8电子传递与氧化磷酸化
第八章电子传递体系与氧化磷酸化ppt课件

谷草转氨酶
谷草转氨酶
天冬氨酸 -酮戊二酸 Ⅲ -酮戊二酸 天冬氨酸
呼吸链
Ⅳ
(Ⅰ、 Ⅱ、 Ⅲ、 Ⅳ为膜上的转运载体)
2,4-二硝基苯酚的解偶联作用
NO2 H+
NO2
O-
NO2
外
内
NO2
NO2
NO2
线
OH
粒
体
内
膜
NO2 OH
一、生物氧化的特点 二、生物氧化过程中CO2的生成 三、生物氧化过程中H2O的生成 四、有机物在体内氧化释能的三个阶段
生物氧化的特点
在活的细胞中(pH接近中性、体温条件下), 有机物的氧化在一系列酶、辅酶和中间传递体参与 下进行,其途径迂回曲折,有条不紊。 氧化过程中 能量逐步释放,其中一部分由一些高能化合物(如 ATP)截获,再供给机体所需。在此过程中既不会 因氧化过程中能量骤然释放而伤害机体,又能使释 放的能量尽可得到有效的利用。
线粒体呼吸链
线粒体基质是呼吸底
物氧化的场所,底物在这 里 氧 化 所 产 生 的 NADH 和 FADH2 将 质 子 和 电 子 转移到内膜的载体上,经 过一系列氢载体和电子载 体的传递,最后传递给 O2 生 成 H2O。 这 种 由 载 体组成的电子传递系统称 电 子 传 递 链 ( eclctron transfer chain),因为其 功能和呼吸作用直接相关, 亦称为呼吸链。
原
0.4
自
由
能
0.6
变
化
0.8
NADH
FMN Fe-S CoQ
复合体 I
NADH 脱氢酶
Cyt b Fe-S Cyt c1
复合物 III
细胞色素 C还原酶
Chapter 8 电子传递和氧化磷酸化

NAD+
甘油-3-磷酸
磷酸二羟丙酮 线 粒 体 膜 间 隙
甘油-3-磷酸
FADH2
FAD
NADHFMN CoQ b c1 c aa3 O2
线粒体基质 NADH通过穿梭系统带一对电子进入线粒体,只产生2分子ATP。
(二)苹果酸-天冬氨酸穿梭系统
在哺乳动物的心脏和肝脏等组织中,存在着活 跃的苹果酸-天冬氨酸穿梭系统。这一穿梭系统涉及 胞液和基质中的苹果酸脱氢酶和天冬氨酸转氨酶, 以及线粒体内膜中的载体。转运步骤如下: 1)NADH进入内膜 ①在苹果酸脱氢酶的催化下,胞液NADH将草酰乙 酸还原为苹果酸。 ②苹果酸经二羧酸转位酶进入线粒体基质。 ③在基质中,线粒体苹果酸脱氢酶催化苹果酸重 新氧化为草酰乙酸,使线粒体内的NAD+还原为NADH ,经呼吸链氧化。
膜间隙:含许多可溶性酶、底 物及辅助因子。 基质:含三羧酸循环酶系、线 粒体基因 表达酶系等以及线粒 体 DNA, RNA,核糖体。
细胞质中脱氢、产 生CO2
细胞膜 产H2O、 产能
ห้องสมุดไป่ตู้
原核生物细胞
1. 呼吸链的概念 生物氧化体系中的传递体所组成 的电子传递体系称为呼吸链,或叫电 子传递链。
2. 呼吸链的组成——电子传递体
2、氧化磷酸化抑制剂 如寡霉素等直接抑制ATP的合成。ATP的合成受到 抑制后,质子浓度梯度得不到释放,电子传递过 程在难以泵出质子时也会慢慢停止。
氧化磷酸化的抑制和解偶联
质子浓 度梯度 抗霉素 A 氰化物 一氧化碳
鱼藤酮 寡霉素 2,4-二硝基苯酚 (解偶联剂) 安密妥
氧化磷酸化的抑制和解偶联
电子经由不同的呼吸链产生的P/O比值
膜间空隙
第六(8)章生物氧化与氧化磷酸化

