电力系统的频率问题
电力系统的有功功率平衡及频率调整

作用:是调度部门考虑按频率减负荷方案和低频率事故时 用一次切除负荷来恢复频率的计算依据。 二、发电机组的有功功率-静态频率特性 1.调速系统(四个部分) 检测部件(离心飞摆):转速→位移 放大部件(错 油 门):位移→油压(信号放大) 执行部件(油 动 机):油压 启闭阀门 (功率放大) 反馈位置信号 转速控制部件:速度基准控制 调速器:前三者组成,完成频率一次调整; 调频器:加入转速控制部件,完成频率二次调整。
(4)电力系统频率下降时,异步电动机和变压器的励磁电流 增加,使无功消耗增加,引起系统电压下降,频率下降还会 引起励磁机出力下降,并使发电机电势下降,导致全系统电 压水平降低。如果电力系统原来的电压水平偏低,在频率下 降到一定值时,可能出现所谓电压雪崩现象,出现电压雪崩 也会造成大面积停电,甚至使系统瓦解。 2、电力系统有功功率控制的必要性 A.维持电力系统频率在允许范围之内 系统频率是靠电力系统内并联运行的所有发电机组发出的有 功功率总和与系统内所有负荷消耗(包括网损)的有功功率总 和之间的平衡来维持的。但是电力系统的负荷是时刻变化的 ,从而导致系统频率变化。为了保证电力系统频率在允许范 围之内 ,就是要及时调节系统内并联运行机组有功功率。
P D a 0 P DN a 1 P DN ( f fN ) a 2 P DN ( f fN ) a 3 P DN (
2
f fN
)
3
标么值: P 当f
D
a 0 P DN a 1 P DN f * a 2 P DN f * a 3 P DN f *
2
3
f N , PD PDN
电力系统的频率水平由有功功率平衡决定,如果有功电源 充足,能保证用户需要,且具有及时进行调整的能力,则能 保证频率在合理的范围之内。反之,则将出现较大的频率偏 移。 实际负荷曲线 频率二次调整负荷分量 频率一次调整负荷分量
技能培训资料:电网中的频率偏差影响

在正常情况下,系统频率是电力系统保持一致的运行参数。
对系统中每一台发电机来说,其频率和转速的关系为:,其中:f 一系统频率P-发电机的极对数PI-发电机的转速。
电网的频率是由发电功率与用电负荷大小决定的,当发电功率与用电负荷大小相等时,电网频率稳定;发电功率大于用电负荷时,电网频率升高;发电功率小于用电负荷时,电网频率降低。
要想保持频率不变,就要保持发电机的转速不变;要想维持发电机的转速不变,就要保持稳定的负荷。
通过调整发电机的有功功率,可保持系统功率的供需平衡,使频率维持在一个变化较小的范围内。
频率调整是由一次调频和二次调频共同完成的:一次调频。
根据中华人民共和国电力行业标准《电网运行准则》要求,电力系统的发电机组均应参与一次频率调整。
一次调频,是指电网的频率一旦偏离额定值时,电网中机组的控制系统就自动地控制机组有功功率的增减,限制电网频率变化,使电网频率维持稳定的自动控制过程。
当电网频率升高时,一次调频功能要求机组利用其蓄热快速减负荷,反之,机组快速增负荷。
机组一次调频性能,是指电网频率发生偏离额定值的变化时,机组出力与电网频率的相关性,传统上用汽机调速系统的速度变动率(调差系数)及迟缓率(死区)表示。
当频差或转速差超过死区值时一次调频开始动作,速度变动率(调差系数)是指令一次调频动作的比例,其值越大,一次调频的负荷变化越小,反之就越大。
一次调节频功能在DCS内实施,可以转换成一次调频的变负荷要求与频差或转速差之间的关系。
电网运行中最为重要的两项指标频率和电压,电压和频率分别用来衡量无功功率与有功功率是否满足负荷要求的标准。
首先说说频率,频率关系到整个系统是否有功功率平衡,单机系统可以用功角稳定概念来解释,多机系统可以用相对功角来解释。
当系统发生故障时,可以通过观察系统的频率是否偏差来衡量系统的稳定性,即小扰动回归到原有的频率和相角,大扰动建立新的稳定点,但是频率仍保持,发电机的相对相角可以改变。
电力系统频率调整

电力系统负荷可分为三种。
第一种变动幅度很小,周期又很短,这种负荷变动由很大的偶然性.第二种变动幅度较大,周期较长,属于这类负荷的主要有电炉、电气机车等带有冲击性的负荷。
第三种负荷变动幅度最大,周期也最长,这一种是由于生产、生活、气象等变化引起的负荷变动.电力系统的有功功率和频率调整大体可分为一次、二次、三次调整三种。
