定,测量精度基 本上近似于频标的稳定度。
等精度数字频率计设计
• 等精度测频时预置门信号通常为1s。
• 预置门电路内部包括一个同步门电路, 用来实现被测频标与被测频率的同步, 提高测量精度,减少基本误差。