,故称为细胞色素。
细胞色素通过辅基中的铁离子价的可逆变 化进行电子传递。它在呼吸链中作为单电子传 递体。
血红素
Cyt.类基本结构
Cys 蛋白质部分 S H3C- CH H3C-
多肽链
Cys CH3 S
细 胞 色 素
N
铁卟啉 H3CCH2 CH2 COO-
-CH - CH3 Fe N 3+ N -CH3
代谢物在脱氢酶催化下脱下的氢由相应的氢载体( NAD+ 、 NADP+ 、 FAD 、 FMN 等)所接受,再通过一系列递氢 体或递电子体传递给氧而生成H2O 。
CH3CH2OH
乙醇脱氢酶
CH3CHO
NAD+
NADH+H+
NAD+
2e
电子传递链
1\2 O2
O=
2H+
H2 O
(4)当有机物被氧化成CO2和H2O时,释放的 能量怎样转化成ATP。
2)磷氮键型
O NH C N NH CH3 P O O
NH C N NH CH3 O P O NH2 O
CH2COOH
磷酸肌酸 10.3千卡/摩尔
CH2CH2CH2CHCOOH
磷酸精氨酸 7.7千卡/摩尔
磷酸肌酸是易兴奋组织(如肌肉、脑、神经)唯一的能起 暂时储能作用的物质。 磷酸精氨酸是无脊椎动物肌肉中的储能物质
[ATP]+1/2[ADP] 能荷= [ATP]+[ADP]+[AMP]
能荷可调节代谢,能荷高时,抑制物质分解代谢,促 进物质的合成代谢;能荷低,促进物质分解代谢,抑制 物质的合成代谢。
能荷调节主要是通过 ATP 、ADP、AMP作为一些 调节酶的变构效应物而起 作用的。 如糖酵解中磷酸果糖 激酶的调控:高浓度的ATP 是该酶的变构抑制剂,ATP 的抑制作用可被AMP解除。
生物氧化——电子传递和氧化磷酸化作用

氧还-回路机制示意图
质子转移的两种假设机制
(2)质子泵机制
这个机制的内容是,电子传递导致复合 体构象的变化,氨基酸残基在膜内侧结合H+, 构象变化后在膜外侧释放H+,从而把H+从膜 内侧运到膜外。
三种类型的Fe-S cluster
半胱氨酸的巯基硫
Fe
Fe2-S2
Fe4-S4
每传递2个电子,可 驱动4个H+从膜内侧 运到膜外侧。
NADH-Q还原酶 催化的电子传递
电子传递链各个成员
2.辅酶Q
辅 酶 Q ( Coenzyme Q ) 又 称 泛 醌 (ubiquinone),有时简称为Q或UQ,是一种脂溶 性物质,它可以接受1个电子还原成半醌中间体,再 接受1个电子还原成对苯二酚形式。由于其脂溶性强, 可以在线粒体内膜中扩散。它有一个长长的碳氢侧 链,哺乳动物中最常见的是具有10个异戊二烯单位 的侧链,简写为Q10,在非哺乳动物中这个侧链可能 只有6~8个异戊二烯单位。
琥珀酸-Q还原酶 催化的电子传递
电子传递链各个成员
4.细胞色素还原酶
细胞色素还原酶又称复合体Ⅲ、辅酶Q- 细胞色素c还原酶。它的作用是将还原型辅酶 Q的电子传递给细胞色素c。细胞色素还原酶 中含有细胞色素b,也含有2Fe-2S聚簇。
细胞色素(cytochrome)
细胞色素是一类含有血红素辅基的电子传递蛋 白质的总称。还原型细胞色素具有明显的可见光吸 收,可以看到α、β和γ三个吸收峰,其中α峰的波长 随细胞色素种类的不同而各有特异的变化,可用来 区分不同的细胞色素。氧化型细胞色素在可见光区 看不到吸收峰。细胞色素中的血红素有三种,分别 称为细胞色素a、b和c,同一种细胞色素血红素因结 合的蛋白质不同,其α吸收峰的波长会发生小的变化, 如 细 胞 色 素 还 原 酶 中 含 有 的 细 胞 色 素 b 就 分 为 bH (b562)和bL(b566)两种。