一次调整或频率的一次调整指由发电机的调速器进行的,对第一种负荷变动引起的频率偏移的调整。
二次调整或频率的二次调整指由发电机的调频器进行的,对第二种负荷变动引起的频率偏移的调整。
三次调整其实就是指按最优化准则分配第三种有规律变动的负荷,即责成各发电厂按事先给定的发电负荷曲线发电.在潮流计算中除平衡节点外其他节点的注入有功功率之所以可以给定,就是由于系统中大部分电厂属于这种类型。
这类发电厂又称为负荷监视。
至于潮流计算中的平衡节点,一般可取系统中担负调频任务的发电厂母线,这其实是指担负二次调频任务的发电厂母线。
一:调整频率的必要性电力系统频率变动时,对用户的影响:用户使用的电动机的转速与系统频率有关.系统频率的不稳定将会影响电子设备的工作。
频率变动地发电厂和系统本身也有影响:火力发电厂的主要厂用机械-风机和泵,在频率降低时,所能供应的风量和水量将迅速减少,影响锅炉的正常运行。
低频运行还将增加汽轮机叶片所受的应力,引起叶片的共振,缩短叶片的寿命,甚至使叶片断裂。
低频运行时,发电机的通风量将减少,而为了维持正常电压,又要求增加励磁电流,以致使发电机定子和转子的温升都将增加.为了不超越温升限额,不得不降低发电机所发功率。
低频运行时,由于磁通密度的增大,变压器的铁芯损耗和励磁电流都将增大。
也为了不超越温升限额,不得不降低变压器的负荷。
频率降低时,系统中的无功功率负荷将增大.而无功功率负荷的增大又将促使系统电压水平的下降。
频率过低时,甚至会使整个系统瓦解,造成大面积停电.调整系统频率的主要手段是发电机组原动机的自动调节转速系统,或简称自动调速系统,特别时其中的调速器和调频器(又称同步器).二:发电机原动机有功功率静态频率特性电源有功功率静态频率特性通常可以理解为就是发电机中原动机机械功率的静态频率特性。
电力系统频率调整及控制

12。
1。
1。
1频率与有功功率平衡电力系统频率是靠电力系统内并联运行的所有电机组发出的有功功率总和与系统内所有负荷消耗(包括网损)的有功功率总和之间的平衡来维持的。
但是,电力系统的负荷是时刻变化的,从而导致系统频率变化。
为了保证电力系统频率在允许范围之内,就需要及时调节系统内并联运行机组的有功功率。
频率质量是电能质量的一个重要指标。
中国《电力工业技术管理法规》规定,大容量电力系统的频率偏差不得超过,一些工业发达国家规定频率偏差不得超过.说明电力系统元件及整个系统的频率特性,介绍电力系统调频的基本概念。
12。
1.2.1负荷频率特性负荷的频率静态特性:在没有旋转备用容量的电力系统中,当电源与负荷推动平衡时,则频率将立即发生变化。
由于频率的变化,整个系统的负荷也将随着频繁率的的变化而变化。
这种负荷随频率的变化而变化的特性叫做负荷的频率静态特性.综合负荷与频率的关系可表示成:由于电力系统运行中,频率一般在额定频率附近,频率偏移也很小,因此可将负荷的静态频率特性近似为直线,如下图所示。
12.1.2.2发电机组频率特性发电机组的频率静特性:当系统频率变化时,发电机组的高速系统将自动地改变汽轮机的进汽量或水轮机的进水量以增减发电机组的出力,这种反映由频率变化而引起发电机组出力变化的关系,叫发电机调速系统的频率静态特性.发电机组的功率频率静态特性如下图:在不改变发电机调速系统设定值时,发电机输出功率增加则频率下降,而当功率增加到其额定功率时,输出功率不随频率变化。
图中向下倾斜的直线即为发电机频率静态特性,而①和②表示发电机出力分别为PG1和PG2时对应的频率。
等值发电机组(电网中所有发电机组的等效机组)的功率频率静态特性如下图所示,它跟发电机组的功率频率静态特性相似。
12。
1。
2。
3电力系统频率特性电力系统的频率静态特性取决于发电机组的功率频率特性和负荷的功率频率特性,由发电机组的功率频率特性和负荷的功率频率特性可以经推导得出:式中――电力系统有功功率变化量的百分值:――系统频率变化量百分值;――为备用容量占系统总有功负荷的百分值.12.1.2.4一次调频一次调频:由发电机特性和负荷调节效应共同承担系统负荷变化,使系统运行在另一频率的频率调整称为频率的一次调整。
电力系统的频率及其有功功率控制

f 3 ,取用功率仍然为原来的 PL 值
c 点:调速器一次调节,增加机组的输入功率 PT 。频率稳定在 f2 d 点:调频器二次调节,增加机组的输入功率 PT 。频率稳定在 fe
第二节 调频与调频方程式
