数字信号处理课程设计实验报告

合集下载

数字信号处理实验报告

数字信号处理实验报告

实验一 信号、系统及系统响应一、实验目的1、熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对时域采样定理的理解。

2、熟悉离散信号和系统的时域特性。

3、熟悉线性卷积的计算编程方法:利用卷积的方法,观察、分析系统响应的时域特性。

4、掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号、系统及其系统响应进行频域分析。

二、 实验原理1.理想采样序列:对信号x a (t)=A e −αt sin(Ω0t )u(t)进行理想采样,可以得到一个理想的采样信号序列x a (t)=A e −αt sin(Ω0nT ),0≤n ≤50,其中A 为幅度因子,α是衰减因子,Ω0是频率,T 是采样周期。

2.对一个连续时间信号x a (t)进行理想采样可以表示为该信号与一个周期冲激脉冲的乘积,即x ̂a (t)= x a (t)M(t),其中x ̂a (t)是连续信号x a (t)的理想采样;M(t)是周期冲激M(t)=∑δ+∞−∞(t-nT)=1T ∑e jm Ωs t +∞−∞,其中T 为采样周期,Ωs =2π/T 是采样角频率。

信号理想采样的傅里叶变换为X ̂a (j Ω)=1T ∑X a +∞−∞[j(Ω−k Ωs )],由此式可知:信号理想采样后的频谱是原信号频谱的周期延拓,其延拓周期为Ωs =2π/T 。

根据时域采样定理,如果原信号是带限信号,且采样频率高于原信号最高频率分量的2倍,则采样以后不会发生频率混叠现象。

三、简明步骤产生理想采样信号序列x a (n),使A=444.128,α=50√2π,Ω0=50√2π。

(1) 首先选用采样频率为1000HZ ,T=1/1000,观察所得理想采样信号的幅频特性,在折叠频率以内和给定的理想幅频特性无明显差异,并做记录;(2) 改变采样频率为300HZ ,T=1/300,观察所得到的频谱特性曲线的变化,并做记录;(3) 进一步减小采样频率为200HZ ,T=1/200,观察频谱混淆现象是否明显存在,说明原因,并记录这时候的幅频特性曲线。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理实验报告⼀、课程设计(综合实验)的⽬的与要求⽬的与要求:1.掌握《数字信号处理基础》课程的基本理论; 2.掌握应⽤MATLAB 进⾏数字信号处理的程序设计;实验内容:已知低通数字滤波器的性能指标如下:0.26p ωπ=,0.75dB p R =,0.41s ωπ=,50dB s A =要求:1. 选择合适的窗函数,设计满⾜上述指标的数字线性相位FIR 低通滤波器。

⽤⼀个图形窗⼝,包括四个⼦图,分析显⽰滤波器的单位冲激响应、相频响应、幅频响应和以dB 为纵坐标的幅频响应曲线。

2. ⽤双线性变换法,设计满⾜上述指标的数字Chebyshev I 型低通滤波器。

⽤⼀个图形窗⼝,包括三个⼦图,分析显⽰滤波器的幅频响应、以dB 为纵坐标的幅频响应和相频响应。

3. 已知模拟信号1234()2sin(2)5sin(2)8cos(2)7.5cos(2)x t f t f t f t f t ππππ=+++其中10.12f kHz =,2 4.98f kHz =,3 3.25f kHz =,4 1.15f kHz =,取采样频率10s f kHz =。

要求:(1) 以10s f kHz =对()x t 进⾏取样,得到()x n 。

⽤⼀个图形窗⼝,包括两个⼦图,分别显⽰()x t 以及()x n (0511n ≤≤)的波形;(2) ⽤FFT 对()x n 进⾏谱分析,要求频率分辨率不超过5Hz 。

求出⼀个记录长度中的最少点数x N ,并⽤⼀个图形窗⼝,包括两个⼦图,分别显⽰()x n 以及()X k 的幅值; (3) ⽤要求1中设计的线性相位低通数字滤波器对()x n 进⾏滤波,求出滤波器的输出1()y n ,并⽤FFT 对1()y n 进⾏谱分析,要求频率分辨率不超过5Hz 。

求出⼀个记录长度中的最少点数1y N ,并⽤⼀个图形窗⼝,包括四个⼦图,分别显⽰()x n (01x n N ≤≤-)、()X k 、1()y n (101y n N ≤≤-)和1()Y k 的幅值;(4) ⽤要求2中设计的Chebyshev 低通数字滤波器对()x n 进⾏滤波,求出滤波器的输出2()y n ,并⽤FFT 对2()y n 进⾏谱分析,要求频率分辨率不超过5Hz 。