氧化磷酸化的原理和过程

氧化磷酸化的原理和过程
氧化磷酸化是生物体内提取化学能的重要途径,是有氧呼吸的关键过程,在线粒体中进行。
其基本原理和过程包括:
1. 电子传递链
NADH和FADH2将电子传递给一系列载体分子,如辅酶Q和细胞色素C。
电子层层递减能量。
2. 氧化磷酸化
电子最终传至氧分子,氧与电子和质子发生化学反应,形成水。
同时释放能量。
3. 氢离子跨膜传递
电子传递过程中,质子被主动穿梭跨线粒体膜,形成跨膜电化学位梯。
4. 合成ATP
利用质子跨膜传递的潜在能驱动ATP合酶,催化ADP与无机磷酸生成ATP。
5. 氧化反应释放能量
磷酸化过程中,氧化反应释放的能量用于合成ATP。
6. 氧化磷酸化耦合
电子传递链与质子跨膜形成耦合,两者协同进行,实现能量转化。
7. 氧是终电子受体
氧分子通过获得电子达到满殻稳定状态,是整个电子传递链中的终接收体。
综上,氧化磷酸化通过一系列细胞色素氧化反应,辅以质子跨膜传递,将化学能高效转换为生物所需的ATP的化学能,为生命活动提供能量。
第21章--氧化磷酸化(生物氧化-电子传递链和氧化磷酸化)

二、电子传递和氧化呼吸链 P118
电子传递链 磷酸化 (氧化) (ATP合成)
线粒体的电子传递链
电子传递链定义
在线粒体内膜上,由递氢体和递电子体组成的、按一 定顺序排列的、与细胞利用氧密切相关的链式反应体系,称 为(呼吸链),又称(电子传递链)(electron transfer chain)。 呼吸链是代谢物上氢原子被脱氢酶激活脱落后,经一系列电 子传递体,最后传递给被激活的氧分子而生成水的过程。
子载体的标准势能是逐步下降的,还是上升的?
电子从NADH或FADH2转移给氧的过程,自由
能变化为正值,还是为负值?
电子传递抑制剂试验
Reduced
Oxidized
Reduced
Oxidized
Reduced
还原状态呼吸链缓慢给氧
利用呼吸链各组分特 有的吸收光谱:离体线粒 体,无氧而有过量底物 (还原状态),缓慢给氧, 观察各组分被氧化的顺序。
NADH脱氢酶
复合物I:NADH到泛醌
NADH-Q还原酶(NADH脱氢酶、复合体Ⅰ)
(判断题 ) NADH脱氢酶是指以NADH为辅酶的脱氢酶的总称。
江苏大学2005年
厦门大学 2005 年
复合物I:NADH到泛醌
NADH-Q还原酶(NADH脱氢酶、复合体Ⅰ)
也称NADH:泛醌氧化还原酶,是一个大的酶复合物, 由42条不同的多肽链组成,成分包括含(FMN黄素蛋白 和至少6个铁硫中心)。高分辨率电子显微镜显示复合物I 为L形,L的一个臂在膜内,另一臂伸展到基质中。
兑换率
1分子葡萄糖完全氧化产生的ATP
酵解阶段: 2 ATP 2 1 NADH
丙酮酸氧化:2 1NADH
2023年生化题库

8 电子传递与氧化磷酸化一、名词解释1、生物氧化2、呼吸链3、氧化磷酸化4、P/O5、底物水平磷酸化二、填空1、真核细胞的呼吸链重要存在于__线粒体内膜_,而原核细胞的呼吸链存在于__细胞质膜_。
2、NADH呼吸链中氧化磷酸化的偶联部位是_复合体Ⅰ、复合体Ⅲ、复合体Ⅳ_。