一、有差调频法 1)调频方程式: 有差调频法指用有差调频器进行并联运行,达到系统调频的 目的的方法。有差调频器的稳态工作特性可以用下式表示, 即
fe 50
(MW/Hz)
若系统的 K L* 值不变,负荷增长到 3650MW 时,则
K L = 1 .5 × 3650 = 109.5 50
(MW/Hz)
即频率降低 1Hz,系统负荷减少 l09.5MW,由此可知, K L 的数值与系统 的负荷大小有关。
第一节 电力系统的频率特性
三、发电机组的功率—频率特性
a) 发电机组转速的调整是由原动机的调速系统来实 现的。 b) 通常把由于频率变化而引起发电机组输出功率变 化的关系称为发电机组的功率—频率特性或调节 特性。 c) 发电机组的功率—频率特性取决于调速系统的特 性。
Short-term power balance I
Turbine Generator
第一节 电力系统的频率特性
PL
1.10
PL P La
1.05
a
1.00
0.95
b
P Lb
0.90
β
f
o
fb
fa
f
0.95
0.96
0.97
0.98
0.99
1.00
1.01
1.02
1.03
图 3-2 负荷的静态频率特性
图 3-3 有功负荷的静态频率特性
第一节 电力系统的频率特性
电力系统频率一次调整的基本原理

电力系统频率一次调整的基本原理1.引言1.1 概述概述部分的内容可以包括电力系统频率一次调整的基本概念和重要性。
概述部分:电力系统频率一次调整是指通过合理控制电力系统的负荷和发电能力,使电力系统的频率维持在稳定的范围内的过程。
频率调整是电力系统运行中非常重要的一项技术,对于保障电力系统的安全稳定运行具有至关重要的意义。
在电力系统中,发电厂的负荷、输电线路的负荷以及用户的用电负荷均会对电力系统的频率产生影响。
这些因素的不平衡会导致电力系统频率偏离额定值,从而对电力系统的正常运行产生负面影响。
因此,通过对电力系统的频率进行一次调整,可以有效保持电力系统的稳定运行状态。
电力系统频率一次调整需要考虑多个因素,包括电力负荷的波动、发电机组的响应速度以及电力系统的传输能力等。
同时,频率调整还需考虑到电力调度的经济性和环境友好性等方面的因素。
频率调整的过程通常由发电厂的发电机组以及调度中心的监测和控制系统共同完成。
当电力系统频率偏离额定值时,调度中心会通过监测系统获取实时数据,并下发指令,调节发电机组的出力,以实现频率的恢复。
这种反馈控制的机制保证了电力系统频率的稳定性和可靠性。
综上所述,电力系统频率一次调整是确保电力系统稳定运行的重要环节。
通过合理控制电力系统的发电能力和负荷,保持频率在合理范围内,可以提高电力系统的可靠性、经济性和环保性。
在日益增长的电力需求和能源结构转型的背景下,频率调整技术的发展将对电力系统的可持续发展产生积极的影响。
1.2 文章结构本文将按照以下结构来介绍电力系统频率一次调整的基本原理:第一部分,引言部分,将会对文章的主题进行一个概述,简要介绍电力系统频率调整的背景和意义,并阐明本文的研究目的。
第二部分,正文部分,将会重点讨论频率调整的基本原理。
首先,我们将介绍电力系统频率调整的背景,包括对电力系统频率一次调整的需求和现实挑战。
接着,我们将详细阐述频率调整的基本原理,包括频率控制的原则、频率调整的影响因素和频率调整的数学模型等内容。
4电力系统频率调整和电压调整

4 电力系统的有功功率平衡与频率调整4.1 概述一、频率调整的必要性电力系统运行的根本目的是在保证电能质量符合标准的条件下,持续不断地供给用户所需要的功率,维持电力系统的有功功率和无功功率的平衡,保证系统运行的经济性。
衡量电能质量的主要指标是频率、电压和波形。
电力系统运行中频率和电压变动时,对用户,发电厂和电力系统本身都会产生不同程度的影响。
为保证良好的电能质量,电力系统运行时,必须将系统的频率和电压控制、调整在允许的范围内。
我国频率规定:f N =50Hz ,频率偏差范围为±0.2~0.5Hz二、频率调整的方法 第一种变化负荷引起的频率偏移由发电机组的调速器(governor )进行,称为频率的一次调整。
第二种变化负荷引起的频率偏移由发电机组的调频器(frequency modulator )j 进行,称为频率的二次调整。
第三种负荷的变化是可预测的,调度部门按经济调度的原则事先给各发电厂分配发电任务,各发电厂按给定的任务及时地满足系统负荷的需求,就可以维持频率的稳定。
