2020届高三数学复习《统计案例》学案

合集下载

2019-2020学年高中数学 第3章统计案例章末复习提升课学案 新人教B版2-3

2019-2020学年高中数学 第3章统计案例章末复习提升课学案 新人教B版2-3

章末复习提升课1.2×2列联表2×2列联表如表所示:B B合计A n11n12n1+A n21n22n2+合计n+1n+2n其中n=n11+n12+n21+n22为样本容量.2.χ2检验常用χ2=错误!来检验两个变量是否有关系.3.对于一组数据(x i,y i),i=1,2,…,n,如果它们线性相关,则回归直线方程为错误!=错误!x+错误!,=错误!-错误!错误!1.独立性检验的两个注意点(1)通过独立性检验得到的结论未必正确,它只是对一种可靠性的预测.(2)2×2列联表中,当数据n11,n12,n21,n22都不小于5时,才可以用χ2检验.2.回归分析的两个关注点(1)回归分析是建立在两个具有相关性的变量之间的一种模拟分析,因此先判断其是否具有相关性.(2)并非只有线性相关关系,还可能存在非线性相关关系.独立性检验[学生用书P50]一般地,对于两个分类变量Ⅰ和Ⅱ,Ⅰ有两类取值:A和A,Ⅱ也有两类取值:B和B,我们得到下表中的抽样数据,这个表格称为2×2列联表.B错误!合计A n11n12n1+n21n22n2+错误!n+n+2n合计1表中:n+1=n11+n21,n+2=n12+n22,n1+=n11+n12,n2+=n21+n22,n =n11+n21+n12+n22.(1)如果χ2>6。

635,就有99%的把握认为“X与Y有关系”;(2)如果χ2>3.841,就有95%的把握认为“X与Y有关系”;(3)如果χ2≤3.841,则认为“X与Y无关”.有人发现,多看电视容易使人变冷漠,下表是一个调查机构对此现象的调查结果:冷不冷合漠漠计多看6842110电视少看203858电视合计8880168试问:多看电视与人变冷漠有关吗?【解】由公式得χ2=错误!≈11.377>6.635,所以我们有99%的把握说多看电视与人变冷漠有关.【点评】在掌握了独立性检验的基本思想后我们一般先计算出χ2的值,然后比较χ2值与临界值的大小来较精确地给出“两个分类变量”的可靠程度.线性回归分析[学生用书P50](1)分析两个变量线性相关的常用方法.①散点图法,该法主要是用来直观地分析两变量间是否存在相关关系.②相关系数法,该法主要是从量上分析两个变量间相互联系的密切程度,|r|越接近于1,相关程度越大;|r|越接近于0,相关程度越小.其中相关系数.要分析学生初中升学的数学成绩对高中一年级数学学习有什么影响,在高中一年级学生中随机抽选10名学生,分析他们入学的数学成绩(x)和高中一年级期末数学考试成绩(Y)(如表):编12345678910号x63674588817152995876Y65785282928973985675(1(2)计算入学数学成绩(x)与高一期末数学考试成绩(Y)的相关系数;(3)对变量x与Y进行相关性检验,如果x与Y之间具有线性相关关系,求出回归直线方程;(4)若某学生入学数学成绩为80分,试估计他高一期末数学考试成绩.【解】(1)画出入学成绩(x)与高一期末考试成绩(Y)两组变量的散点图,如图,从散点图看,这两组变量具有线性相关关系.(2)因为x=错误!(63+67+…+76)=70,y=错误!(65+78+…+75)=76。

2020版高考数学一轮复习第9章统计与统计案例第1讲学案理解析版

2020版高考数学一轮复习第9章统计与统计案例第1讲学案理解析版

第9章统计与统计案例第1讲A组基础关1.(1)某学校为了了解2017年高考数学学科的考试成绩,在高考后对1200名学生进行抽样调查,其中文科400名考生,理科600名考生,艺术和体育类考生共200名,从中抽取120名考生作为样本.(2)从30名家长中抽取5名参加座谈会.Ⅰ.简单随机抽样法'Ⅱ.系统抽样法'Ⅲ.分层抽样法问题与方法配对正确的是( )A.(1)Ⅲ,(2)Ⅰ B.(1)Ⅰ,(2)ⅡC.(1)Ⅱ,(2)Ⅲ D.(1)Ⅲ,(2)Ⅱ答案 A解析(1)是分层抽样,(2)是简单随机抽样.2.(2018·福建福州模拟)为了调查某班级的作业完成情况,将该班级的52名学生随机编号,用系统抽样的方法抽取一个容量为4的样本,已知5号,18号,44号同学在样本中,那么样本中还有一位同学的编号应该是( )A.23 B.27 C.31 D.33答案 C解析因为5号,18号,44号同学在样本中,18-5=13,44-18=26,所以抽样间隔为13,样本中还有一位同学的编号应该是18+13=31.故选C.3.某工厂利用随机数表对生产的700个零件进行抽样测试,先将700个零件进行编号:001,002,…,699,700.从中抽取70个样本,如下提供随机数表的第4行到第6行,若从表中第5行第6列开始向右读取数据,则得到的第6个样本编号是( )32 21 18 34 29' 78 64 54 07 32' 52 42 06 44 38' 12 23 43 56 77' 35 78 90 56 4284 42 12 53 31' 34 57 86 07 36' 25 30 07 32 86' 23 45 78 89 07' 23 68 96 08 0432 56 78 08 43' 67 89 53 55 77' 34 89 94 83 75' 22 53 55 78 32' 45 77 89 23 45A.623 B.328 C.253 D.007答案 A解析从表中第5行第6列开始向右读取数据,得到的前6个编号分别是:253,313,457,007,328,623,则得到的第6个样本编号是623.故选A.4.某工厂甲、乙、丙、丁四个车间生产了同一种产品共计2800件,现要用分层抽样的方法从中抽取140件进行质量检测,且从甲、丙两个车间总共抽取的产品数量为60件,则乙、丁两车间生产的产品总共有( )A.1000件 B.1200件 C.1400件 D.1600件答案 D解析2800140=20,∵从甲、丙两个车间总共抽取的产品数量为60件,∴甲、丙两个车间生产的产品数量为60×20=1200件,∴乙、丁两车间生产的产品总共有2800-1200=1600件.5.某中学有高中生3000人,初中生2000人,男、女生所占的比例如图所示,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,已知从高中生中抽取女生21人,则从初中生中抽取的男生人数是( )A .12B .15C .20D .21答案 A解析 由扇形图得:中学有高中生3000人,其中男生3000×30%=900,女生3000×70%=2100,初中生2000人,其中男生2000×60%=1200,女生2000×40%=800,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,已知从高中生中抽取女生21人,则n 5000=212100,解得n =50,∴从初中生中抽取的男生人数是:50×12005000=12. 6.某工厂生产甲、乙、丙三种型号的产品,产品数量之比为3∶5∶7,现用分层抽样的方法抽取容量为n 的样本,其中甲种产品有18件,则样本容量n =________.答案 90解析 依题意得33+5+7×n=18,解得n =90,即样本容量为90. 7.用系统抽样法从160名学生中抽取容量为20的样本,将学生随机地从1~160编号,按编号顺序平均分成20组(1~8,9~16,…,153~160).若第16组得到的号码为126,则第1组中用抽签的方法确定的号码是________.答案 6解析 设第1组抽出的号码为x ,则第16组应抽出的号码是8×15+x =126,∴x=6.8.某商场有四类食品,食品类别和种数见下表:现从中抽取一个容量为20的样本进行食品安全检测,若采用分层抽样方法抽取样本,则抽取的植物油类与果蔬类食品种数之和为________.答案 6解析 因为总体的个数为40+10+30+20=100,所以根据分层抽样的定义可知,抽取的植物油类食品种数为10100×20=2,抽取的果蔬类食品种数为20100×20=4,所以抽取的植物油类与果蔬类食品种数之和为2+4=6.B 组 能力关1.某市为最大限度的吸引“高精尖缺”人才,向全球“招贤纳士”,推进了人才引入落户政策.随着人口增多,对住房要求也随之而来,而选择购买商品房时,住户对商品房的户型结构越来越重视,因此某商品房调查机构随机抽取n 名市民,针对其居住的户型结构和满意度进行了调查,如图1调查的所有市民中四居室共200户,所占比例为13,二居室住户占16.如图2是用分层抽样的方法从所有调查的市民的满意度问卷中,抽取10%的调查结果绘制成的统计图,则下列说法正确的是( )A .样本容量为70B .样本中三居室住户共抽取了25户C .根据样本可估计对四居室满意的住户有70户D .样本中对三居室满意的有15户答案 D解析 可先根据题图1求出总体数量及样本容量,再根据分层抽样及题图2确定样本中三居室户数及满意人数.2.(2018·河北衡水模拟)在高三某次数学测试中,40名学生的成绩如图所示.若将成绩由低到高编为1~40号,再用系统抽样的方法从中抽取8人,则其中成绩在区间[123,134]上的学生人数为________.答案 3解析 根据茎叶图,成绩在区间[123,134]上的数据有15个, 所以用系统抽样的方法从所有的40人中抽取8人, 成绩在区间[123,134]上的学生人数为8×1540=3.。

中学高三美术班数学模块六统计统计案例教案

中学高三美术班数学模块六统计统计案例教案

中学高三美术班数学模块六<统计统计案例>教案12020—2020学年第一学期 2月18日王振梅一.课前预习1.关于简单随机抽样,每次抽到的概率(填相等或不相等或无法确信)2.从参加运算机水平测试的5000名学生的成绩中抽取200名学生的成绩进行统计分析。

在那个问题中,200名学生成绩的全部是。

3.为了了解某次数学竞赛中1000名学生的成绩,从中抽出一容量为100的样本,那么每一个样本被抽到的概率为。

4.以下抽样中不是系统抽样的是。

①从标本1—15号的15个球中,任选3个样本,按从小号到大号排序,随机选起点i0。

以后i0+5,i0+10(超过15那么从1再数起)号入样。

②工厂生产的产品,用传送带将产品送入包装车间前,查验人员从传送带上每隔5分钟抽一件产品进行查验。

③弄一市场调查,规定在商场门口随机抽一个人进行询问调查,直到调查到事前规定的调查人数为止。

④电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下座谈。

5.某企业三月中旬生产A、B、C三种产品共3000件,依照分层抽样的结果,企业统计员制作了如下的统计表格:产品类别A B C产品数量(件)9001300800样本容量90130由于不警惕,表格中A、C产品的有关数据已被污染看不清楚,统计员只记得A产品的样本容量比C产品的样本容量多10,请你依照以上信息填补表格中的数据。

二.例题精析题型一简单随机抽样1.生1200人,为了调查某种情形,打算抽取一个容量为50的样本,问此样本采纳简单随机抽样将如何取得?题型二系统抽样2.一批产品中,有一级品100个,二级品60个,三级品40个,别离用系统抽样和分层抽样的方式,从这批产品中抽取一容量为20的样本。

3.某工厂有1003名工人,从中抽取10人参加体检,试用系统抽样进行具体实施。

三.随堂练习4.某次考试有70000名学生参加,为了了解这70000名考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,在那个问题中,有以下四种说法:①1000名考生是整体的一个样本;②1000名考生数学成绩的平均数是整体平均数;③70000名考生是整体;④样本容量是1000。