3、在呼吸链中,氢或电子从_电负性较大(氧化还原电位较低)的载体依次向电正性较大(氧化还原电位较高)的载体传递。
4、典型的呼吸链涉及 NADH和FADH2两种。
5、解释氧化磷酸化作用机制被公认的学说是化学渗透学说_,它是英国生物化学家P.Mitchell于1961年一方面提出的。
6、化学渗透学说重要论点认为:呼吸链组分定位于线粒体内膜上。
其递氢体有质子泵作用,因而导致内膜两侧的质子浓度差,同时被膜上ATP合成酶所运用、促使ADP + Pi → ATP7、动物体内高能磷酸化合物的生成方式有底物水平磷酸化和氧化磷酸化两种。
8、可以使用旋转催化学说很好地解释F1/F0-ATP合成酶的催化机理。
9、F1/F0-ATP合成酶合成一分子ATP通常需要消耗3个质子。
10、鱼藤酮、抗霉素A和CN-、CO的克制部位分别是复合体Ⅰ、C o Q同细胞色素C和复合体Ⅳ。
三、单项选择题1、F1/F o-ATPase的活性中心位于A、α亚基B、β亚基C、γ亚基D、δ亚基E、ε亚基2、下列哪一种物质最不也许通过线粒体内膜?A、PiB、苹果酸C、柠檬酸D、丙酮酸E、NADH3、下列氧化还原系统中标准氧化还原电位最高的是A、延胡索酸/琥珀酸B、CoQ/CoQH2C、细胞色素a(Fe2+/Fe3+)D、细胞色素b(Fe2+/Fe 3+)E、NAD+/NADH4、下列反映中哪一步随着着底物水平的磷酸化反映?A、葡萄糖→葡萄糖-6-磷酸B、甘油酸-1,3-二磷酸→甘油酸-3-磷酸C、柠檬酸→α-酮戊二酸D、琥珀酸→延胡索酸E、苹果酸→草酰乙酸5、氢原子通过呼吸链氧化的终产物是:A、H2O2B、H2OC、H+D、CO2E、O26、下列化合物中哪一个不是呼吸链的成员?A、CoQB、细胞色素C、辅酶ID、FADE、肉毒碱7、线粒体氧化磷酸化解偶联是意味着:A.线粒体氧化作用停止 B.线粒体膜ATP酶被克制C.线粒体三羧酸循环停止D.线粒体能运用氧,但不能生成ATP8、肝细胞胞液中的NADH进入线粒体的机制是:A.肉碱穿梭 B.柠檬酸-丙酮酸循环 C.3-磷酸甘油穿梭D.苹果酸-天冬氨酸穿梭9、下列有关呼吸链的叙述哪些是对的的?A、体内最普遍的呼吸链为NADH氧化呼吸链B、呼吸链的电子传递方向从高电势流向低电势C、假如不与氧化磷酸化偶联, 电子传递就中断D、氧化磷酸化发生在胞液中10、关于电子传递链的下列叙述中哪个是不对的的?()A、线粒体内有NADH+H+呼吸链和FADH2呼吸链。
电子传递与氧化磷酸化

电子传递与氧化磷酸化在疾病中的作用研究
心血管疾病
研究表明,电子传递与氧化磷酸化在心血管 疾病中发挥重要作用。例如,某些遗传性疾 病如Leber遗传性视神经病和肌萎缩侧索硬 化症(ALS)与电子传递链的缺陷有关。
神经系统疾病
许多神经系统疾病如帕金森病、阿尔茨海默 病和亨廷顿氏病等也与电子传递与氧化磷酸 化的异常有关。这些疾病通常伴随着线粒体 功能障碍和氧化应激的增加。
02
在这个过程中,电子从还原剂(如NADH或FADH2)传递 到氧分子,同时伴随ATP的合成。
03
氧化磷酸化主要发生在线粒体内膜上,是细胞呼吸链的主要 组成部分。
氧化磷酸化的过程
电子从NADH或FADH2开始, 经过一系列传递体(如复合体 Ⅰ、Ⅲ、Ⅳ)传递到氧分子。
在这个过程中,质子被泵出线 粒体基质,形成质子梯度。