4.2自动调速系统一、调速器的工作原理——实现频率的一次调整对应负荷的增大,发电机输出功率增加,频率略低于原来值;如果负荷降低,调速器调整作用将使输出功率减小,频率略高于原来值。
这就是频率的一次调整,频率的一次调整由调速器自动完成的。
调整的结果,频率不能回到原来值,因此一次调整为有差调节(droop control )。
二、调频器的工作原理——实现频率的二次调整由调频器来完成的调节,称为频率的二次调整。
由于调整的结果,频率能回到原来值,因此二次调整为无差调节(isochronous control )。
4.2 电力系统有功功率平衡和频率调整 一、频率的影响1、影响产品质量:异步电动机转速与输出功率有关2、影响精确性:电子技术设备3、影响汽轮发电机叶片 二、频率负荷机制三、、有功功率负荷的变动及其分类控制1、系统负荷可以看作由以下三种具有不同变化规律的变动负荷组成: 1)变动周期小于10s ,变化幅度小 调速器频率的一次调整 2)变动周期在(10s ,180s ),变化幅度较大调频器频率的二次调整3)变动周期最大,变化幅度最大:气象、生产、生活规律根据预测负荷,在各机组间进行最优负荷分配频率的三次调整 四、有功功率平衡与备用容量1、功功率平衡:2、备用容量:1)作用 为了保证供电可靠性及电能质量合格,系统电源容量应大于发电负荷2fωπ=T GP P ≡发电机输出电磁功率原动机输入功率T G T GP P P P ≥⎧⎨≤⎩,GiLi Loss PP P ∑=+∑∑2)定义 备用容量 = 系统可用电源容量 - 发电负荷 3)分类按作用分:负荷备用:满足负荷波动、计划外的负荷增量事故备用:发电机因故退出运行能顶上的容量 检修备用:发电机计划检修国民经济备用:满足工农业超计划增长按其存在形式分: 热备用冷备用4.3 电力系统无功功率平衡和电压管理电力系统中无功功率电源不足,系统结点电压就要下降。
电力系统的电压与频率稳定

电力系统的电压与频率稳定电力系统是现代社会中不可或缺的组成部分,而电压和频率的稳定是电力系统正常运行的基本要求。
本文将从电压稳定和频率稳定两个方面进行论述,以探讨电力系统的稳定性和相关的技术措施。
一、电压稳定在电力系统中,电压稳定是指电力供应的电压保持在合理的范围内,不受外界因素干扰,保证用户正常使用电力设备。
电压的不稳定会导致电力设备的故障或损坏,对用户的生产和生活带来严重影响。
为了保持电力系统的电压稳定,各个环节和设备都需要进行相应的调整和控制。
1. 发电机调压器发电机是电力系统的核心组成部分,其调压器的稳定性直接影响整个系统的电压稳定性。
通过合理设置和调整发电机调压器的控制参数,可以使发电机输出的电压保持在合理范围内。
2. 无功补偿装置无功补偿装置可以根据电网负载情况自动调整系统的电压水平,以保持电力系统的电压稳定。
例如,静态无功补偿器(SVC)和静态同步补偿器(STATCOM)可以通过补偿功率因数的变化来调整电压。
3. 稳压变压器稳压变压器是电力系统中常用的调压设备,它可以通过调整变压器的变比来稳定电压。
通过控制稳压变压器的调节器,可以实现电压的精确调整,以满足用户的需求。
二、频率稳定频率稳定是指电力系统供电频率保持在一定范围内,不受外界扰动和电网负荷变化的影响。
电力系统的频率稳定对于保障电力设备的正常工作和电能传输具有重要意义。
为了保持电力系统的频率稳定,需要采取以下措施:1. 发电机调速器发电机的调速器通过控制发电机的励磁和负荷,以及调整供电频率,来维持电力系统的频率稳定。
调速器的设计和运行参数需要根据实际情况进行优化和调整,以实现无功功率和有功功率的平衡。
2. 频率稳定器频率稳定器是一种用于控制发电机转速和输出频率的装置,可以根据电网的频率偏差自动调整转速,以维持电力系统的频率稳定。
3. 负荷调控负荷调控是通过管理和控制电力系统负荷的变化,以维护电力系统的频率稳定。
例如,在负荷过大或过小时,可以通过增加或减少发电机的投入来调整系统的频率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电力系统的频率问题
为什么我国的电源是采用50Hz的,而外国有的国家采用60Hz的电源?我国在制定此标准时是依据什么呢?50Hz和60Hz电源的优点、缺点在哪里?两者对负载的功率有没有影响?另外,机场和飞机上又为什么采用400Hz的电源?