2020版新高考复习理科数学教学案:统计与统计案例、分布列及期望与方差含答案

2020版新高考复习理科数学教学案:统计与统计案例、分布列及期望与方差含答案

教课资料范本2020版新高考复习理科数学教教案:统计与统计事例、散布列及希望与方差含答案编辑: __________________时间: __________________7讲统计与统计事例、散布列及希望与方差调研一统计与统计事例■备考工具——————————————1.分层抽样和系统抽样的计算(1)系统抽样:整体容量为 N.样本容量为 n.则要将整体均分红 n组.N每组n个(有零头时要先去掉 ).若第一组抽到编号为 k的个体 .则此后各组中抽取的个体编号依N N次为 k+n..k+(n-1)n.(2)分层抽样:按比率抽样 .计算的主要依照是:各层抽取的数目之比=整体中各层的数目之比.2.提取频次散布直方图中的数据(1)组距、频次:频次散布直方图中每个矩形的宽表示的组距.高频次表示组距 .面积表示该组数据的频次.各个矩形的面积之和为 1;(2)众数:最高小长方形底边中心的横坐标;(3)中位数:均分频次散布直方图面积且垂直于横轴的直线与横轴交点的横坐标;(4)均匀数:频次散布直方图中每个小长方形的面积乘小长方形底边中心的横坐标之和;(5)参数:若纵轴上存在参数.则依据全部小长方形的面积之和为1.列方程即可求得参数值.3.回归直线方程nx i- x y i- y^^^^i =1^^y=bx+a.此中 b=.a=y-bnx i- x 2i= 1x .( x . y )称为样本点的中心.nx i- x y i- yi =1.4.有关系数: r=n n i- y 2x i- x 2yi= 1i=1主要用于有关量的明显性查验.以权衡它们之间的线性有关程度.当r>0时.表示两个变量正有关;当r<0时.表示两个变量负有关.|r | 越靠近1.表示两个变量的线性有关性越强;当|r|靠近0时 .表示两个变量间几乎不存在线性有关关系.5.列联表列出两个分类变量的频数表.称为列联表.假定有两个分类变量X和Y.它们的可能取值分别为{ x1.x2} 和{ y1.y2}. 其样本频数列联表 (称为2×2列联表 )为:y1y2总计x1a b a+bx2c d c+d总计a+c b+d a+b+c+d可结构一个随机变量n ad-bc 2K2=a+b c+d a+c b+d .此中 n=a+b+c+d为样本容量.6.独立性查验的方法(1)结构 2×2列联表;(2)计算 K2;(3)查表确立有多大的掌握判断两个变量有关系.注意:查表时不是查最大同意值.而是先依据题目要求的百分比找到第一行对应的数值.再将该数值对应的k 值与求得的 K2对比较.此外 .表中第一行数据表示两个变量没有关系的可能性p.所以其有关系的可能性为1-p.^ ^7.(1)残差: e i =y i -yni 称为相应于点 (x i i的残差 残差平方和为^ 2(y -y) ..y ) .i =1n^ 2y i -y(2)有关指数 R 2i =1.R 2越大 .说明残差平方和越小 .即=1-ny i - y2i = 1模型的拟合成效越好; R 2越小计 .残差平方和越大 .即模型的拟合成效越差.在线性回归模型中 .R 2表示解说变量对于预告变量变化的贡献率.R 2越靠近于 1.表示回归的成效越好.8.与平方数和方差有关的结论(1)若x 1.x 2. .x n 的均匀数为 x .那么 mx 1+a.mx 2+a. .mx n +a 的平均数为 m x +a ;(2)数据 x 1.x 2. .x n 与数据 x ′1=x 1+a.x ′2=x 2+a. .x ′n =x n +a 的方差相等 .即数据经过平移后方差不变;(3)若x 1.x 2. .x n 的方差为 s 2.那么 ax 1+b.ax 2+b. .ax n +b 的方差为a 2s 2;1n1n(4)s 2=n (x i - x )2=n x2i - xi =1 i =12.即各数平方的均匀数减去均匀数的平方.■自测自评 ——————————————1.[20xx ·全国卷Ⅱ]演讲竞赛共有 9位评委分别给出某选手的原始评分 .评定该选手的成绩时 .从9个原始评分中去掉 1个最高分、 1个最低分 .获得 7个有效评 分.7个有效评分与 9个原始评分对比 .不变的数字特点是 ()A .中位数B .均匀数4/13分析:记 9 个原始评分分别为 a.b.c.d.e.f.g.h.i(按从小到大的次序摆列 ).易知 e 为 7 个有效评分与 9 个原始评分的中位数 .故不变的数字特点是中位数 .应选 A.答案: A2.[20xx ·全国卷Ⅲ]《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学珍宝 .并称为中国古典小说四大名著.某中学为认识本校学生阅读四大名著的状况 .随机检查了 100位学生 .此中阅读过《西游记》或《红楼梦》的学生共有 90位.阅读过《红楼梦》的学生共有 80位.阅读过《西游记》且阅读过《红楼梦》的学生共有 60位.则该检阅读过《西游记》的学生人数与该校学生总数比值的预计值为()A .0.5B.0.6C. 0.7D.0.8分析:依据题意阅读过《红楼梦》《西游记》的人数用韦恩图表示以下:所以该检阅读过《西游记》的学生人数与该学校总数比值的估70计值为100=0.7.答案: C3.[20xx ·全国卷Ⅱ]某地域经过一年的新乡村建设 .乡村的经济收入增添了一倍 .实现翻番.为更好地认识该地域乡村的经济收入变化状况 .统计了该地域新乡村建设前后乡村的经济收入组成比率 .获得以下饼图:则下边结论中不正确的选项是()5/13B.新乡村建设后 .其余收入增添了一倍以上C.新乡村建设后 .养殖收入增添了一倍D.新乡村建设后 .养殖收入与第三家产收入的总和超出了经济收入的一半分析:通解:设建设前经济收入为 a.则建设后经济收入为 2a.则由饼图可得建设前栽种收入为 0.6a.其余收入为 0.04a.养殖收入为0.3a.建设后栽种收入为 0.74a.其余收入为 0.1a.养殖收入为 0.6a.养殖收入与第三家产收入的总和为 1.16a.所以新乡村建设后 .栽种收入减少是错误的.应选 A.优解:由于 0.6<0.37×2.所以新乡村建设后 .栽种收入增添 .而不是减少 .所以 A 是错误的.应选 A.答案: A4.[20xx ·山西八校联考]以下图的折线图表示某商场一年中各月的收入、支出状况.则下列说法中错误的选项是 ()A .整年收入 1至2月份增速最快B.整年中 2月份支出最高C.四个季度中第二季度的月均匀支出最低D.收益最低的月份是 5月份 (收益=收入-支出 )分析:从折线图看出1 至2 月份收入数据的连线斜向上 .且最陡 . 故 A 正确;由折线图能够看出支出的最高点在 2 月份 .故 B 正确;由折线图可看出第二季度的总支出最低 .故第二季度的月均匀支出最低 . 故 C 正确; 5 月份的收益为 30-10=20(万元 ).8 月份的收益为 50-40=10(万元 ).20>10.故 D 错误.答案: D5.[20xx ·石家庄质检]甲、乙两人 8次测评成绩的茎叶图如图 .由茎叶图知甲的成绩的平均数和乙的成绩的中位数分别是 ()A.23,22B.23,22.5C. 21,22D.21,22.5分析:由茎叶图可得甲的成绩的均匀数为10+11+14+21+23+23+32+34=21.将乙的成绩按从小到大的顺8序摆列 .中间的两个成绩分别是22,23.所以乙的成绩的中位数为22+23=22.5.2答案: D6.[20xx ·长沙、南昌联考]某工厂经过技术改造 .降低了能源耗费 .职能部门从某车间抽取部分工人进行检查 .发现他们一天的能源耗费指数均在 50~350之间 .按照[50,100).[100,150).[150,200).[200,250).[250,300).[300,350]分组 .获得频次散布直方图以下图.若采纳分层抽样的方法从能源耗费指数在[50,200)内的工人中抽取 10人进行业务指导 .则应从能源耗费指数在[100,150)内选用的人数为 ()A .5B.3C. 2D.4分析:由题意可得 .(0.002 4+0.0036+x+0.004 4+0.002 4+0.001 2)×50= 1.解得 x=0.006 0.所从前三组的人数之比为0.002 4∶0.003 6∶0.006 0=2∶3∶5.故应从 [100,150)内抽取的人数为310×2+3+5=3.应选 B.答案: B7.[20xx ·合肥质检一]某检查机构对全国互联网行业进行检查统计 .获得整个互联网行业从业者年纪散布的饼状图 .90后从事互联网行业岗位散布条形图 .则下列结论中不必定正确的选项是()注: 90 后指 1990 年 1 月 1 日至 19xx 年 12 月 31 日出生的人 .80 后指 1980 年 1 月 1 日至 1989 年 12 月 31 日出生的人 .80 前指 1979 年 12 月 31 日及从前出生的人.A .互联网行业从业人员中90后占一半以上B.互联网行业中从事技术岗位的人数超出总人数的 20%C.互联网行业中从事营运岗位的人数 90后比 80前多D.互联网行业中从事技术岗位的人数90后比 80后多分析:对于 A:由整个互联网行业从业者年纪散布的饼状图可知.互联网行业从业者中 90 后占了 56%.所以 A 正确;对于 B:由两个统计图知 .互联网行业从事技术岗位的 90 后代数占总人数的56%×39.6%=21.176%.已经高出了 20%.所以整个互联网行业从事技术岗位的人数必定会超出总人数的 20%.所以 B 正确;对于 C:由两个统计图知 .互联网行业从事营运岗位的人数 90 后占总人数的56%×17%= 9.52%.超出了 80 前互联网行业从业者人数 .所以 C 正确;对于 D:由两个统计图知互联网行业 80 后的人数占 41%.但没有 80 后的岗位散布图 .所以没法判断互联网行业中从事技术岗位的人数 90 后与 80 后谁多谁少 .故 D 错误 .选 D.答案: D8.[20xx ·辽宁五校联考 ]以下命题:①在线性回归模型中 .有关指数 R2表示解说变量 x对于预告变量 y的贡献率.R2越靠近于 1.表示回归成效越好;②两个变量有关性越强 .则有关系数的绝对值就越靠近于1;③^在回归方程 y=-0.5x+2中.当解说变量x每增添一个单位时 .预告变量y均匀减少0. 5个单位;④若对分类变量 X与Y.它们的随机变量 K2的观察值 k来说 .k越小 .“X与Y 有关系”的掌握程度越大.此中正确的命题个数是()A .1B.2C. 3D.4分析:由有关指数的性质可知①正确;由有关系数的性质可知②正确;由线性回归方程截距的几何意义可得③正确;对分别变量X 与 Y.它们的随机变量 K2的观察值 k 来说 .k 越小 .“X 与 Y 有关系”的掌握程度越小 .k 越大 .“X 与 Y 有关系”的掌握程度越大 .④错误 .所以正确命题的个数是 3.应选 C.答案: C调研二散布列及希望与方差、正态散布■备考工具——————————————1.二项散布在 n次独立重复试验中 .设事件 A发生的次数为 X.在每次试验中事件A发生的概率为 p.那么在 n次独立重复试验中 .事件 A恰巧发生 k次的概率为 P(X=k)=Cknp k(1-p)n-k(k=0,1,2. .n).此时称随机变量 X听从二项散布 .记作 X~B( n.p).2.正态散布(1)正态散布的定义及表示:9/13假如对于任何实数 a.b(a<b).随机变量 X知足 P(a<X≤b)=b aφμ.σ(x)dx(即x=a.x=b.正态曲线及x轴围成的曲线梯形的面积).则称随机变量 X听从正态散布 .记作 X~ N(μ.σ2).(2)正态散布的三个常用数据:①P(μ-σ<X≤μ+σ)=0.682 6;② P(μ-2σ<X≤μ+2σ)=0.954 4;③ P(μ-3σ<X≤μ+3σ)=0.997 4.3.超几何散布在含有 M件次品的 N件产品中 .任取 n件.此中恰有 X件次品 .则P(X=k)=CkMCnN-Mk=此中=且≤N.M ≤CnN.k0,1,2..m.m min{ M.n}.n∈N* .此时称随机变量 X听从超几何散布.超几何散布的模型是不放回抽样.4.希望与方差n(1)称D(X)=i=1(x i-E(X))2p i为随机变量 X的方差 .它刻画了随机变量 X与其均值 E(X)的均匀偏离程度 .其算术平方根 D X 为随机变量 X的标准差 .记作σ(X).(2)均值与方差的性质:①E(aX+b)=aE(X)+b(a.b为常数 );② D(aX+b)= a2D(X)(a.b为常数 ).(3)两点散布与二项散布的均值与方差:①若随机变量 X听从两点散布 .则E(X)=p.D(X)=p(1-p).②若随机变量 X~ B(n.p).则E(X)=np.D(X)=np(1-p).5.方差和标准差方差和标准差反应了数据颠簸程度的大小.1(1)方差: s2=n[(x1-x )2+(x2-x )2++ (x n-x )2];10/13(2)标准差:s=12++ xn- x 2].[ x1- x 2+ x2- xn性质:标准差 (或方差 )越小 .说明数据颠簸越小 .越稳固;标准差 (或方差 )越大 .说明数据越分别 .越不稳固.■自测自评——————————————1.[20xx ·浙江卷 ] 设0<a<1.随机变量 X的散布列是X0a1P 111 333则当 a在(0,1)内增大时 .()A .D(X)增大B. D(X)减小C. D(X)先增大后减小D.D(X)先减小后增大1+21-2a2a1分析:由题意可得 .E(X)=3(a+1).所以 D(X)=27+27-226a2-6a+6 213=9a-22+4 .所以当 a 在(0,1)内增大+27=27时.D(X)先减小后增大.应选 D.答案: D2.[20xx ·全国卷Ⅲ]某集体中的每位成员使用挪动支付的概率都为p.各成员的支付方式互相独立.设 X为该集体的 10位成员中使用挪动支付的人数 .D(X)=2.4.P(X=4)<P(X=6).则p=()A .0.7B.0.6C. 0.4D.0.3分析:由题意知 .该集体的 10 位成员使用挪动支付的概率散布切合二项散布 .所以 D(X)=10p(1-p)=2.4.所以 p=0.6 或 p=0.4.由P(X=4)<P(X=6).得 C410p4(1-p)6<C610p6(1-p)4.即(1-p)2<p2.所以p>0.5.所以 p=0.6.11/13答案: B3.[20xx ·唐山摸底]随机变量ξ听从正态散布 N(μ.σ2).若P(ξ<2)=0.2.P(2<ξ<6)=0.6.则μ=()A .6B.5C. 4D.3分析:由题意可知 .P(ξ<6)=P(ξ<2)+P(2<ξ<6)=0.2+0.6=0.8.∴P(ξ>6)=1-0.8=0.2.2+6∴P(ξ<2)=P(ξ>6).∴μ=2=4.应选 C.答案: C4.某篮球队队员进行查核 .规则是:①每人进行 3个轮次的投篮;②每个轮次每人投篮 2次.若起码投中 1次.则本轮经过 .不然不经过.已2知队员甲投篮 1次投中的概率为3.假如甲各次投篮投中与否互不影响.那么甲 3个轮次经过的次数 X的希望是 ()8A .3 B.35C. 2 D.31 1 1分析:每个轮次甲不可以经过的概率为3×3=9.经过的概率为1-1 889=9.由于甲 3 个轮次经过的次数X 听从二项散布 B 3,9 .所以 X 的88数学希望为 3×9=3.答案: B5.有 8名学生 .此中有 5名男生.从中选出 4名代表 .选出的代表中男生人数为 X.则其数学希望为 E(X)=()A .2B.2.5C. 3D.3.512/13Ck5C43-k 分析:随机变量 X 的全部可能取值为 1,2,3,4.P(X=k)=C48=所以随机变量X 的数学希望E(X)=×1+2×3+3×3(k1,2,3,4).114771 5+4×14=2.应选 B.答案: B6.甲、乙两类水果的质量(单位: kg)分别听从正态散布 N(μ1.σ21) .N(μ2.σ2).其正态散布的密度曲线以下图.则以下说法错误的选项是 ( )A .甲类水果的均匀质量为0.4 kgB.甲类水果的质量散布比乙类水果的质量散布更集中于均匀值左右C.甲类水果的均匀质量比乙类水果的均匀质量小D.乙类水果的质量听从的正态散布的参数σ2=1.99分析:由图象可知甲的正态曲线对于直线x=0.4 对称 .乙的正态曲线对于直线 x=0.8 对称 .所以μ=0.4.μ=0.8.故 A 正确 .C 正确.由12图可知甲类水果的质量散布比乙类水果的质量散布更集中于均匀值1左右 .故 B 正确.由于乙的正态曲线的最大值为 1.99.即=2πσ 21.99.故 D 错误 .选 D.答案: D13/13。