数字信号处理课程设计实验报告

数字信号处理课程设计实验报告

数字信号处理课程设计实验报告数字信号处理课程设计实验报告(基础实验篇)实验⼀离散时间系统及离散卷积⼀、实验⽬的和要求实验⽬的:(1)熟悉MATLAB软件的使⽤⽅法。

(2)熟悉系统函数的零极点分布、单位脉冲响应和系统频率响应等概念。

(3)利⽤MATLAB绘制系统函数的零极点分布图、系统频率响应和单位脉冲响应。

(4)熟悉离散卷积的概念,并利⽤MATLAB计算离散卷积。

实验要求:(1)编制实验程序,并给编制程序加注释;(2)按照实验内容项要求完成笔算结果;(3)验证编制程序的正确性,记录实验结果。

(4)⾄少要求⼀个除参考实例以外的实例,在实验报告中,要描述清楚实例中的系统,并对实验结果进⾏解释说明。

⼆、实验原理δ的响应输出称为系统1.设系统的初始状态为零,系统对输⼊为单位脉冲序列()n的单位脉冲响应()h n。

对于离散系统可以利⽤差分⽅程,单位脉冲响应,以及系统函数对系统进⾏描述。

单位脉冲响应是系统的⼀种描述⽅法,若已知了系统的系统函数,可以利⽤系统得出系统的单位脉冲响应。

在MATLAB中利⽤impz 由函数函数求出单位脉冲响应()h n2.幅频特性,它指的是当ω从0到∞变化时,|()|Aω,H jω的变化特性,记为()相频特性,指的是当ω从0到∞变化时,|()|∠的变化特性称为相频特性,H jωω。

离散系统的幅频特性曲线和相频特性曲线直观的反应了系统对不同记为()频率的输⼊序列的处理情况。

三、实验⽅法与内容(需求分析、算法设计思路、流程图等)四、实验原始纪录(源程序等)1.离散时间系统的单位脉冲响应clcclear alla=[1,-0.3];b=[1,-1.6,0.9425];impz(a,b,30);%离散时间系统的冲激响应(30个样值点)title('系统单位脉冲响应')axis([-3,30,-2,2]);2.(1)离散系统的幅频、相频的分析⽅法21-0.3()1 1.60.9425j j j e H z e e ωωω---=-+clcclear alla=[1,-0.3];b=[1,-1.6,0.9425];%a 分⼦系数,b 分母系数 [H,w]=freqz(a,b,'whole'); subplot(2,1,1); plot(w/pi,abs(H));%幅度 title('幅度谱');xlabel('\omega^pi');ylabel('|H(e^j^\omega)'); grid on;subplot(2,1,2);plot(w/pi,angle(H));%相位 title('相位谱');xlabel('\omega^pi'); ylabel('phi(\omega)'); grid on;(2)零极点分布图clc; clear all a=[1,-0.3];b=[1,-1.6,0.9425]; zplane(a,b);%零极图 title('零极点分布图')3.离散卷积的计算111()()*()y n x n h n =clcclear all% x=[1,4,3,5,3,6,5] , -4<=n<=2 % h=[3,2,4,1,5,3], -2<=n<=3 % 求两序列的卷积 clear all;x=[1,4,3,5,3,6,5]; nx=-4:2; h=[3,2,4,1,5,3];nh=-2:3;ny=(nx(1)+nh(1)):(nx(length(x))+nh(length(h))); y=conv(x,h);n=length(ny);subplot(3,1,1);stem(nx,x);xlabel('nx');ylabel('x'); subplot(3,1,2);stem(nh,h);xlabel('nh');ylabel('h'); subplot(3,1,3);stem(ny,y);xlabel('n');ylabel('x 和h 的卷积')五、实验结果及分析(计算过程与结果、数据曲线、图表等)1.离散时间系统的单位脉冲响应051015202530-2-1.5-1-0.500.511.52n (samples)A m p l i t u d e系统单位脉冲响应2.离散系统的幅频、相频的分析⽅法00.20.40.60.81 1.2 1.4 1.6 1.82 102030幅度谱ωp i|H (e j ω)0.20.40.60.811.21.41.61.82-2-1012相位谱ωp ip h i (ω)-1-0.500.51-1-0.8-0.6-0.4-0.200.20.40.60.81Real PartI m a g i n a r y P a r t零极点分布图3.离散卷积的计算-4-3-2-1012nxx-2-1.5-1-0.500.51 1.522.53nhh -6-4-20246nx 和h 的卷积六、实验总结与思考实验⼆离散傅⽴叶变换与快速傅⽴叶变换⼀、实验⽬的和要求实验⽬的:(1)加深理解离散傅⾥叶变换及快速傅⾥叶变换概念; (2)学会应⽤FFT 对典型信号进⾏频谱分析的⽅法; (3)研究如何利⽤FFT 程序分析确定性时间连续信号; (4)熟悉应⽤FFT 实现两个序列的线性卷积的⽅法;实验要求:(1)编制DFT 程序及FFT 程序,并⽐较DFT 程序与FFT 程序的运⾏时间。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理实验报告引言数字信号处理(Digital Signal Processing,DSP)是一门研究数字信号的获取、分析、处理和控制的学科。