其实50H和60HZ的区别不是很大,没有实质性的问题。
不过是发电机的转速略有差别。
选择50HZ或60HZ,在一个国家里,总得一致。
应当引起人们关注的倒是,为什么要采用50HZ或60HZ,而不是更高或更低。
在电气系统里,频率是一个很重要的基本要素,并不是随意确定的。
这一个问题看起来简单,实际上是一个比较复杂的问题,涉及的方面比较多,从原理上追朔,应当从麦克斯韦发现了经典电磁理论、赫兹为麦克斯韦的理论添上了至关重要的一笔、法拉第的法拉第电磁感应定律及其世界上第一台电磁感应发电机、英国工程师瓦特金首先制出了电动机,法国人皮克希制成了发电机、西门子发现了发电机的原理,发明了发电机,这是发电机领域的第一例实际应用等说起。
此后人们发现总结出来的定理为,周期性地改变方向的电流叫做交流电,电流发生1
个周期性变化的时间叫做周期,每秒电流发生变化的次数做频率,单位是赫兹(为了纪念赫兹的贡献)。
交流电的频率为50(60)赫,电流方向每秒钟发生50(60)个周期性的变化,每秒改变的次数为100(120)次。
电动机是根据通电线圈在磁场中转动的基本原理制成的。
如果将电动机线圈两端加两个铜制滑环及分别与滑环接触的两个电刷就成为交流发电机(原理)。
发电机是实现将机械能转化为电能的装置,需要原动机拖动。
频率大小的确定与发电机、电动机及变压器等的构造、材料等有关。
50赫的两极发电机的同步转速是3000转/分,而如果频率上升一倍达到100赫,那么同步转速将会是6000转/分。
如此高的速度将会给发电机的制造带来很多问题,特别是转子表面的线速度太高,必将大大限制容量的增加。
另外,从使用角度看,频率过高,使得电抗增加,电磁损耗大,加剧了无功的数量。
譬如以三相电机为例,其电流大大下降,输出功率及转矩也大大下降,实在没有益处。
另外,如果采用较低的频率譬如30赫,变压效率低,那么将不利于交流电的变压和传输。
现代电力系统的频率即电力系统中的同步发电机产生的正弦基波电压的频率。
频率是整个电力系统统一的运行参数,一个电力系统只有一个频率。
我国和世界上大多数欧洲国家电力系统的额定频率为50Hz。
美洲地区多数是60Hz。
大多数国家规定频率偏差±0.1~0.3Hz之间。
在我国,300万kW以上的电力系统频率偏差规定不得超过±0.2Hz;而300万kW以下的小电力系统的频率偏差规定不得超过±0.5Hz。
由于大机组的运行对电力系统频率偏差要求比较严格,因此有些国家对电力系统故障运行方式的频率偏差也作了规定,一般规定在±0.5~
±1Hz之间。
超过允许的频率偏差,大机组将跳闸,这不利于系统的安全稳定运行。
在电力系统内,发电机发出的功率与用电设备及送电设备消耗的功率不平衡,将引起电力系统频率变化。
当系统负荷超过或低于发电厂的出力时,系统频率就要降低或升高,发电厂出
力的变化同样也将引起系统频率变化。
另外,我国电网的频率变化范围是±1Hz。
因为频率调节惯量较大,范围小容易引起电网振荡,作过温控或恒压的人应该理解。
在大网并网前,兰州地区的电网频率在50.5Hz以上,上海地区在49.5Hz左右。
现在的大网并网有利于电网频率及电压稳定。
载波频率越高,正弦波型越好,电机绕组的谐波越少。
但是辐射干扰能量提高,干扰周边电气设备。
电网频率的差异取决于人们的计算习惯,美洲的大规模发电较早,当时的计算工具主要是英制(12进制)计算尺,为便于计算,用60Hz,稍晚一点的规模电网都用10进制数据,50Hz 更方便些。