高三数学专题复习7.3统计、统计案例教案(第2课时)

高三数学专题复习7.3统计、统计案例教案(第2课时)

100
将 2×2列联表中的数据代入公式计算,得
n ad- bc 2

2
k= a+ b c+ d a+ c b+ d = 75×25×45×55
课题
统计、统计案例
课 时 共 3 课时
本节第 2 课时
选用教材 教学目标 重点 难点 关键
教学方法 及课前准备
专题七 知识模块
概率与统计
课型
熟练掌握频率分布直方图等图和回归分析独立性检验
熟练掌握频率分布直方图等图和回归分析独立性检验 熟练掌握频率分布直方图等图和回归分析独立性检验 熟练掌握频率分布直方图等图和回归分析独立性检验
1
1n
80

(1) 由题意
n= 10,
x

ni

x
1
i

= 10
8,
1 10
20
y

ni

y
1
i

10=
2,
n
又 x2i - n x 2= 720-10×82= 80.
i =1
n
xiyi-n x
i =1
y = 184-10×8×2= 24.
10
xi yi - 10 x y
^
i =1
由此得 b =
10
单价 x( 元 )
8
8.2
8.4
8.6
8.8
9
销量 y( 件 )
90
84
83
80
75
68
2
^
^
^
^
^
^
(1) 求回归直线方程 y =b x+ a ,其中 b =- 20, a = y - b x ;