在现代科技发展中,数字信号处理在通信、图像处理、音频处理等领域起着重要的作用。

本次实验旨在通过实际操作,深入了解数字信号处理的基本原理和实践技巧。

实验一:离散时间信号的生成与显示在实验开始之前,我们首先需要了解信号的生成与显示方法。

通过数字信号处理器(Digital Signal Processor,DSP)可以轻松生成和显示各种类型的离散时间信号。

实验设置如下:1. 设置采样频率为8kHz。

2. 生成一个正弦信号:频率为1kHz,振幅为1。

3. 生成一个方波信号:频率为1kHz,振幅为1。

4. 将生成的信号通过DAC(Digital-to-Analog Converter)输出到示波器上进行显示。

实验结果如下图所示:(插入示波器显示的正弦信号和方波信号的图片)实验分析:通过示波器的显示结果可以看出,正弦信号在时域上呈现周期性的波形,而方波信号则具有稳定的上下跳变。

这体现了正弦信号和方波信号在时域上的不同特征。

实验二:信号的采样和重构在数字信号处理中,信号的采样是将连续时间信号转化为离散时间信号的过程,信号的重构则是将离散时间信号还原为连续时间信号的过程。

在实际应用中,信号的采样和重构对信号处理的准确性至关重要。

实验设置如下:1. 生成一个正弦信号:频率为1kHz,振幅为1。

2. 设置采样频率为8kHz。

3. 对正弦信号进行采样,得到离散时间信号。

4. 对离散时间信号进行重构,得到连续时间信号。

5. 将重构的信号通过DAC输出到示波器上进行显示。

实验结果如下图所示:(插入示波器显示的连续时间信号和重构信号的图片)实验分析:通过示波器的显示结果可以看出,重构的信号与原信号非常接近,并且能够还原出原信号的形状和特征。

这说明信号的采样和重构方法对于信号处理的准确性有着重要影响。

数字信号处理实验报告_完整版

数字信号处理实验报告_完整版

实验1 利用DFT 分析信号频谱一、实验目的1.加深对DFT 原理的理解。

2.应用DFT 分析信号的频谱。

3.深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。

二、实验设备与环境 计算机、MATLAB 软件环境 三、实验基础理论1.DFT 与DTFT 的关系有限长序列 的离散时间傅里叶变换 在频率区间 的N 个等间隔分布的点 上的N 个取样值可以由下式表示:212/0()|()()01N jkn j Nk N k X e x n eX k k N πωωπ--====≤≤-∑由上式可知,序列 的N 点DFT ,实际上就是 序列的DTFT 在N 个等间隔频率点 上样本 。

2.利用DFT 求DTFT方法1:由恢复出的方法如下:由图2.1所示流程可知:101()()()N j j nkn j nN n n k X e x n eX k W e N ωωω∞∞----=-∞=-∞=⎡⎤==⎢⎥⎣⎦∑∑∑ 由上式可以得到:IDFTDTFT( )12()()()Nj k kX e X k Nωπφω==-∑ 其中为内插函数12sin(/2)()sin(/2)N j N x eN ωωφω--= 方法2:实际在MATLAB 计算中,上述插值运算不见得是最好的办法。

由于DFT 是DTFT 的取样值,其相邻两个频率样本点的间距为2π/N ,所以如果我们增加数据的长度N ,使得到的DFT 谱线就更加精细,其包络就越接近DTFT 的结果,这样就可以利用DFT 计算DTFT 。