关于电压等级,分为发电机和电动机两个系列,我们常说的电压是电动机电压,是基本系列,220V为基础,每乘1.414并圆整后为一个等级,变频器电压除外;发电机电压为同等级的电动机电压加5%并圆整。
所以只有230V或400V的发电机而没有220V或380V的发电机。
机场的特殊情况是:机载发电机要求体积小重量轻,只有提高频率才能满足功率要求,所以相应的机载电气设备用400Hz,与飞机相关的电源要400赫兹咯!军用的更高的也有。
航空器上的电源采用400Hz就是为了减小体积和重量,是一个复杂的系统工程。
军电和航电的400Hz主要取决于以下几点:1、频率高的发电机或电动机由于转速高、转矩小而体积、重量较小;2、飞机上发电机的动力取自航空发动机,转速较高;3、直流用电设备较多,频率高有利于减小整流纹波。
在相同电压的情况下,50hz与60hz及400hz电源在传输功率上、整流效率有什么不同?
不用100Hz或120Hz是因为频率太高,一方面传输困难,做变频器的对线路感抗及容抗的理解应该是深刻的;另一方面,发电机和电动机的转速太高或极数太多都不可取。
400Hz
的电不能远距离传输,用户在订购400Hz发电机时要给定传输距离及方式,整流效率也差,但整流后纹波较小,纹波频率较高,好处理.
如果50赫兹投入需要60赫兹的生产线, 交流电机速度降低,(电机速度与频率成正比)电机发热,长时间工作必烧无疑. 控制系统一般通过整流和开关电源,应该没事。
还要看一下对频率敏感的器件.(大前题,电压等级一致)
如果要研究将50Hz电源直接供电给需要60Hz电源的生产线上使用,主要考虑电磁器件的电磁特性,如电动机、变压器,其次是与电源频率有关的采样信号。
对于前者,研究的方法可以找到这两个器件的电磁表达式,分别将50Hz和60Hz带进去,就可以发现一些问题。
徐武安《电感器件设计与计算〉,四川科技出版社,1985.08,其中的103页-106页主要讲高频变压器的设计计算,其中有些理论可以引申到电动机上去。
后者不用说就知道了。
对于异步电机而言,将50Hz的电源供给60Hz的负载时,转速降低是肯定的,电压应按电机铭牌电压降低1/6供应,此时电机可长期运行,且转矩、电流不变,功率减小了1/6。
若
电压不降低,会造成电机磁路饱和,空载电流和空载损耗增大很多。
对于电感器,感抗减小1/6。
对于60Hz专用的接触器,改为50Hz,容易误脱扣。
但目前一般都是50/60Hz通用的。
发达国家也有50HZ的,比如欧洲大多数国家。
小国也有采用60HZ的,比如小日本。
日本电源标准的起源,在网上见到以下叙述:
“日本有两个周波数,关东是50赫兹,关西是60赫兹!怎么会有这种邪门事?很简单,日本人向老外学发电时,关东人跟欧洲人学,买50赫兹的发电机,而关西人则跟美国人学,买60赫兹的发电机!”
“关东指的是首都圈,也就是东京都23区和周围的神奈川,琦玉等好几个县的一部分,而关西指京阪神(京都,大阪,神户)及周围地区。
”
“广州最早的电厂
年,英商旗昌洋行看中这块风水宝地,开办粤垣电灯公司,设有锅炉及发电机四台,发电容量546千瓦(时),后被官商合股收购,征用附近街店铺扩充厂房。
1933年,电力增加至2.4万千瓦。
这是广州最早的电厂。
”
英国的电源标准是50HZ 单相230V,三相400V,和我国现行的标准接近,可能早期购入的设备就成为一个事实标准;
动乱割据的旧中国,除宝岛台湾由于受日本长期占领和美国影响,电源标准是60HZ以外,尚能够维持电源标准的统一(好像日伪满时东北曾有110V的电源).
解放前,我国多种电压和频率并存,主要与发电设备的生产国的制式有关,解放后,我国沿用苏联的制式,就成了现在的样子。