2020版高考数学一轮复习第十章统计与统计案例学案理

2020版高考数学一轮复习第十章统计与统计案例学案理

第十章统计与统计案例第一节统计本节主要包括2个知识点: 1.随机抽样; 2.用样本估计总体.突破点(一) 随机抽样[基本知识]1.简单随机抽样(1)定义:设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.(2)最常用的简单随机抽样的方法:抽签法和随机数法.2.系统抽样在抽样时,将总体分成均衡的几个部分,然后按照事先确定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样方法叫做系统抽样(也称为机械抽样).3.分层抽样在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.4.三种抽样方法的比较类别共同点各自特点相互联系适用范围简单随机抽样均为不放回抽样,且抽样过程中每个个体被抽取的机会相等从总体中逐个抽取是后两种方法的基础总体中的个数较少系统抽样将总体均分成几部分,按事先确定的规则在各部分中抽取在起始部分抽样时采用简单随机抽样元素个数很多且均衡的总体抽样分层抽样将总体分成几层,分层按比例进行抽取各层抽样时采用简单随机抽样或系统抽样总体由差异明显的几部分组成[基本能力]1.判断题(1)简单随机抽样是一种不放回抽样.( )(2)简单随机抽样每个个体被抽到的机会不一样,与先后有关.( )(3)系统抽样在起始部分抽样时采用简单随机抽样.( )(4)要从1 002个学生中用系统抽样的方法选取一个容量为20的样本,需要剔除2个学生,这样对被剔除者不公平.( )(5)分层抽样中,每个个体被抽到的可能性与层数及分层有关.( ) 答案:(1)√ (2)× (3)√ (4)× (5)× 2.填空题(1)利用简单随机抽样从含有8个个体的总体中抽取一个容量为4的样本,则总体中每个个体被抽到的概率是________.解析:总体个数为N =8,样本容量为M =4,则每一个个体被抽到的概率为P =M N =48=12.答案:12(2)老师在班级50名学生中,依次抽取学号为5,10,15,20,25,30,35,40,45,50的学生进行作业检查,这种抽样方法是________.解析:因为抽取学号是以5为公差的等差数列,故采用的抽样方法应是系统抽样. 答案:系统抽样(3)某公司共有1 000名员工,下设若干部门,现采用分层抽样方法,从全体员工中抽取一个样本容量为80的样本,已告知广告部门被抽取了4个员工,则广告部门的员工人数为________.解析:1 00080=x 4,x =50.答案:50(4)某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.解析:设应从高二年级抽取x 名学生,则x 50=310.解得x =15. 答案:15[全析考法]简单随机抽样1.抽签法的步骤第一步,将总体中的N个个体编号;第二步,将这N个号码写在形状、大小相同的号签上;第三步,将号签放在同一不透明的箱中,并搅拌均匀;第四步,从箱中每次抽取1个号签,连续抽取k次;第五步,将总体中与抽取的号签的编号一致的k个个体取出.2.随机数法的步骤第一步,将个体编号;第二步,在随机数表中任选一个数开始;第三步,从选定的数开始,按照一定抽样规则在随机数表中选取数字,取足满足要求的数字就得到样本的号码.[例1] (1)总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )7816657208026314070243699728019832049234493582003623486969387481C.02 D.01(2)下列抽取样本的方式不属于简单随机抽样的有________.①从无限多个个体中抽取100个个体作为样本.②盒子里共有80个零件,从中选出5个零件进行质量检验.在抽样操作时,从中任意拿出一个零件进行质量检验后再把它放回盒子里.③从20件玩具中一次性抽取3件进行质量检验.④某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛.[解析] (1)由题意知前5个个体的编号为08,02,14,07,01.(2)①不是简单随机抽样.因为不满足总体的有限性.②不是简单随机抽样.因为它是放回抽样.③不是简单随机抽样.因为这是“一次性”抽取,而不是“逐个”抽取.④不是简单随机抽样.因为指定个子最高的5名同学是56名中特指的,不存在随机性,不是等可能抽样.[答案] (1)D (2)①②③④系统抽样系统抽样的步骤[例2] (1)为了解1 000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( )A .50B .40C .25D .20(2)将高一(九)班参加社会实践编号为1,2,3,…,48的48名学生,采用系统抽样的方法抽取一个容量为4的样本,已知5号,29号,41号学生在样本中,则样本中还有一名学生的编号是________.[解析] (1)由系统抽样的定义知,分段间隔为1 00040=25.故选C.(2)根据系统抽样的概念,所抽取的4个样本的编号应成等差数列,因为在这组数中的间距为41-29=12,所以所求的编号为5+12=17.[答案] (1)C (2)17 [易错提醒]用系统抽样法抽取样本,当Nn不为整数时,取k =⎣⎢⎡⎦⎥⎤N n ,即先从总体中用简单随机抽样的方法剔除(N -nk )个个体,且剔除多余的个体不影响抽样的公平性.分层抽样进行分层抽样的相关计算时,常利用以下关系式巧解:(1)样本容量n 总体的个数N =该层抽取的个体数该层的个体数; (2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比.[例3] (1)(2018·南昌模拟)某校为了解学生学习的情况,采用分层抽样的方法从高一1 000人、高二1 200 人、高三n 人中,抽取81人进行问卷调查.已知高二被抽取的人数为30,那么n =( )A .860B .720C .1 020D .1 040(2)(2017·江苏高考)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________件.(3)某学校三个兴趣小组的学生人数分布如下表(每名同学只参加一个小组)(单位:人).兴趣小组的学生中抽取30人,结果篮球组被抽出12人,则a 的值为________.[解析] (1)根据分层抽样方法,得 1 2001 000+1 200+n ×81=30,解得n =1 040.故选D.(2)本题考查分层抽样方法及用样本估计总体.从丙种型号的产品中抽取的件数为60×300200+400+300+100=18.(3)由题意知1245+15=3045+15+30+10+a +20,解得a =30.[答案] (1)D (2)18 (3)30 [方法技巧]分层抽样的解题策略(1)分层抽样中分多少层,如何分层要视具体情况而定,总的原则是:层内样本的差异要小,两层之间的样本差异要大,且互不重叠.(2)为了保证每个个体等可能入样,所有层中每个个体被抽到的可能性相同. (3)在每层抽样时,应采用简单随机抽样或系统抽样的方法进行抽样. (4)抽样比=样本容量总体容量=各层样本数量各层个体数量.[全练题点]1.[考点一]某工厂的质检人员对生产的100件产品,采用随机数法抽取10件检查,对100件产品采用下面的编号方法:①1,2,3,...,100; ②001,002,...,100; ③00,01,02,...,99; ④01,02,03, (100)其中正确的序号是( )A.②③④B.③④C.②③D.①②解析:选C 根据随机数法编号可知,①④编号位数不统一.2.[考点一、二、三]对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则( )A.p1=p2<p3B.p2=p3<p1C.p1=p3<p2D.p1=p2=p3解析:选D 由于三种抽样过程中,每个个体被抽到的概率都是相等的,因此p1=p2=p3.3.[考点二]某班共有52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号、29号、42号学生在样本中,那么样本中还有一个学生的学号是( ) A.10 B.11C.12 D.16解析:选D 从被抽中的3名学生的学号中可以看出学号间距为13,所以样本中还有一个学生的学号是16,故选D.4.[考点三]某校高一年级有学生400人,高二年级有学生360人,现采用分层抽样的方法从全校学生中抽取55人,其中从高一年级学生中抽取20人,则从高三年级学生中抽取的人数为________.解析:设从高二年级学生中抽取x人,由题意得x360=20400,解得x=18,则从高三年级学生中抽取的人数为55-20-18=17人.答案:175.[考点二]为了了解本班学生对网络游戏的态度,高三(6)班计划在全班60人中展开调查,根据调查结果,班主任计划采用系统抽样的方法抽取若干名学生进行座谈,为此先对60名学生进行编号为:01,02,03,…,60,已知抽取的学生中最小的两个编号为03,09,则抽取的学生中最大的编号为________.解析:由最小的两个编号为03,09可知,抽取时的分段间隔是6.即抽取10名同学,其编号构成首项为3,公差为6的等差数列,故最大编号为3+9×6=57.答案:57突破点(二) 用样本估计总体[基本知识]1.频率分布直方图和茎叶图(1)作频率分布直方图的步骤①求极差(即一组数据中最大值与最小值的差);②决定组距与组数;③将数据分组;④列频率分布表;⑤画频率分布直方图.(2)频率分布折线图和总体密度曲线频率分布折线图连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图总体密度曲线随着样本容量的增加,作图时所分的组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线茎叶图的优点是可以保留原始数据,而且可以随时记录,这对数据的记录和表示都能带来方便.2.样本的数字特征(1)众数、中位数、平均数数字特征定义与求法优点与缺点众数一组数据中重复出现次数最多的数众数体现了样本数据的最大集中点,不受极端值的影响.但显然它对其他数据信息的忽视使得无法客观地反映总体特征中位数把一组数据按从小到大的顺序排列,处在中间位置的一个数据(或两个数据的平均数)中位数等分样本数据所占频率,它不受少数几个极端值的影响,这在某些情况下是优点,但它对极端值的不敏感有时也会成为缺点平均数如果有n个数据x1,x2,…,x n,那么这n个数的平均数x-=x1+x2+…+x nn平均数与每一个样本数据有关,可以反映出更多的关于样本数据全体的信息,但平均数受数据中的极端值的影响较大,使平均数在估计总体时可靠性降低①标准差:样本数据到平均数的一种平均距离,一般用s表示,s=1 n [x1-x-2+x2-x-2+…+x n-x-2].②方差:标准差的平方s 2=1n[(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2],其中x i (i =1,2,3,…,n )是样本数据,n 是样本容量,x -是样本平均数.③方差与标准差相比,都是衡量样本数据离散程度的统计量,但方差因为对标准差进行了平方运算,夸大了样本的偏差程度.(3)平均数、方差公式的推广若数据x 1,x 2,…,x n 的平均数为x -,方差为s 2,则数据mx 1+a ,mx 2+a ,…,mx n +a 的平均数为m x -+a ,方差为m 2s 2.[基本能力]1.判断题(1)在频率分布直方图中,最高的小长方形底边中点的横坐标是众数.( ) (2)在频率分布直方图中,众数左边和右边的小长方形的面积和是相等的.( ) (3)从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了.( )(4)茎叶图一般左侧的叶按从大到小的顺序写,右侧的叶按从小到大的顺序写,相同的数据可以只记一次.( )(5)平均数、众数与中位数从不同的角度描述了一组数据的集中趋势.( ) (6)一组数据的众数可以是一个或几个,中位数也具有相同的结论.( ) 答案:(1)√ (2)× (3)√ (4)× (5)√ (6)× 2.填空题(1)某校为了了解教科研工作开展状况与教师年龄之间的关系,将该校不小于35岁的80名教师按年龄分组,分组区间为[35,40),[40,45),[45,50),[50,55),[55,60],由此得到频率分布直方图如图,则这80名教师中年龄小于45岁的有________人.解析:由频率分布直方图可知45岁以下的教师的频率为5×(0.040+0.080)=0.6,所以共有80×0.6=48(人).答案:48(2)对某市“四城同创”活动中800名志愿者的年龄抽样调查统计后得到频率分布直方图(如图),但是年龄组为[25,30)的数据不慎丢失,则依据此图可得:①[25,30)年龄组对应小矩形的高度为________;②据此估计该市“四城同创”活动中志愿者年龄在[25,35)的人数为________.解析:设[25,30)年龄组对应小矩形的高度为h,则5×(0.01+h+0.07+0.06+0.02)=1,解得h=0.04.则志愿者年龄在[25,35)年龄组的频率为5(0.04+0.07)=0.55,故志愿者年龄在[25,35)年龄组的人数约为0.55×800=440.答案:①0.04 ②440(3)对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是____________.解析:由题意知各数为12,15,20,22,23,23,31,32,34,34,38,39,45,45,45,47,47,48,48,49,50,50,51,51,54,57,59 ,61,67,68,中位数是46,众数是45,最大数为68,最小数为12,极差为68-12=56.答案:46,45,56(4)一组数据分别为:12,16,20,23,20,15,28,23,则这组数据的中位数是________.解析:这组数据从小到大排列为:12,15,16,20,20,23,23,28,∴这组数据的中位数是20+202=20.