如果没有更多的数据,可以通过补零来增加数据长度。

3.利用DFT 分析连续信号的频谱采用计算机分析连续时间信号的频谱,第一步就是把连续信号离散化,这里需要进行两个操作:一是采样,二是截断。

对于连续时间非周期信号,按采样间隔T 进行采样,阶段长度M ,那么:1()()()M j tj nT a a a n X j x t edt T x nT e ∞--Ω-Ω=-∞Ω==∑⎰对进行N 点频域采样,得到2120()|()()M jkn Na a M kn NTX j T x nT eTX k ππ--Ω==Ω==∑因此,可以将利用DFT 分析连续非周期信号频谱的步骤归纳如下: (1)确定时域采样间隔T ,得到离散序列(2)确定截取长度M ,得到M 点离散序列,这里为窗函数。

数字信号处理实验报告格式(1)(1)

数字信号处理实验报告格式(1)(1)

《数字信号处理》实验报告实验一、系统响应与系统稳定性专业:通信工程班级:通信1204班实验一、系统响应及系统稳定性一、设计目的(1)掌握求系统响应的方法。

(2)掌握时域离散系统的时域特性。

(3)分析,观察及检验系统的稳定性。

二、实验原理和方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。

已知输入信号, 可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。

在计算机上适合用递推法求差分方程的解,最简单的方法是采用MATLAB语言的工具箱函数filter函数。

也可以用MATLAB语言的工具箱函数conv函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。

系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。

重点分析实验系统的稳定性,包括观察系统的暂态响应和稳定响应。

系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。

或者系统的单位脉冲响应满足绝对可和的条件。

系统的稳定性由其差分方程的系数决定。

实际中检查系统是否稳定,不可能检查系统对所有有界的输入信号,输出是否都是有界输出,或者检查系统的单位脉冲响应满足绝对可和的条件。

可行的方法是在系统的输入端加入单位阶跃序列,如果系统的输出趋近一个常数(包括零),就可以断定系统是稳定的[19]。

系统的稳态输出是指当n→∞时,系统的输出。

如果系统稳定,信号加入系统后,系统输出的开始一段称为暂态效应,随n的加大,幅度趋于稳定,达到稳态输出。

注意在以下实验中均假设系统的初始状态为零三、实验内容和分析实验内容编程如下:(1)给定一个低通滤波器的差分方程为y(n)=0.05x(n)+0.05x(n-1)+0.9y(n-1)输入信号 x1(n)=R8(n), x2(n)=u(n)① 分别求出x 1(n)=R 8(n)和x 2(n)=u(n)的系统响应,并画出其波形。

② 求出系统的单位脉冲响应,画出其波形。

数字信号处理实验报告

数字信号处理实验报告一、实验目的本次数字信号处理实验的主要目的是通过实际操作和观察,深入理解数字信号处理的基本概念和方法,掌握数字信号的采集、处理和分析技术,并能够运用所学知识解决实际问题。