土壤修复
利用电子传递与氧化磷酸化原理,促进土壤中有机污染 物的降解和转化,实现土壤的生态修复。
THANKS FOR WATCHING
感谢您的观看
药物靶点
电子传递与氧化磷酸化过程中涉及的酶和蛋白质可以 作为药物设计的潜在靶点,用于开发新的药物。
药物筛选
利用电子传递与氧化磷酸化的机制,建立药物筛选模 型,快速筛选出具有潜在疗效的药物分子。
在环境保护领域的应用前景
废水处理
通过模拟电子传递与氧化磷酸化过程,开发高效、环保 的废水处理技术,降低废水中有害物质的含量。
03
氧化磷酸化过程中释放的能量可以用于合成高能化合物,如ATP、 GTP等,这些化合物在细胞内发挥着重要的生物学功能。
04
氧化磷酸化还参与细胞内氧化还原状态的调节,对于维持细胞内环境 的稳定具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8 电子传递与氧化磷酸化
一、名词解释
1、生物氧化
2、呼吸链
3、氧化磷酸化
4、P/O
二、填空
1、真核细胞的呼吸链主要存在于________________,而原核细胞的呼吸链存在于________________。
2、NADH呼吸链中氧化磷酸化的偶联部位是_________、_________、_________。
3、在呼吸链中,氢或电子从_________的载体依次向_________的载体传递。
4、典型的呼吸链包括_________和_________两种。
5、解释氧化磷酸化作用机制被公认的学说是_________,它是英国生物化学家_________于1961年首先提出的。
6、化学渗透学说主要论点认为:呼吸链组分定位于_________内膜上。
其递氢体有_________作用,因而造成内膜两侧的_________
差,同时被膜上_________合成酶所利用、促使ADP + Pi → ATP
7、动物体内高能磷酸化合物的生成方式有_________和_________两种。
8、可以使用________________学说很好地解释F1/F0-ATP合成酶的催化机理。
9、F1/F0-ATP合成酶合成一分子ATP通常需要消耗________________个质子。
10、鱼藤酮、抗霉素A和CN-、CO的抑制部位分别是________________、________________和________________。
三、单项选择题
1、F1/F o-ATPase的活性中心位于
A、α亚基
B、β亚基
C、γ亚基
D、δ亚基
E、ε亚基
2、下列哪一种物质最不可能通过线粒体内膜?
A、Pi
B、苹果酸
C、柠檬酸
D、丙酮酸
E、NADH
3、下列氧化还原系统中标准氧化还原电位最高的是
A、延胡索酸/琥珀酸
B、CoQ/CoQH2
C、细胞色素a(Fe2+/Fe3+)
D、细胞色素b(Fe2+/Fe 3+)
E、NAD+/NADH
4、下列反应中哪一步伴随着底物水平的磷酸化反应?
A、葡萄糖→葡萄糖-6-磷酸
B、甘油酸-1,3-二磷酸→甘油酸-3-磷酸
C、柠檬酸→α-酮戊二酸
D、琥珀酸→延胡索酸
E、苹果酸→草酰乙酸
5、氢原子经过呼吸链氧化的终产物是:
A、H2O2
B、H2O
C、H+
D、CO2
E、O2
6、下列化合物中哪一个不是呼吸链的成员?