答案:20(5)已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是________.解析:5个数的平均数x=4.7+4.8+5.1+5.4+5.55=5.1,所以它们的方差s2=15[(4.7-5.1)2+(4.8-5.1)2+(5.1-5.1)2+(5.4-5.1)2+(5.5-5.1)2]=0.1.答案:0.1[全析考法]频率分布直方图[例1] (2017·北京高考)某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),…,[80,90],并整理得到如下频率分布直方图:(1)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数; (3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.[解] (1)根据频率分布直方图可知,样本中分数不小于70的频率为(0.02+0.04)×10=0.6,所以样本中分数小于70的频率为1-0.6=0.4.所以从总体的400名学生中随机抽取一人,其分数小于70的概率估计值为0.4. (2)根据题意,样本中分数不小于50的频率为 (0.01+0.02+0.04+0.02)×10=0.9, 故样本中分数小于50的频率为0.1,故分数在区间[40,50)内的人数为100×0.1-5=5.所以总体中分数在区间[40,50)内的人数估计为400×5100=20.(3)由题意可知,样本中分数不小于70的学生人数为 (0.02+0.04)×10×100=60,所以样本中分数不小于70的男生人数为60×12=30.所以样本中的男生人数为30×2=60, 女生人数为100-60=40,男生和女生人数的比例为60∶40=3∶2.所以根据分层抽样原理,总体中男生和女生人数的比例估计为3∶2.[方法技巧]1.绘制频率分布直方图时需注意的两点(1)制作好频率分布表后,可以利用各组的频率之和是否为1来检验该表是否正确;(2)频率分布直方图的纵坐标是频率组距,而不是频率. 2.与频率分布直方图计算有关的两个关系式(1)频率组距×组距=频率; (2)频数样本容量=频率,此关系式的变形为频数频率=样本容量,样本容量×频率=频数. 茎叶图(1)“叶”的位置只有一个数字,而“茎”的位置的数字位数一般不需要统一;(2)重复出现的数据要重复记录,不能遗漏,特别是“叶”的位置上的数据.2.茎叶图通常用来记录两位数的数据,可以用来分析单组数据,也可以用来比较两组数据.通过茎叶图可以确定数据的中位数,数据大致集中在哪个茎,数据是否关于该茎对称,数据分布是否均匀等.[例2] 为了比较两种治疗失眠症的药(分别称为A 药,B 药)的疗效,随机地选取20位患者服用A 药,20位患者服用B 药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h).试验的观测结果如下:服用A 药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.52.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4服用B 药的20位患者日平均增加的睡眠时间:3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.41.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好?(2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?[解] (1)设A 药观测数据的平均数为x -,B 药观测数据的平均数为y -.由观测结果可得x -=120×(0.6+1.2+1.2+1.5+1.5+1.8+2.2+2.3+2.3+2.4+2.5+2.6+2.7+2.7+2.8+2.9+3.0+3.1+3.2+3.5)=2.3,y -=120×(0.5+0.5+0.6+0.8+0.9+1.1+1.2+1.2+1.3+1.4+1.6+1.7+1.8+1.9+2.1+2.4+2.5+2.6+2.7+3.2)=1.6.由以上计算结果可得x ->y -,因此可看出A 药的疗效更好.(2)由观测结果可绘制如下茎叶图:从以上茎叶图可以看出,A 药疗效的试验结果有710的叶集中在茎2,3上,而B 药疗效的试验结果有710的叶集中在茎0,1上,由此可看出A 药的疗效更好.[方法技巧]茎叶图问题的求解策略(1)由于茎叶图完全反映了所有的原始数据,解决由茎叶图给出的统计图表问题时,要充分对这个图表提供的样本数据进行相关的计算或者是对某些问题作出判断.(2)茎叶图不能直接反映总体的分布情况,这就需要通过茎叶图数据求出样本数据的数字特征,进一步估计总体情况.样本的数字特征(1)用样本估计总体时,样本的平均数、标准差只是总体的平均数、标准差的近似.实际应用中,需先计算数据的平均数,分析平均水平,再计算方差(标准差),分析稳定情况.(2)若给出图形,一方面可以由图形得到相应的样本数据,计算平均数、方差(标准差);另一方面,可以从图形直观分析样本数据的分布情况,大致判断平均数的范围,并利用数据的波动性比较方差(标准差)的大小.考法(一) 与频率分布直方图交汇命题[例3] 某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数.[解] (1)由(0.002+0.009 5+0.011+0.012 5+x +0.005+0.002 5)×20=1,得x =0.007 5,∴直方图中x 的值为0.007 5.(2)月平均用电量的众数是220+2402=230. ∵(0.002+0.009 5+0.011)×20=0.45<0.5,∴月平均用电量的中位数在[220,240)内,设中位数为a ,则(0.002+0.009 5+0.011)×20+0.012 5×(a -220)=0.5,解得a =224,即中位数为224.[方法技巧]频率分布直方图与众数、中位数、平均数的关系(1)最高的小长方形底边中点的横坐标为众数;(2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.考法(二) 与茎叶图交汇命题[例4] (1)如图所示的茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分),已知甲组数据的中位数为17,乙组数据的平均数为17.4,则x ,y 的值分别为( )A.7,8 B .5,7C .8,5D .7,7(2)将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91.现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示:则7个剩余分数的方差为________.[解析] (1)甲组数据的中位数为17, 故y =7,乙组数据的平均数为 3×10+20+9+6+6+x +95=17.4,解得x =7. (2)由图可知去掉的两个数是87,99,所以87+90×2+91×2+94+90+x =91×7,解得x =4.s 2=17[(87-91)2+(90-91)2×2+(91-91)2×2+(94-91)2×2]=367.[答案] (1)D (2)367[易错提醒]在使用茎叶图时,一定要观察所有的样本数据,弄清楚这个图中数字的特点,不要漏掉了数据,也不要混淆茎叶图中茎与叶的含义.考法(三) 与优化决策问题交汇命题[例5] 甲、乙、丙、丁四人参加某运动会射击项目选拔赛,四人的平均成绩和方差如下表所示:甲 乙 丙 丁 平均环数x8.3 8.8 8.8 8.7 方差s 2 3.5 3.6 2.2 5.4)A .甲B .乙C .丙D .丁[解析] 由题目表格中数据可知,丙平均环数最高,且方差最小,说明成绩好,且技术稳定,选C.[答案] C[方法技巧]利用样本的数字特征解决优化决策问题的依据(1)平均数反映了数据取值的平均水平;标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大,越不稳定;标准差、方差越小,数据的离散程度越小,越稳定. (2)用样本估计总体就是利用样本的数字特征来描述总体的数字特征.[全练题点]1.[考点二]在样本的频率分布直方图中,共有7个小长方形,若中间一个小长方形的面积等于其他6个小长方形的面积的和的14,且样本容量为80,则中间一组的频数为( ) A .0.25B .0.5C .20D .16解析:选D 设中间一组的频数为x ,依题意有x 80=14⎝ ⎛⎭⎪⎫1-x 80,解得x =16. 2.[考点二](2017·山东高考)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为( )A.3,5B .5,5C .3,7D .5,7解析:选A 由两组数据的中位数相等可得65=60+y ,解得y =5,又它们的平均值相等,所以15×[56+62+65+74+(70+x )]=15×(59+61+67+65+78),解得x =3. 3.[考点一]为了了解某校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1∶2∶3,第1小组的频数为6,则报考飞行员的学生人数是( )A .36B .40C .48D .50解析:选C 由题知,题图中从左到右的前3个小组的频率之和为1-(0.037+0.013)×5=0.75.又图中从左到右的前3个小组的频率之比为1∶2∶3,所以第1小组的频率为0.75×11+2+3=0.125,所以报考飞行员的学生人数是60.125=48. 4.[考点三·考法(二)]如图是某学校举行的运动会上七位评委为某体操项目打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A .84,4.84B .84,1.6C .85,1.6D .85,4解析:选C 依题意,所剩数据的平均数是80+15×(4×3+6+7)=85,所剩数据的方差是15×[3×(84-85)2+(86-85)2+(87-85)2]=1.6. 5.[考点三·考法(三)]甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表(单位:环): 甲10 8 9 9 9 乙 10 10 7 9 9.解析:x -甲=x -乙=9,s 2甲=15×[(9-10)2+(9-8)2+(9-9)2+(9-9)2+(9-9)2]=25,s 2乙=15×[(9-10)2+(9-10)2+(9-7)2+(9-9)2+(9-9)2]=65>s 2甲,故甲更稳定. 答案:甲6.[考点三·考法(一)](2017·安徽黄山二模)全世界越来越关注环境保护问题,某监测站点于2017年1月某日起连续n 天监测空气质量指数(AQI),数据统计如下表:空气质量指数(μg/m 3)[0,50] (50,100] (100,150] (150,200] (200,250] 空气质量等级优 良 轻度污染 中度污染 重度污染 天数20 40 m10 5 (1)根据所给统计表和频率分布直方图中的信息求出n ,m 的值,并完成频率分布直方图;(2)由频率分布直方图,求该组数据的平均数与中位数.解:(1)∵0.004×50=20n ,∴n =100,∵20+40+m +10+5=100,∴m =25.40100×50=0.008;25100×50=0.005;10100×50=0.002;5100×50=0.001.由此完成频率分布直方图,如图:(2)由频率分布直方图得该组数据的平均数为25×0.004×50+75×0.008×50+125×0.005×50+175×0.002×50+225×0.001×50=95,∵[0,50)的频率为0.004×50=0.2,[50,100)的频率为0.008×50=0.4,∴中位数为50+0.5-0.20.4×50=87.5. [全国卷5年真题集中演练——明规律]1.(2017·全国卷Ⅰ)为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg)分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A .x 1,x 2,…,x n 的平均数B .x 1,x 2,…,x n 的标准差C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数解析:选B 标准差能反映一组数据的稳定程度.故选B.2.(2017·全国卷Ⅲ)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( )A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳解析:选A 根据折线图可知,2014年8月到9月、2014年10月到11月等月接待游客量都在减少,所以A错误.由图可知,B、C、D正确.3.(2016·全国卷Ⅲ)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15 ℃,B点表示四月的平均最低气温约为5 ℃.下面叙述不正确的是( )A.各月的平均最低气温都在0 ℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20 ℃的月份有5个解析:选D 由图形可得各月的平均最低气温都在0 ℃以上,A正确;七月的平均温差约为10 ℃,而一月的平均温差约为5 ℃,故B正确;三月和十一月的平均最高气温都在10 ℃左右,基本相同,C正确;故D错误.4.(2013·全国卷Ⅰ)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是( ) A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样解析:选C 由于该地区的中小学生人数比较多,不能采用简单随机抽样,排除选项A;由于小学、初中、高中三个学段的学生视力差异性比较大,可采取按照学段进行分层抽样,。