二、实验设备与环境1、计算机一台,安装有 MATLAB 软件。

2、数据采集卡。

三、实验原理1、数字信号的表示与采样数字信号是在时间和幅度上都离散的信号,可以用数字序列来表示。

在采样过程中,根据奈奎斯特采样定理,为了能够准确地恢复原始信号,采样频率必须大于信号最高频率的两倍。

2、离散傅里叶变换(DFT)DFT 是将时域离散信号变换到频域的一种方法。

通过 DFT,可以得到信号的频谱特性,从而分析信号的频率成分。

3、数字滤波器数字滤波器是对数字信号进行滤波处理的系统,分为有限冲激响应(FIR)滤波器和无限冲激响应(IIR)滤波器。

FIR 滤波器具有线性相位特性,而 IIR 滤波器则在性能和实现复杂度上有一定的优势。

四、实验内容与步骤1、信号的采集与生成使用数据采集卡采集一段音频信号,或者在 MATLAB 中生成一个模拟信号,如正弦波、方波等。

2、信号的采样与重构对采集或生成的信号进行采样,然后通过插值算法重构原始信号,观察采样频率对重构信号质量的影响。

3、离散傅里叶变换对采样后的信号进行DFT 变换,得到其频谱,并分析频谱的特点。

4、数字滤波器的设计与实现(1)设计一个低通 FIR 滤波器,截止频率为给定值,观察滤波前后信号的频谱变化。

(2)设计一个高通 IIR 滤波器,截止频率为给定值,比较滤波前后信号的时域和频域特性。

五、实验结果与分析1、信号的采集与生成成功采集到一段音频信号,并在MATLAB 中生成了各种模拟信号,如正弦波、方波等。

通过观察这些信号的时域波形,对不同类型信号的特点有了直观的认识。

2、信号的采样与重构当采样频率足够高时,重构的信号能够较好地恢复原始信号的形状;当采样频率低于奈奎斯特频率时,重构信号出现了失真和混叠现象。

DSP(数字信号处理)实验报告2

本科学生实验报告学号124090314 姓名何胜金学院物电学院专业、班级12电子实验课程名称数字信号处理(实验)教师及职称杨卫平开课学期第三至第四学年下学期填报时间2015 年 3 月 1 9 日云南师范大学教务处编印2.产生幅度调制信号x[t]=cos(2t)cos(200t),推导其频率特性,确定抽样频率,并会出波形。

程序: clc,clear,close all t=[0:0.01:5];x=cos(2*pi*t).*cos(200*pi*t); plot(t,x);clc,clear,close allt0=0:0.001:0.1;x0=0.5*(cos(202*pi*t0)+cos(198*pi*t0)); plot(t0,x0,'r') hold on fs=202;t=0:1/fs:0.1;x=0.5*(cos(202*pi*t)+cos(198*pi*t)); stem(t,x);3.对连续信号x[t]=cos(4t)进行抽样以得到离散序列,并进行重建。

(1)生成信号x(t),时间为t=0:0.001:4,画出x(t)的波形。

程序clc,clear,close all t0=0:0.001:3; x0=cos(4*pi*t0); plot(t0 ,x0,'r');(2)以faam=10HZ对信号进行抽样,画出在0≤t≤1范围内的抽样序列,x[k],利用抽样内插函数恢复连续时间信号,画出重逢信号的波形。

程序:clc,clear,close all t0=0:0.001:3; x0=cos(4*pi*t0); plot(t0,x0); hold onfs=10;t=0:1/fs:3; x=cos(4*pi*t); stem(t,x);4.若x[k]是对连续信号x(t)=cos(0.5t)以samf=2Hz抽样得到的离散序列,如何通过在抽样点之间内插,恢复原连续时间信号x(t)?程序:clc,clear,close all t=0:0.0001:4; x=cos(0.5*pi*t); plot(t,x); Figure1:clc,clear,close allt=0:0.0001:4; x=cos(0.5*pi*t); subplot(2,1,1); plot(t,x);t0=0:0.5:4;x0=cos(0.5*pi*t0); subplot(2,1,2); stem(t0,x0);5.已知序列x[k]={1,3,2,-5;k=0,1,2,3},分别取N=2,3,4,5对其频谱X(e j)进行抽样,再由频域抽样点恢复时域序列,观察时域序列是否存在混叠,有何规律?k=[0,1,2,3]; x=[1,3,2,-5]; n=100;omega=[0:n-1]*2*pi/n;X0=1+3*exp(-j*omega)+2*exp(-2*j*omega)-5*exp(-3*j*omega); subplot(3,4,1);stem(k,x);title('原序列');subplot(3,4,2);plot(omega./pi,abs(X0));title('序列的频谱 N=100');N=2;omega=[0:N-1]*2*pi/N;X1=1+3*exp(-j*omega)+2*exp(-2*j*omega)-5*exp(-3*j*omega); subplot(3,4,5);stem(omega./pi,abs(X1));title('频域抽样 N=2');rx1=real(ifft(X1)); subplot(3,4,9);stem(rx1);title('时域恢复');N=3;omega=[0:N-1]*2*pi/N;X2=1+3*exp(-j*omega)+2*exp(-2*j*omega)-5*exp(-3*j*omega); subplot(3,4,6);stem(omega./pi,abs(X2));title('频域抽样 N=3');rx2=real(ifft(X2)); subplot(3,4,10);stem(rx2);title('时域恢复');N=4;omega=[0:N-1]*2*pi/N;X3=1+3*exp(-j*omega)+2*exp(-2*j*omega)-5*exp(-3*j*omega); subplot(3,4,7);stem(omega./pi,abs(X3));title('频域抽样 N=4');rx3=real(ifft(X3)); subplot(3,4,11);stem(rx3);title('时域恢复');。

数字信号处理实验报告一二

数字信号处理课程实验报告实验一 离散时间信号和系统响应一. 实验目的1. 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解2. 掌握时域离散系统的时域特性3. 利用卷积方法观察分析系统的时域特性4. 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号及系统响应进行频域分析二、实验原理1. 采样是连续信号数字化处理的第一个关键环节。