A、CoQ
B、细胞色素
C、辅酶I
D、FAD
E、肉毒碱
7、线粒体氧化磷酸化解偶联是意味着:
A.线粒体氧化作用停止 B.线粒体膜ATP酶被抑制
C.线粒体三羧酸循环停止 D.线粒体能利用氧,但不能生成ATP
8、肝细胞胞液中的NADH进入线粒体的机制是:
A.肉碱穿梭 B.柠檬酸-丙酮酸循环 C.3-磷酸甘油穿梭 D.苹果酸-天冬氨酸穿梭
9、下列有关呼吸链的叙述哪些是正确的?
A、体内最普遍的呼吸链为NADH氧化呼吸链
B、呼吸链的电子传递方向从高电势流向低电势
C、如果不与氧化磷酸化偶联, 电子传递就中断
D、氧化磷酸化发生在胞液中
10、关于电子传递链的下列叙述中哪个是不正确的?()
A、线粒体内有NADH+H+呼吸链和FADH2呼吸链。
B、电子从NADH传递到氧的过程中有3个ATP生成。
C、呼吸链上的递氢体和递电子体完全按其标准氧化还原电位从低到高排列。
D、线粒体呼吸链是生物体唯一的电子传递体系。
11、线粒体外NADH经α-磷酸甘油穿梭作用,进入线粒体内实现氧化磷酸化,其p/o值为
A、0 B.2 C、1.5 D.2 E、2.5 F、3
12、如果质子不经过F1/F0-ATP合成酶回到线粒体基质,则会发生:
A、氧化
B、还原
C、解偶联、
D、紧密偶联
13、离体的完整线粒体中,在有可氧化的底物存时下,加入哪一种物质可提高电子传递和氧气摄入量:
A、更多的TCA循环的酶
B、ADP
C、FADH2
D、NADH
14、呼吸链中的电子传递体中,不是蛋白质而是脂质的组分为:
A、NAD+
B、FMN
C、CoQ
D、Fe·S
15、下述哪种物质专一性地抑制F0因子:
A、鱼藤酮
B、抗霉素A
C、寡霉素
D、缬氨霉素
16、二硝基苯酚能抑制下列细胞功能的是:
A、糖酵解
B、肝糖异生
C、氧化磷酸化
D、柠檬酸循环
17、下列关于化学渗透学说的叙述哪一条是不对的:
A、吸链各组分按特定的位置排列在线粒体内膜上
B、各递氢体和递电子体都有质子泵的作用
C、H+返回膜内时可以推动ATP酶合成ATP
D、线粒体内膜外侧H+不能自由返回膜内
18、呼吸链的各细胞色素在电子传递中的排列顺序是:
A、c1→b→c→aa3→O2;
B、c→c1→b→aa3→O2;
C、c1→c→b→aa3→O2;
D、b→c1→c→aa3→O2;
19、人体内二氧化碳生成方式是:
A、O2与C的直接结合
B、O2与CO的结合
C、有机酸的脱羧
D、一碳单位与O2结合
20、铁硫蛋白的作用是:
A、递氢
B、递氢兼递电子
C、只脱去底物的电子
D、传递电子
E、以上都不是
21、CO影响氧化磷酸化的机理在于:
A、使ATP水解为ADP和Pi加速
B、解偶联作用
C、使物质氧化所释放的能量大部分以热能形式消耗
D、影响电子在细胞色素b与C1之间传递
E、影响电子在细胞色素aa3与O2之间传递
四、是非题
1、ATP在高能化合物中占有特殊的地位,它起着共同的中间体的作用。
2、NADH和NADPH都可以直接进入呼吸链。
3、解偶联剂可抑制呼吸链的电子传递。
4、电子通过呼吸链时,按照各组分氧还电势依次从还原端向氧化端传递。
5、呼吸链中Cytaa3的铁离子和铜离子将电子传给氧。
6、辅酶Q、FAD在呼吸链中也可用作单电子传递体起作用。
7、呼吸链中的细胞色素系统均结合在内膜上,不能溶于水。
8、呼吸链中各电子传递体都和蛋白质结合在一起。
9、在生物体内NADH+H+和NADPH+H+的生理生化作用是相同的。
10、呼吸链各组分中只有Cytc是线粒体内膜的外周蛋白
11、琥珀酸脱氢酶的辅基FAD与酶蛋白之间以共价键结合。
五、问答题
1、简述化学渗透学说的主要内容,其最显著的特点是什么?