2020高考一轮复习数学教案第十章统计与统计案例

2020高考一轮复习数学教案第十章统计与统计案例

第1讲 随机抽样1.以选择题或填空题的形式考查随机抽样方法以及有关的计算.特别是对分层抽样的考查,几乎每年都出现在高考试题中.2.在解答题中与概率统计的有关问题相结合进行综合考查.【复习指导】1.本讲复习时,应准确理解三种抽样方法的定义,搞清它们之间的联系与区别,灵活选择恰当的抽样方法抽取样本.2.新课标高考近几年常将抽样方法与频率分布直方图、概率等相结合进行综合考查,因此,要加强这方面的训练.基础梳理1.简单随机抽样(1)定义:设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n ≤N ),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.(2)最常用的简单随机抽样的方法:抽签法和随机数法.2.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本.(1)编号:先将总体的N 个个体编号;(2)分段:确定分段间隔k ,对编号进行分段,当N n (n 是样本容量)是整数时,取k=N n ;(3)确定首个个体:在第1段用简单随机抽样确定第一个个体编号l (l ≤k );(4)获取样本:按照一定的规则抽取样本,通常是将l 加上间隔k 得到第2个个体编号(l+k),再加k得到第3个个体编号(l+2k),依次进行下去,直到获取整个样本.3.分层抽样(1)定义:在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法叫做分层抽样.(2)分层抽样的应用范围:当总体是由差异明显的几个部分组成时,往往选用分层抽样.4.分层抽样的步骤(1)分层:将总体按某种特征分成若干部分;(2)确定比例:计算各层的个体数与总体的个体数的比;(3)确定各层应抽取的样本容量;(4)在每一层进行抽样(各层分别按简单随机抽样或系统抽样的方法抽取),综合每层抽样,组成样本.一条规律三种抽样方法的共同点都是等概率抽样,即抽样过程中每个个体被抽到的概率相等,体现了这三种抽样方法的客观性和公平性.若样本容量为n,总体的个体数为N,则用这三种方法抽样时,每个个体被抽到的概率都是n N.三个特点(1)简单随机抽样的特点:总体中的个体性质相似,无明显层次;总体容量较小,尤其是样本容量较小;用简单随机抽样法抽出的个体带有随机性,个体间无固定间距.(2)系统抽样的特点:适用于元素个数很多且均衡的总体;各个个体被抽到的机会均等;总体分组后,在起始部分抽样时,采用简单随机抽样.(3)分层抽样的特点:适用于总体由差异明显的几部分组成的情况;分层后,在每一层抽样时可采用简单随机抽样或系统抽样.双基自测1.(人教A版教材习题改编)某公司有员工500人,其中不到35岁的有125人,35~49岁的有280人,50岁以上的有95人,为了调查员工的身体健康状况,从中抽取100名员工,则应在这三个年龄段分别抽取人数为().A.33人,34人,33人B.25人,56人,19人C.30人,40人,30人D.30人,50人,20人解析因为125∶280∶95=25∶56∶19,所以抽取人数分别为:25人,56人,19人.答案 B2.(2012·福州质检)为了了解全校240名学生的身高情况,从中抽取40名学生进行测量,下列说法正确的是().A.总体是240 B.个体是每一个学生C.样本是40名学生D.样本容量是40解析总体容量是240,总体是240名学生的身高;个体是每名学生的身高;样本是40名学生的身高;样本容量是40.答案 D3.(2012·昆明调研)下列说法中正确说法的个数是().①总体中的个体数不多时宜用简单随机抽样法;②在总体均分后的每一部分进行抽样时,采用的是简单随机抽样;③百货商场的抓奖活动是抽签法;④整个抽样过程中,每个个体被抽取的概率相等(有剔除时例外).A.1 B.2 C.3 D.4解析①②③显然正确,系统抽样无论有无剔除都是等概率抽样;④不正确.答案 C4.老师在班级50名学生中,依次抽取学号为5,10,15,20,25,30,35,40,45,50的学生进行作业检查,这种抽样方法是().A.随机抽样B.分层抽样C.系统抽样D.以上都不是解析因为所抽取学生的学号成等差数列,即为等距离抽样,属于系统抽样.答案 C5.(2011·天津)一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为________.解析抽取的男运动员的人数为2148+36×48=12.答案12考向一简单随机抽样【例1】►某车间工人加工一种轴承100件,为了了解这种轴承的直径,要从中抽取10件轴承在同一条件下测量,如何采用简单随机抽样的方法抽取样本?[审题视点] 考虑到总体中个体数较少,利用抽签法或随机数表法均可容易获取样本.须按这两种抽样方法的操作步骤进行.抽签法应“编号、制签、搅匀、抽取”;随机数表法应“编号、确定起始数、读数、取得样本”.解法一(抽签法)将100件轴承编号为1,2,…,100,并做好大小、形状相同的号签,分别写上这100个数,将这些号签放在一起,进行均匀搅拌,接着连续抽取10个号签,然后测量这10个号签对应的轴的直径.法二(随机数表法)将100件轴承编号为00,01,02,…,99,在随机数表中选定一个起始位置,如取第21行(见随机数表)第1个数开始,选取10个为68,34,30,13,70,55,74,30,77,40,这10件即为所要抽取的样本.(1)一个抽样试验能否用抽签法,关键看两点:一是抽签是否方便;二是号签是否易搅匀,一般地,当总体容量和样本容量都较小时可用抽签法.(2)随机数表中共随机出现0,1,2,…,9十个数字,也就是说,在表中的每个位置上出现各个数字的机会都是相等的.在使用随机数表时,如遇到三位数或四位数时,可从选择的随机数表中的某行某列的数字计起,每三个或每四个作为一个单位,自左向右选取,有超过总体号码或出现重复号码的数字舍去.【训练1】福利彩票的中奖号码是在1~36个号码中,选出7个号码来按规则确定中奖情况,这种从36个号码中选7个号的适宜的抽样方法是________.答案抽签法考向二系统抽样【例2】►用系统抽样法要从160名学生中抽取容量为20的样本,将160名学生从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组抽出的号码为123,则第2组中应抽出个体的号码是________.[审题视点] 根据系统抽样的特点,确定组数和每组的样本数,写出每组抽取号码的表达式,确定第一组所抽取的号码数,代入公式即可求得第2组抽取样本的号码.解析由题意可知,系统抽样的组数为20,间隔为8,设第1组抽出的号码为x,则由系统抽样的法则可知,第n组抽出个体的号码应该为x+(n-1)×8,所以第16组应抽出的号码为x+(16-1)×8=123,解得x=3,所以第2组中应抽出个体的号码为3+(2-1)×8=11.答案11(1)系统抽样的特点——机械抽样,又称等距抽样,所以依次抽取的样本对应的号码就是一个等差数列,首项就是第1组所抽取样本的号码,公差为间隔数,根据等差数列的通项公式就可以确定每一组内所要抽取的样本号码.(2)系统抽样时,如果总体中的个数不能被样本容量整除时,可以先用简单随机抽样从总体中剔除几个个体,然后再按系统抽样进行.【训练2】从编号为1~50的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是().A.5,10,15,20,25 B.3,13,23,33,43C.1,2,3,4,5 D.2,4,6,16,32解析间隔距离为10,故可能编号是3,13,23,33,43.答案 B考向三分层抽样【例3】►某市电视台在因特网上征集电视节目的现场参与观众,报名的共有 1 2000人,分别来自4个城区,其中东城区2 400人,西城区4 600人,南城区3 800人,北城区1 200人,从中抽取60人参加现场节目,应当如何抽取?[审题视点] 因为地域有名显的差异,故采用分层抽样.解因为:60∶1 2000=1∶200,所以2 400200=12,4 600200=23,3 800200=19,1 200200=6.故从东城区中抽取12人,从西城中抽23人,从南城中抽19人,从北城区中抽6人.在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即n i∶N i=n∶N.【训练3】(2010·重庆)某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为7人,则样本容量为().A.7 B.15C.25 D.35解析由题意知,青年职工人数∶中年职工人数∶老年职工人数=350∶250∶150=7∶5∶3.由样本中青年职工为7人得样本容量为15.答案B难点突破22——高考中抽样方法问题从近两年新课标高考试题可以看出高考主要是以选择题或填空题的形式考查抽样方法,难度并不大.其中重点考查分层抽样,其次是系统抽样.计算时应注意:分层抽样是按比例抽样,系统抽样首先是对总体分段的计算,注意分段时可能要排除一些个体,各段的间距是一样的.【示例1】►(2011·福建)某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为().【示例2】►(2011·山东)某高校甲、乙、丙、丁四个专业分别有150、150、400、300名学生.为了解学生的就业倾向,用分层抽样的方法从该校这四个专业共抽取40名学生进行调查,应在丙专业抽取的学生人数为________.【示例3】►(2010.湖北)将参加夏令营的600名学生编号为:001,002, (600)采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为().A.26,16,8 B.25,17,8C.25,16,9 D.24,17,9第2讲用样本估计总体1.考查样本的频率分布(分布表、直方图、茎叶图)中的有关计算,样本特征数(众数、中位数、平均数、标准差)的计算.主要以选择题、填空题为主.2.考查以样本的分布估计总体的分布(以样本的频率估计总体的频率、以样本的特征数估计总体的特征数).【复习指导】1.由于高考对统计考查的覆盖面广,几乎对所有的统计考点都有所涉及,其中频率分布直方图、均值与方差、茎叶图是核心考点,需要好好掌握.复习时,对于统计的任何环节都不能遗漏,最主要的是掌握好统计的基础知识,适度的题量练习.2.高考对频率分布直方图或茎叶图与概率相结合的题目考查日益频繁.因此,复习时要加强这方面的训练,弄清图表中有关量的含义,并从中提炼出有用的信息,为后面的概率计算打好基础.基础梳理1.频率分布直方图(1)通常我们对总体作出的估计一般分成两种:一种是用样本的频率分布估计总体的分布;另一种是用样本的数字特征估计总体的数字特征.(2)作频率分布直方图的步骤①求极差(即一组数据中最大值与最小值的差).②决定组距与组数.③将数据分组.④列频率分布表.⑤画频率分布直方图.(3)在频率分布直方图中,纵轴表示频率组距,数据落在各小组内的频率用各小长方形的面积表示.各小长方形的面积总和等于1.2.频率分布折线图和总体密度曲线(1)频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得频率分布折线图.(2)总体密度曲线:随着样本容量的增加,作图时所分组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,即总体密度曲线.3.茎叶图的优点用茎叶图表示数据有两个突出的优点:一是统计图上没有原始数据信息的损失,所有数据信息都可以从茎叶图中得到;二是茎叶图中的数据可以随时记录,随时添加,方便记录与表示.4.样本方差与标准差设样本的元素为x1,x2,…,x n,样本的平均数为x,(1)样本方差:s2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2].(2)样本标准差:s=1n[(x1-x)2+(x2-x)2+…+(x n-x)2].两个异同(1)众数、中位数与平均数的异同①众数、中位数及平均数都是描述一组数据集中趋势的量,平均数是最重要的量.②由于平均数与每一个样本数据有关,所以,任何一个样本数据的改变都会引起平均数的改变,这是中位数、众数都不具有的性质.③众数考查各数据出现的频率,其大小只与这组数据中的部分数据有关.当一组数据中有不少数据多次重复出现时,其众数往往更能反映问题.④某些数据的变动对中位数可能没有影响.中位数可能出现在所给数据中,也可能不在所给数据中.当一组数据中的个别数据变动较大时,可用中位数描述其集中趋势.(2)标准差与方差的异同标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度就越大;标准差、方差越小,数据的离散程度则越小,因为方差与原始数据的单位不同,且平方后可能夸大了偏差的程度,所以虽然方差与标准差在刻画样本数据的分散程度上是一样的,但在解决实际问题时,一般多采用标准差.三个特征利用频率分布直方图估计样本的数字特征:(1)中位数:在频率分布直方图中,中位数左边和右边的直方图的面积相等,由此可以估计中位数值.(2)平均数:平均数的估计值等于每个小矩形的面积乘以矩形底边中点横坐标之和.(3)众数:最高的矩形的中点的横坐标.双基自测1.