对采样过程的研究不仅可以了解采样前后信号时域和频域特性的变化以及信号信息不丢失的条件,而且可以加深对离散傅里叶变换、Z 变换和序列傅里叶变换之间关系式的理解。

对连续信号()a x t 以T 为采样间隔进行时域等间隔理想采样,形成采样信号: 式中()p t 为周期冲激脉冲,()a x t 为()a x t 的理想采样。

()a x t 的傅里叶变换为()a X j Ω:上式表明将连续信号()a x t 采样后其频谱将变为周期的,周期为Ωs=2π/T 。

也即采样信号的频谱()a X j Ω是原连续信号xa(t)的频谱Xa(jΩ)在频率轴上以Ωs 为周期,周期延拓而成的。

因此,若对连续信号()a x t 进行采样,要保证采样频率fs ≥2fm ,fm 为信号的最高频率,才可能由采样信号无失真地恢复出原模拟信号ˆ()()()a a xt x t p t =1()()*()21()n a a a s X j X j P j X j jn T π∞=-∞Ω=ΩΩ=Ω-Ω∑()()n P t t nT δ∞=-∞=-∑计算机实现时,利用计算机计算上式并不方便,因此我们利用采样序列的傅里叶变换来实现,即而()()j j n n X e x n e ωω∞-=-∞=∑为采样序列的傅里叶变换2. 时域中,描述系统特性的方法是差分方程和单位脉冲响应,频域中可用系统函数描述系统特性。

已知输入信号,可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应。

数字信号处理实验报告 (实验四)

实验四 离散时间信号的DTFT一、实验目的1. 运用MA TLAB 计算离散时间系统的频率响应。

2. 运用MA TLAB 验证离散时间傅立叶变换的性质。

二、实验原理(一)、计算离散时间系统的DTFT已知一个离散时间系统∑∑==-=-Nk k N k k k n x b k n y a 00)()(,可以用MATLAB 函数frequz 非常方便地在给定的L 个离散频率点l ωω=处进行计算。

由于)(ωj e H 是ω的连续函数,需要尽可能大地选取L 的值(因为严格说,在MA TLAB 中不使用symbolic 工具箱是不能分析模拟信号的,但是当采样时间间隔充分小的时候,可产生平滑的图形),以使得命令plot 产生的图形和真实离散时间傅立叶变换的图形尽可能一致。

在MA TLAB 中,freqz 计算出序列{M b b b ,,,10 }和{N a a a ,,,10 }的L 点离散傅立叶变换,然后对其离散傅立叶变换值相除得到L l eH l j ,,2,1),( =ω。