2、糖的有氧氧化包括哪几个阶段 ?
3、试述呼吸链中各种酶复合物的排列顺序及“质子泵”部位。
5、简述生物氧化中水和CO2的生成方式.
6、线粒体外生成的NADH在有氧情况下,如何进入线粒体内彻底氧化?并写出其氧化过程。
(一)磷酸甘油穿梭系统
胞液中的NADH在两种不同的α-磷酸甘油脱氢酶的催化下,以α-磷酸甘油为载体穿梭往返于胞液和线粒体之间,间接转变为线粒体内膜上的FADH2而进入呼吸链,这种过程称为磷酸甘油穿梭(glycerol phosphate shuttle)。
在线粒体外的胞液中,糖酵解产生的磷酸二羟丙酮和NADH+H+,在以NAD+为辅酶的α-磷酸甘油脱氢酶的催化下,生成α-磷酸甘油,α-磷酸甘油可扩散到线粒体内,再由线粒体内膜上的以FAD 为辅基的α-磷酸甘油脱氢酶(一种黄素脱氢酶)催化,重新生成磷酸二羟丙酮和FADH2,前者穿出线粒体返回胞液,后者FADH2将2H传递给CoQ,进入呼吸链,最后传递给分子氧生成水并形成ATP(见图6-14)。
由于此呼吸链和琥珀酸的氧化相似,越过了第一个偶联部位,因此胞液中NADH+H+中的两个氢被呼吸链氧化时就只形成2分子ATP,比线粒体中NADH+H+的氧化少产生1分子ATP,也就是说经过这个穿梭过程每转一圈要消耗1个ATP。
电子传递之所以要用FAD作为电子受体是因为线粒体内NADH的浓度比细胞质中的高,如果线粒体和细胞质中的α-磷酸甘油脱氢酶都与NAD+连接,则电子就不能进入线粒体。
利用FAD能使电子逆着NADH+H+梯度而从细胞质转移到线粒体中,转入的代价是每对电子要消耗1分子ATP。
这种穿梭作用存在于某些肌肉组织和神经细胞,因此这种组织中每分子葡萄糖氧化只产生36分子的ATP
(二)苹果酸-天冬氨酸穿梭系统
苹果酸-天冬氨酸穿梭系统(malate-aspartate shuttle)需要两种谷-草转氨酶、两种苹果酸脱氢酶和一系列专一的透性酶共同作用。
首先,NADH在胞液苹果酸脱氢酶(辅酶为NAD+)催化下将草酰乙酸还原成苹果酸,然后苹果酸穿过线粒体内膜到达内膜衬质,经衬质中苹果酸脱氢酶(辅酶也为NAD+)催化脱氢,重新生成草酰乙酸和NADH+H+;NADH+H+随即进入呼吸链进行氧化磷酸化,草酰乙酸经衬质中谷-草转氨酶催化形成天冬氨酸,同时将谷氨酸变为α-酮戊二酸,天冬氨酸和α-酮戊二酸通过线粒体内膜返回胞液,再由胞液谷-草转氨酶催化变成草酰乙酸,参与下一轮穿梭运输,同时由α-酮戊二酸生成的谷氨酸又回到衬质(见图6-15)。
上述代谢物均需经专一的膜载体通过线粒体内膜。
线粒体外的NADH+H+通过这种穿梭作用而进入呼吸链被氧化,仍能产生3分子ATP,此时每分子葡萄糖氧化共产生38分子ATP。
在原核生物中,胞液中的NADH能直接与质膜上的电子传递链及其偶联装配体作用,不存在穿梭作用,因而当每分子葡萄糖完全氧化成CO2和H2O时,总共能生成38分子的ATP。