(人教A版教材习题改编)某工厂生产滚珠,从某批产品中随机抽取8粒,量得直径分别为(单位:mm):14.7,14.6,15.1,15.0,14.8,15.1,15.0,14.9,则估计该厂生产的滚珠直径的平均数为().A.14.8 mm B.14.9 mmC.15.0 mm D.15.1 mm解析平均数x=18(14.7+14.6+15.1+15.0+14.8+15.1+15.0+14.9)=14.9(mm).答案 B2.(2012·合肥月考)一个容量为100的样本,其数据的分组与各组的频数如下:组别(0,10](10,20](20,30](30,40](40,50](50,60](60,70] 频数1213241516137则样本数据落在(10,40]上的频率为().A.0.13 B.0.39C.0.52 D.0.64解析由列表可知样本数据落在(10,40]上的频数为52,故其频率为0.52.答案 C3.(人教A版教材习题改编)10名工人某天生产同一零件,生产的件数分别是15,17,14,10,15,19,17,16,14,12,则这一天10名工人生产的零件的中位数是().A .14B .16C .15D .17解析 将这组数据从小到大排列得10,12,14,14,15,15,16,17,17,19.故中位数为15+152=15. 答案 C 4.某雷达测速区规定:凡车速大于或等于70 km/h 的汽车视为“超速”,并将受到处罚,如图是某路段的一个检测点对200辆汽车的车速进行检测所得结果的频率分布直方图,则从图中可以看出被处罚的汽车大约有( ). A .30辆 B .40辆 C .60辆 D .80辆解析 由题图可知,车速大于或等于70 km/h 的汽车的频率为0.02×10=0.2,则将被处罚的汽车大约有200×0.2=40(辆). 答案 B5.(2011·江苏)某老师从星期一到星期五收到的信件数分别为10,6,8,5,6,则该组数据的方差s 2=________.解析 平均数x =10+6+8+5+65=7.∴s 2=15[(10-7)2+(6-7)2+(8-7)2+(5-7)2+ (6-7)2]=15×(9+1+1+4+1)=3.2. 答案 3.2考向一 频率分布直方图的绘制与应用【例1】►某校从参加高一年级期中考试的学生中随机抽出60名学生,将其物理成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后得到如图所示的频率分布直方图,观察图形的信息,回答下列问题:(1)求分数在[70,80)内的频率,并补全这个频率分布直方图;(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试中的平均分.[审题视点] 利用各小长方形的面积和等于1求[70,80)内的频率.解(1)设分数在[70,80)内的频率为x,根据频率分布直方图,有(0.010+0.015×2+0.025+0.005)×10+x=1,可得x=0.3,所以频率分布直方图如图所示.(2)平均分为:x=45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71(分).频率分布直方图直观形象地表示了样本的频率分布,从这个直方图上可以求出样本数据在各个组的频率分布.根据频率分布直方图估计样本(或者总体)的平均值时,一般是采取组中值乘以各组的频率的方法.【训练1】(2011·湖北)有一个容量为200的样本,其频率分布直方图如图所示.根据样本的频率分布直方图估计,样本数据落在区间[10,12)内的频数为().A.18 B.36C.54 D.72解析样本数据落在区间[10,12)内的频率1-(0.19+0.15+0.05+0.02)×2=0.18,所以数据落在此区间的频数为200×0.18=36.答案 B考向二茎叶图的应用【例2】►如图是某青年歌手大奖赛上七位评委为甲、乙两名选手打出的分数的茎叶图(其中m为数字0~9中的一个),去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别为a1、a2,则一定有().A.a1>a2B.a2>a1C.a1=a2D.a1,a2的大小与m的值有关[审题视点] 去掉的最低分和最高分就是第一行和第三行的数据,剩下的数我们只要计算其叶上数字之和,即可对问题作出结论.解析去掉一个最高分和一个最低分后,甲选手叶上的数字之和是20,乙选手叶上的数字之和是25,故a2>a1.故选B.答案 B由于茎叶图完全反映了所有的原始数据,解决由茎叶图给出的统计图表试题时,就要充分使用这个图表提供的数据进行相关的计算或者是对某些问题作出判断,这类试题往往伴随着对数据组的平均值或者是方差的计算等.【训练2】在一项大西瓜品种的实验中,共收获甲种大西瓜13个、乙种大西瓜11个,并把这些大西瓜的重量(单位:斤,1斤=500克)制成了茎叶图,如图所示,据此茎叶图写出对甲乙两种大西瓜重量的两条统计结论是:(1)__________________________________________;(2)__________________________________________.解析从这个茎叶图可以看出,甲种大西瓜的重量大致对称,平均重量、众数及中位数都是30多斤;乙种大西瓜的重量除了一个51斤外,也大致对称,平均重量、众数及中位数都是20多斤,但甲种大西瓜的产量比乙种稳定,总体情况比乙好.答案(1)甲种大西瓜的平均重量大于乙种大西瓜(2)甲种大西瓜的产量比乙种大西瓜稳定考向三用样本的数字特征估计总体的数字特征【例3】►甲乙二人参加某体育项目训练,近期的五次测试成绩得分情况如图.(1)分别求出两人得分的平均数与方差;(2)根据图和上面算得的结果,对两人的训练成绩作出评价.[审题视点] (1)先通过图象统计出甲、乙二人的成绩;(2)利用公式求出平均数、方差,再分析两人的成绩,作出评价.解(1)由图象可得甲、乙两人五次测试的成绩分别为甲:10分,13分,12分,14分,16分;乙:13分,14分,12分,12分,14分.x甲=10+13+12+14+165=13,x乙=13+14+12+12+145=13,s2甲=15[(10-13)2+(13-13)2+(12-13)2+(14-13)2+(16-13)2]=4,s2乙=15[(13-13)2+(14-13)2+(12-13)2+(12-13)2+(14-13)2]=0.8.(2)由s2甲>s2乙可知乙的成绩较稳定.从折线图看,甲的成绩基本呈上升状态,而乙的成绩上下波动,可知甲的成绩在不断提高,而乙的成绩则无明显提高.平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数、中位数、众数描述其集中趋势,方差和标准差描述其波动大小.【训练3】甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表(单位:环):甲108999乙1010799如果甲、乙两人中只有1人入选,则入选的最佳人选应是________.解析x甲=x乙=9环,s2甲=15[(9-10)2+(9-8)2+(9-9)2+(9-9)2+(9-9)2]=2 5,s2乙=15[(9-10)2+(9-10)2+(9-7)2+(9-9)2+(9-9)2]=65>s2甲,故甲更稳定,故填甲.答案甲规范解答19——怎样解答茎叶图与概率的综合性问题【问题研究】 茎叶图是一个将数据分成主、次两部分,把主要部分当做茎、次要部分当作叶表达数据的一个图,它是一种常用的统计图.因此考题常将茎叶图作为载体来考查平均数、方差以及概率问题.【解决方案】 首先对茎叶图中的数据全面分析,然后再根据茎叶图的数据解决其它问题.【示例】►(本题满分12分)(2011·北京)以下茎叶图记录了甲、乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确认,在图中以X 表示.(1)如果X =8,求乙组同学植树棵数的平均数和方差;(2)如果X =9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.(注:方差s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中x 为x 1,x 2,…,x n的平均数)第(1)问直接套入公式求值;第(2)问利用古典概型的知识解决.[解答示范] (1)当X =8时,由茎叶图可知,乙组同学的植树棵数是:8,8,9,10,所以平均数为x =8+8+9+104=354.(2分)方差为s 2=14⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫8-3542+⎝ ⎛⎭⎪⎫8-3542+⎝ ⎛⎭⎪⎫9-3542+⎝ ⎛⎭⎪⎫10-3542=1116.(5分)(2)记甲组四名同学为A 1,A 2,A 3,A 4,他们植树的棵数依次为9,9,11,11;乙组四名同学为B 1,B 2,B 3,B 4,他们植树的棵数依次为9,8,9,10.分别从甲、乙两组中随机选取一名同学,所有可能的结果有16个,它们是:(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 1,B 4),(A 2,B 1),(A 2,B 2),(A 2,B 3),(A 2,B 4),(A 3,B 1),(A 3,B 2),(A 3,B 3),(A 3,B 4),(A 4,B 1),(A 4,B 2),(A 4,B 3),(A 4,B 4),(9分)用C 表示:“选出的两名同学的植树总棵数为19”这一事件,则C 中的结果有4个,它们是:(A 1,B 4),(A 2,B 4),(A 3,B 2),(A 4,B 2).故所求概率为P (C )=416=14.(12分)茎叶图一般记录两组的数据,它最直观、最清晰,但利用茎叶图解决概率问题时对重复出现的数据要重复记录,不能遗漏.第3讲 变量间的相关关系与统计案例以选择题或填空题的形式考查回归分析及独立性检验中的基本思想方法及其简单应用. 【复习指导】高考在该部分的主要命题点就是回归分析和独立性检验的基础知识和简单应用.复习时要掌握好回归分析和独立性检验的基本思想、方法和基本公式.基础梳理1.相关关系的分类从散点图上看,点散布在从左下角到右上角的区域内,对于两个变量的这种相关关系,我们将它称为正相关;点散布在从左上角到右下角的区域内,两个变量的这种相关关系称为负相关. 2.线性相关从散点图上看,如果这些点从整体上看大致分布在一条直线附近,则称这两个变量之间具有线性相关关系,这条直线叫回归直线. 3.回归方程(1)最小二乘法:使得样本数据的点到回归直线的距离平方和最小的方法叫最小二乘法.(2)回归方程:两个具有线性相关关系的变量的一组数据: (x 1,y 1),(x 2,y 2),…,(x n ,y n ),其回归方程为y ^=b^x +a ^,则⎩⎪⎨⎪⎧b ^=∑i =1n (x i-x )(y i-y )∑i =1n (x i-x )2=∑i =1nx i y i-n xy∑i =1nx 2i-n x2,a^=y -b ^ x .其中,b 是回归方程的斜率,a 是在y 轴上的截距. 4.样本相关系数r =∑i =1n(x i -x )(y i -y )∑i =1n (x i -x )2∑i =1n(y i -y )2,用它来衡量两个变量间的线性相关关系.(1)当r >0时,表明两个变量正相关; (2)当r <0时,表明两个变量负相关;(3)r 的绝对值越接近1,表明两个变量的线性相关性越强;r 的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系.通常当|r |>0.75时,认为两个变量有很强的线性相关关系. 5.线性回归模型(1)y =bx +a +e 中,a 、b 称为模型的未知参数;e 称为随机误差. (2)相关指数用相关指数R 2来刻画回归的效果,其计算公式是:R 2= ,R 2的值越大,说明残差平方和越小,也就是说模型的拟合效果越好.在线性回归模型中,R 2表示解释变量对预报变量变化的贡献率,R 2越接近于1,表示回归效果越好. 6.独立性检验(1)用变量的不同“值”表示个体所属的不同类别,这种变量称为分类变量.例如:是否吸烟,宗教信仰,国籍等.(2)列出的两个分类变量的频数表,称为列联表.(3)一般地,假设有两个分类变量X和Y,它们的值域分别为{x1,x2}和{y1,y2},其样本频数列联表(称为2×2列联表)为:2×2列联表y1y2总计x1 a b a+bx2 c d c+d总计a+c b+d a+b+c+dK2=n(ad-bc)2(a+b)(a+c)(c+d)(b+d)(其中n=a+b+c+d为样本容量),可利用独立性检验判断表来判断“x与y的关系”.这种利用随机变量K2来确定在多大程度上可以认为“两个分类变量有关系”的方法称为两个分类变量的独立性检验.两个规律(1)函数关系是一种确定的关系,相关关系是一种非确定的关系.事实上,函数关系是两个非随机变量的关系,而相关关系是非随机变量与随机变量的关系.(2)当K2≥3.841时,则有95%的把握说事A与B有关;当K2≥6.635时,则有99%的把握说事件A与B有关;当K2≤2.706时,则认为事件A与B无关.三个注意(1)回归分析是对具有相关关系的两个变量进行统计分析的方法,只有在散点图大致呈线性时,求出的回归直线方程才有实际意义,否则,求出的回归直线方程毫无意义.(2)线性回归方程中的截距和斜率都是通过样本数据估计而来的,存在误差,这种误差会导致预报结果的偏差;而且回归方程只适用于我们所研究的样本总体.(3)独立性检验的随机变量K2=3.841是判断是否有关系的临界值,K2≤3.841应判断为没有充分证据显示事件A与B有关系,而不能作为小于95%的量化值来判断.。