为了更加方便快速地运算,应将L 的值选为2的幂,如256或者512。

例3.1 运用MA TLAB 画出以下系统的频率响应。

y(n)-0.6y(n-1)=2x(n)+x(n-1)程序: clf;w=-4*pi:8*pi/511:4*pi;num=[2 1];den=[1 -0.6];h=freqz(num,den,w);subplot(2,1,1)plot(w/pi,real(h));gridtitle(‘H(e^{j\omega}的实部’))xlabel(‘\omega/ \pi ’);ylabel(‘振幅’);subplot(2,1,1)plot(w/pi,imag(h));gridtitle(‘H(e^{j\omega}的虚部’))xlabel(‘\omega/ \pi ’);ylabel(‘振幅’);(二)、离散时间傅立叶变换DTFT 的性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华 北 电 力 大 学 实 验 报 告
实验 环境 实验 名称 MATLAB 6.5 实验一: FFT 的应用 1、熟悉 MATLAB 在数字信号处理中的应用。 2、掌握利用 FFT 计算序列线性卷积的基本原理及编程实现。 3、掌握对连续信号进行采样的基本原理和方法,并利用 FFT 对信号进行频谱分 析。 1.线型卷积和圆周卷积 设 x(n)为 L 点序列,h(n)为 M 点序列,x(n)和 h(n)的线性卷积为
实 验 内 容
第 6 页
华 北 电 力 大 学 实 验 报 告
1、计算线性卷积:
实 验 结 果 及 分 析
2(1) 、采样 N=16 点,画 N1=16 点和 N2=256 点的 FFT:
第 7 页
华 北 电 力 大 学 实 验 报 告
2(2) 、采样 N=256 点,画 N1=256、N2=512 点的 FFT:
第 3 页
华 北 电 力 大 学 实 验 报 告
(2)计算每一段与 h(n)的卷积错误!未找到引用源。 ,根据快速卷积算法利用 FFT 计算卷积。 (3)将各段错误!未找到引用源。相加,得到输出 y(n)
4.利用 FFT 进行频谱分析 若信号本身是有限长的序列,计算序列的频谱就是直接对序列进行 FFT 运算 求得 X ( k ) , X ( k ) 就代表了序列在 0,2 之间的频谱值。 幅度谱 相位谱
实 验 原 理
(5) 舍去每一段卷积结果的前 M-1 个样本,连接剩下样本,得到卷积结果 y(n)。 重叠相加法:设 h(n)长度为 M,将信号 x(n)分解成长为 L 的子段,建议 L 选 择与的 M 数量级相同,以错误!未找到引用源。(n)表示没每段信号,则
每一段卷积错误!未找到引用源。的长度为 L+M-1,所以在做求和时,相邻两 段序列有 M-1 个样本重叠, 即前一段的最后 M-1 个样本喝下一段的前 M-1 个序列 重叠,这个重叠部分相加,再与不重叠部分共同组成输出 y(n)。 利用 FFT 实现重叠保留法的步骤如下: Байду номын сангаас1)将 x(n)分为若干 L 点子段错误!未找到引用源。(n)。
错误!未找到引用源。错误!未找到引用源。错 误!未找到引用源。 (2) 将 x(n)分为若干 N 点子段,设 L=N-M+1 为每一段的有效数据长度,则第
第 2 页
华 北 电 力 大 学 实 验 报 告
(3) i 段 (n)(0<n<N-1)的数据为
(4) 计算每一段与 h(n)的 N 点圆周卷积,利用 FFT 计算圆周卷积:
实 验 内 容
n=0:7; h=[1,1,1,1,1,1,1,1]; subplot(3,1,2);stem(n,h);ylabel('序列 h(n)');xlabel('n'); L=length(x)+length(h)-1; X=fft(x,L); H=fft(h,L); y=ifft(X.*H) n=0:L-1; subplot(3,1,3);stem(n,real(y)); ylabel('卷积结果 y(n)');xlabel('n'); 2-1、N=16;L=16; f1=6500;f2=7000;f3=9000;fs=32000; T=1/fs;ws=2*pi*fs; n=0:N-1; x=cos(2*pi*f1*n*T)+5*cos(2*pi*f2*n*T)+cos(2*pi*f3*n*T); X=fftshift(fft(x,L)); w=(-ws/2+(0:L-1)*ws/L)/(2*pi); subplot(2,1,1); stem (w,abs(X)); ylabel('幅度谱');xlabel('频率(Hz) N=16');axis([-20000 20000 0 40]); % N=16; L=256;n=0:N-1; x=cos(2*pi*f1*n*T)+5*cos(2*pi*f2*n*T)+cos(2*pi*f3*n*T); X=fftshift(fft(x,L));
第 8 页
华 北 电 力 大 学 实 验 报 告
实验 名称
设计性实验一:IIR 数字滤波器的设计 1、本实验为设计性实验。 2、掌握用双线性变换法设计 IIR 数字滤波器的基本原理和设计方法。 3、掌握用双线性变换法设计 IIR 数字 Butterworth 滤波器的原理和设计方法。 IIR 数字滤波器设计原理 利用双线性变换设计 IIR 滤波器 (只介绍巴特沃斯数字低通滤波器的设计) , 首先要设计出满足指标要求的模拟滤波器的传递函数 H a (s) ,然后由 H a (s) 通过 双线性变换可得所要设计的 IIR 滤波器的系统函数 H ( z ) 。 如果给定的指标为数字滤波器的指标, 则首先要转换成模拟滤波器的技术指 标,这里主要是边界频率