2020版高考数学一轮复习 10.3统计案例精品学案 新人教版

2020版高考数学一轮复习 10.3统计案例精品学案 新人教版

2020版高考数学一轮复习精品学案:第十章 统计、统计案例10.3统计案例 【高考新动向】 一、考纲点击1.了解独立性检验(只要求2×2列联表)的基本思想、方法及其简单应用;2.了解回归分析的基本思想、方法及其简单应用. 二、热点提示1.本部分主要内容是变量的相关性及其几种常见的统计方法.在高考中主要是以考查独立性检验、回归分析为主,并借助解决一些简单的实际问题来了解一些基本的统计思想;2.本部分在高考中多为选择、填空题,也有可能出现解答题,都为中低档题. 【考纲全景透析】 1.回归分析(1)定义:对具有相关关系的两个变量进行统计分析的一种常用方法;(2)随机误差:线性回归模型用y bx a e =++表示,其中a b 和为模型的未知数,e 称为随机误差. (3)样本点的中心在具有线性相关关系的数据1122(,),(,),,(,)n n x y x y x y L 中,回归方程的截距和斜率的最小二乘估计公式分别为:121()()ˆˆˆˆ,.()niii nii x x y y bay bx x x ==--==--∑∑其中1111,,(,)n ni i i i x x y y x y n n ====∑∑称为样本点的中心.(4)相关系数①12211()()()()niii n niii i x x y y r x x y y ===--=--∑∑∑②当0r >时,表明两个变量正相关; 当0r <时,表明两个变量负相关.r 的绝对值越接近于0时,表明两个变量之间几乎不存在线性相关关系.通常||r 大于0.75时,认为两个变量有很强的线性相关性. 2.残差分析(1)总偏差平方和把每个效应(观测值减去总的平均值)的平方加起来即:21()nii yy =-∑(2)残差数据点和它回归直线上相应位置的差异µ()i i y y -是随机误差的效应,称µµii i e y y =-为残差. (3)残差平方和µ21()niii y y =-∑.(4)相关指数µ22121()()niii nii y y R y y ==-=-∑∑2R 的值越大,说明残差平方和越小,也就是说模型的拟合效果越好.在线性回归模型中, 2R 表示解释变量对预报变量变化的贡献率, 2R 越接近于1,表示回归的效果越好.3.独立性检验(1)分类变量:变量的不同“值”表示个体所属的不同类别,像这类变量称为分类变量.(2)列联表:列出两个分类变量的频数表,称为列联表.假设有两个分类变量X 和Y,它们的可能取值分别为1122{,}{,}x y x y 和,其样本频数列联表(称为2×2列联表)为1y2y总计1x a b a b + 2xcdc d +总计a c +b d + a bcd +++构造一个随机变量22()()()()()n ad bc K a b c d a c b d -=++++,其中a b c d +++为样本容量. (3)独立性检验利用随机变量2K 来确定是否能以一定把握认为“两个分类变量有关系”的方法称为两个分类变量的独立性检验.注: 在独立性检验中经常由2K 得到观测值k ,则k =2K 是否成立?(2K 与k 的关系并不是k =2K ,k 是2K 的观测值,或者说2K 是一个随机变量,它在a ,b ,c ,d )取不同值时,2K 可能不同,而k 是取定一组数a ,b ,c ,d 后的一个确定的值. 【热点难点精析】(一)线性回归分析 ※相关链接※1.首先利用散点图判断两个变量是否线性相关.2.求回归方程$$y bx a =+$.(1)线性回归方程中的截距$a 和斜率b $都是通过样本估计而来的,存在着误差,这种误差可能导致预报结果的偏差.(2)回归方程$$y bx a =+$中的b $表示x 增加1个单位时$y 的变化量为b $.(3)可以利用回归方程$$y bx a =+$预报在x 取某一个值时y 的估计值.3.相关系数r利用相关系数r 来衡量两个变量之间的线性相关的强弱. 4.建立回归模型的步骤(1)确定研究对象,明确哪个变量是解释变量,哪个变量是预报变量.(2)画出确定好的解释变量和预报变量的散点图,观察它们之间的关系(如是否存在线性关系等).(3)由经验确定回归方程的类型(如我们观察到数据呈线性关系,则选用线性回归方程$$y bx a =+$).(4)按一定规则估计回归方程中的参数(如最小二乘法).(5)得出结果后分析残差是否异常(个别数据对应残差过大,或残差呈现不随机的规律性等).若存在异常,则检查数据是否有误,或模型是否适合等.注:回归方程只适用于我们所研究的样本的总体,而且一般都有时间性.样本的取值范围一般不能超过回归方程的适用范围,否则没有实用价值. ※例题解析※〖例〗测得某国10对父子身高(单位:英寸)如下:(1)对变量y x 与进行相关性检验;(2)如果y x 与之间具有线性相关关系,求回归方程.(3)如果父亲的身高为73英寸,估计儿子的身高.思路解析:(1)先根据已知计算相关系数r ,判断是否具有相关关系. (2)再利用分工求出回归方程进行回归分析. 解答:(1)1010102222111101101022221166.8,67.01,4462.24,4490.4,44974,44941.93,44842.4,10(4479444622.4)(44941.93449.3.4)661(10)(10)iii i i i i i ii i i i i x y x y x y x y x y x yr x x y y =========≈===-==----∑∑∑∑∑∑0.804.1.5764≈所以y x 与之间具有很强的线性相关关系.(2)设回归方程为$$y bx a =+$.由101102211044842.444762.6879.72ˆ0.46464479444662.4171.610i ii i i x y x ybx x==--===≈--∑∑.ˆˆ67.010.464666.835.97.a y bx =-=-⨯≈故所求的回归方程为:ˆ0.464635.97y x =+.(3)当x=73时, ˆ0.46467335.9769.9y =⨯+≈.所以当父亲身高为73英寸时,估计儿子身高约为69.9英寸.(二)非线性回归分析※相关链接※1.非线性回归模型:当回归方程不是形如y bx a =+时称之为非线性回归模型.2.非线性回归模型的拟合效果:对于给定的样本点1122(,),(,),,(,)n n x y x y x y L ,两个含有未知数的模型(1)(2)(,)(,)y f x a y g x b ==%%和,其中a b 和都是未知参数.可按如下的步骤比较它们的拟合效果:(1)分别建立对应于两个模型的回归方程(1)(2)ˆˆˆˆ(,)(,)y f x a y g x b ==和,其中ˆˆa b 和分别是参数a b 和的估计值;(2)分别计算两个回归方程的残差平方和(1)(1)2(2)(2)211ˆˆˆˆ()()n ni i i i i i Q y y Q y y ===-=-∑∑和;(3)若(1)ˆQ <(2)ˆQ ,则(1)(2)ˆˆˆˆ(,)(,)y f x a y g x b ==的效果比; 反之, (1)(2)ˆˆˆˆ(,)(,)y f x a y g x b ==的效果不如的好.※例题解析※〖例〗为了研究某种细菌随时间x 变化时,繁殖个数y 的变化,收集数据如下:(1)用天数x 作解释变量,繁殖个数y 作预报变量,作出这些数据的散点图; (2)描述解释变量x 与预报变量y 之间的关系; (3)计算残差平方和、相关指数.思路解析:作出散点图→分析与哪种曲线拟合→转化线性关系→进行回归分析. 解答:(1)所作散点图如图所示.(2)由散点图看出样本点分析在一条指数函数21c xy c e =的周围,于是令ln z y =,则由计算器得:ˆ0.69 1.112,z x =+则有 1.69 1.112ˆx y e +=.(3)则662211ˆˆ() 3.1643iiii i ey y ===-=∑∑,621ˆ()iii y y=-∑=24642.8,2 3.164310.999924642.8R =-=,即解释变量天数对预报变量细菌的繁殖个数解释了99.99%.(三)独立性检验〖例〗在调查的480名男人中有38名患有色盲,520名女人中有6名患有色盲,分别利用图形和独立性检验的方法来判断色盲与性别是否有关?你所得到的结论在什么范围内有效? 思路解析:(1)先由已知作出调查数据的列联表; (2)再根据列联表画出二维条形图,并进行分析; (3)利用独立性检验作出判断.解答:根据题目所给的数据作出如下的联表:根据列联表作出相应的二维条形图,如图所示.从二维条形图来看,在男人中患色盲的比例38480,要比在女人中患色盲的比例6520要大,其差值为386||0.068,480520-≈差值较大,因而我们可以认为“性别与患色盲是有关的”,根据列联表中所给的数据可以有38,442,6,514,480,520,44,956,1000,a b c d a b c d a c b d n====+=+=+=+==代入公式22()()()()()n ad bcKa b c d a c b d-=++++得221000(385146442)27.148052044956K⨯⨯-⨯=≈⨯⨯⨯。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020届高三数学《统计案例》复习学案
回归教材
1. (选修1-2P19A组第3题)调查某医院某段时间内婴儿出生的时间与性别的关系,得到下面的数据表.能否在犯错误的概率不超过0.10的前提下认为婴儿的性别与出生的时间有关系?
2. (选修1-2P19A组第2题)假设美国10家工业公司提供了以下数据(单位:百万美元):
(1) 作出销售总额和利润的散点图,根据该图猜想它们之间的关系应是什么形式;
(2) 建立销售总额为解释变量,利润为预报变量的回归模型,并计算残差;
(3) 计算R2,你认为这个模型能较好地刻画销售总额和利润之间的关系吗?请说明理由.
举题固法
目标1回归分析
两个具有相关关系的变量之间可以由散点图直观看出是否具有较好的线性相关关系,定量的方法就是计算
相关系数,相关系数的绝对值越接近1,其线性相关关系越强.
例1:(2019·武汉调研)一个工厂在某年里连续10个月每月产品的总成本y (单位:万元)与该月产量x (单位:万件)之间有如下一组数据:
x 1.08 1.12 1.19 1.28 1.36 1.48 1.59 1.68 1.80 1.87 y
2.25
2.37
2.40
2.55
2.64
2.75
2.92
3.03
3.14
3.26
(1) 通过画散点图,发现可用线性回归模型拟合y 与x 的关系,请用相关系数加以说明; (2) ①建立月总成本y 与月产量x 之间的回归方程;
②通过建立的y 关于x 的回归方程,估计某月产量为 1.98万件时产品的总成本为多少万元.(均精确到0.001)
参考数据:∑i =110x i =14.45,∑i =1
10
y i =27.31,
∑i =1
10
x 2i -10x 2=0.850, ∑i =1
10
y 2i -10y 2
=1.042, =1.222;
参考公式:相关系数
r =
∑i =1
n
x i y i -n x y
⎝ ⎛⎭⎪⎫∑i =1n x 2i -n x 2⎝ ⎛⎭
⎪⎫∑i =1n y 2i -n y 2

回归方程=x +
中斜率和截距的最小二乘估计公式分别为=
∑i =1
n
x i y i -n x y
∑i =1
n
x 2i -n x
2

=y -x .
变式1:(2019·怀化二模)某市房产中心数据研究显示,2018年该市新建住宅销售均价如下表,3月至7月房价上涨过快,为抑制房价过快上涨,政府从8月份开始出台了相关限购政策,10月份开始房价得到了很好的抑制.
均价(万元/m 2)
0.95 0.98 1.11 1.12 1.20 1.22 1.32 1.34 1.16 1.06 月份
3
4
5
6
7
8
9
10
11
12
宅销售均价;
(2) 试用相关系数说明3月至7月各月均价y (万元/m 2)与月份x 之间可用线性回归模型拟合(保留小数点后2位).
参考数据:∑i =1
5x i =25,∑i =1
5y i =5.36,∑i =1
5 (x i -x )(y i -y )=0.64,
∑i =1
5
y 2i ≈5.789,y 2
≈1.149,0.44≈0.663.
回归方程斜率和截距的最小二乘法估计公式分别为=
∑i =1
n
(x i -x )(y i -y )
∑i =1
n
(x i -x )2

=y -x ;
相关系数r =
∑i =1
n
(x i -x )(y i -y )
∑i =1
n
(x i -x )2∑i =1
n
(y i -y )2
.
变式2:近期某公交公司分别推出支付宝和微信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付.某线路公交车队统计了活动刚推出一周内每天使用扫码支付的人次,用x 表示活动推出的天数,y 表示每天使用扫码支付的人次,统计数据如下表:
x 1 2 3 4 5 6 7 y 60 110 210 340 660 1 010 1 960
(1) 根据散点图判断在推广期内,y =a +bx 与y =c ·d x (c ,d 均为大于零的常数)哪一个适宜作为扫码支付的人次y 关于活动推出天数x 的回归方程类型(给出判断即可,不必说明理由);
(2) 根据(1)的判断结果及下表中数据,建立y 关于x 的回归方程,并预测活动推出第8天使用扫码支付的人次.
参考数据:
y v ∑
i=1
7
x i y i∑
i=1
7
x i v i100.54
621 2.54 25 350 78.12 3.47 参考公式:对于一组数据(u1,v1),(u2,v2),…,(u n,v n),其回归直线的斜率和截距的最小二乘估计公式分别为
目标2独立性检验
独立性检验类似于反证法,即在假设两个分类变量无关的情况下,得出假设成立为小概率事件,从而否定该假设,得出两个分类变量有关,进而得出原结论成立的概率.例2:(2019·芜湖三模)随着科技的发展,近年看电子书的国人越来越多,所以近期有许多人呼吁“回归纸质书”,目前出版物阅读中纸质书占比出现上升.现随机选出200人进行采访,经统计这200人中看纸质书的人数占总人数的
4
5.将这200人按年龄分成五组:第1组[15,25),第2组[25,35),第3组[35,45),第4组[45,55),第5组[55,65],其中统计看纸质书的人得到的频率分布直方图如图所示.
(1) 求a的值及看纸质书的人的平均年龄;
(2) 按年龄划分,把年龄在[15,45)的称为青壮年组,年龄在[45,65]的称为中老年组,若选出的200人中看电子书的中老年人有10人,请完成下面2×2列联表,并判断能否在犯错误的概率不超过0.1的前提下认为看书方式与年龄层有关.
看电子书看纸质书合计
青壮年
中老年
合计
附:K2=
n(ad-bc)
(a+b)(c+d)(a+c)(b+d)
(其中n=a+b+c+d).
P(K2≥k)0.100.050.0250.0100.0050.001
k 2.706 3.841 5.024 6.6357.87910.828
变式1:为探索课堂教学改革,某中学数学老师用“传统教学”和“导学案”两种教学方式分别在甲、乙两个平行班进行教学实验.为了解教学效果,期末考试后,分别从两个班级各随机抽取20名学生的成绩进行统计,得到如图所示的茎叶图.记成绩不低于70分者为“成绩优良”.
(1) 请大致判断哪种教学方式的教学效果更佳,并说明理由;
(2) 构造一个教学方式与成绩优良的2×2列联表,并判断能否在犯错误的概率不超过0.05的前提下认为“成绩优良与教学方式有关”.
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d.
P(K2≥k)0.100.050.0250.010 k 2.706 3.841 5.024 6.635
(2019·济南期末)某企业生产了一种新产品,在推广期邀请了100位客户试用该产品,每人一台,试用一个月之后进行回访,由客户先对产品性能作出“满意”或“不满意”的评价,再让客户决定是否购买该试用产品(不购买则可以免费退货,购买则仅需付成本价).经统计,决定退货的客户人数占总人数的一半,“对性能满
意”的客户比“对性能不满意”的客户多10人,“对性能不满意”的客户中恰有2
3选择了退货.
(1) 请完成下面的2×2列联表,并判断是否有99%的把握认为“客户购买产品与对产品性能满意之间有关”;
对性能满意对性能不满意合计
购买产品
不购买产品
(2) 6位客户进行座谈.座谈后安排了抽奖环节,共有4张奖券,奖券上分别印有200元、400元、600元和800元字样,抽到奖券可获得相应奖金,6位客户有放回的进行抽取,每人随机抽取一张奖券,求6位客户中购买产品的客户人均所得奖金不少于500元的概率.
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d.。

相关文档
最新文档