X (k )
2 XR (k ) X I2 (k )
(k ) arctan
X I (k ) X R (k )
实 验 原 理
在 MATLAB 中,提供了计算模值(或绝对值)的函数 abs 和计算相角的 函数 angle,其用法如下: abs(x);%当 x 为实数时,计算 x 的绝对值;当 x 为复数时,计算 x 的模 值; angle(x); %计算复矢量或复矩阵 x 的相角,结果为介于 [ , ] 之间的值。
若信号是模拟信号,用 FFT 进行谱分析时,首先必须对信号进行采样,使之 变成离散信号, 然后就可按照前面的方法用 FFT 来对连续信号进行谱分析。 按采 样定理,采样频率 f s 应大于 2 倍信号的最高频率,为了满足采样定理,一般在 采样之前要设置一个抗混叠低通滤波器。 用 FFT 对模拟信号进行谱分析的方框图 如下所示。
华 北 电 力 大 学 实 验 报 告
和 h(n)的长度均为 N。 (2)计算 x(n)和 h(n)的 N 点 FFT
(3)组成乘积
(4)利用 IFFT 计算 Y(K)的 IDFT,得到线性卷积 y(n)
3.分段卷积 我们考察单位取样响应为 h(n)的线性系统,输入为 x(n),输出为 y(n),则
第 5 页
华 北 电 力 大 学 实 验 报 告
w=(-ws/2+(0:L-1)*ws/L)/(2*pi); subplot(2,1,2); stem (w,abs(X));axis([-20000 20000 0 50]); ylabel('幅度谱');xlabel('频率(Hz) N=256'); 2-2、 N=256;L=256; f1=6500;f2=7000;f3=9000;fs=32000; T=1/fs;ws=2*pi*fs; n=0:N-1; x=cos(2*pi*f1*n*T)+5*cos(2*pi*f2*n*T)+cos(2*pi*f3*n*T); X=fftshift(fft(x,L)); w=(-ws/2+(0:L-1)*ws/L)/(2*pi); subplot(2,1,1); plot (w,abs(X)); ylabel('幅度谱');xlabel('频率(Hz) N=256'); % N=256; L=512;n=0:N-1; x=cos(2*pi*f1*n*T)+5*cos(2*pi*f2*n*T)+cos(2*pi*f3*n*T); X=fftshift(fft(x,L)); w=(-ws/2+(0:L-1)*ws/L)/(2*pi); subplot(2,1,2);plot (w,abs(X)); ylabel('幅度谱');xlabel('频率(Hz) N=512');
实 验 结 果 及 分 析
实验分析: 当取样点 N=16 时,从频谱图上几乎无法看出信号的任何频率信息。 将 16 点中的信号补零到 N=256 点时,频谱的谱线相当密,但从中仍然很难 看出信号的频率成分,称之为高密度频谱。它只是在信号 X1 的频谱基础上增加 采样密度,但不增加分辨率,无法提取有用的频谱成分。 当对序列取足够的采样点时, 如 256 个采样点, 可以从幅频特性中清晰地看出信 号的频率成分,称之为高分辨率频谱。 比较(1)和(2)中的结果: 对信号 x(t)采集 16 点样本时,不能清楚地读出准确的频率成分。当补 0 到 256 点的时候,频谱的谱线相当的密,但从中还是很难看出信号的频率成分, 为高密度谱线。 当采集 N=256 点样本时,可以从幅频特性中清晰地看出信号的频率成分, 被称为高分辨率频谱, 可以准确的读出频率成分。 而当 N=512 的时候从第四个图 中可以看到信号的波形很繁杂,而相对于频谱而言,频谱也是相当清晰地看出。 但对于实际的需要而言, 无疑是增加了计算机的工作量, 延长了工作时间, 所以在研究时应该选取最佳的 N 值来完成工作。 由此可见, 高分辨率频谱才是我 们进行频谱分析所需要的结果, 还有告诉我们, 只有在时域采集到足够多的采样 点,才能获得正确的频谱信息。 高密度频谱:不能清晰的读出频率成分; 高分辨率频谱:可以清晰的看出频率成分。
实 验 原 理
当输入序列 x(n)极长时,如果要等 x(n)全部集齐时再开始进行卷积,会使输 出相对输入有较大的延时,再者如果序列太长,需要大量存贮单元。为此我们把 x(n)分段,分别求出每段的卷积,合在一起得到最后总的输出。这种方法称为分 段卷积分段卷积可细分为重叠保留法和重叠相加法。 重叠保留法:设 x(n)的长度为错误!未找到引用源。 ,h(n)的长度为 M。我们把 序列 x(n)分成多段 N 点序列错误!未找到引用源。(n),每段与前一段重叠 M-1 个 样本。由于第一段没有前一段保留信号,为了修正,我们在第一个输入端前面填 充 M-1 个零。计算每一段与 h(n)的圆周卷积,则其每段卷积结果的前 M-1 个样 本不等于线性卷积值,不是正确的样本值。所以我们将每段卷积结果的前 M-1 个样本社区,只保留后面的 N-M+1 个正确输出样本,把这些输出样本合起来, 得到总输出。 利用 FFT 实现重叠保留发的步骤如下: (1) 在 x(n)前面填充 M-1 个零,扩大以后的序列为
相关文档
最新文档