kmp算法c语言
C语言常用算法总结

C语言常用算法总结1、冒泡排序算法:冒泡排序是一种简单的排序算法,它重复地遍历要排序的序列,一次比较两个相邻的元素如果他们的顺序错误就把他们交换过来。
时间复杂度为O(n^2)。
2、快速排序算法:快速排序是一种基于分治的排序算法,通过递归的方式将数组划分为两个子数组,然后对子数组进行排序最后将排好序的子数组合并起来。
时间复杂度为O(nlogn)。
3、插入排序算法:插入排序是一种简单直观的排序算法,通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描找到相应位置并插入。
时间复杂度为O(n^2)。
4、选择排序算法:选择排序是一种简单的排序算法,每次循环选择未排序部分的最小元素,并放置在已排序部分的末尾。
时间复杂度为O(n^2)。
5、归并排序算法:归并排序是一种稳定的排序算法,基于分治思想,将数组递归地分为两个子数组,将子数组排序后再进行合并最终得到有序的数组。
时间复杂度为O(nlogn)。
6、堆排序算法:堆排序是一种基于完全二叉堆的排序算法,通过构建最大堆或最小堆,然后依次将堆顶元素与末尾元素交换再调整堆,得到有序的数组。
时间复杂度为O(nlogn)。
7、二分查找算法:二分查找是一种在有序数组中查找目标元素的算法,每次将待查找范围缩小一半,直到找到目标元素或范围为空。
时间复杂度为O(logn)。
8、KMP算法:KMP算法是一种字符串匹配算法,通过利用模式字符串的自重复性,避免不必要的比较提高匹配效率。
时间复杂度为O(m+n),其中m为文本串长度,n为模式串长度。
9、动态规划算法:动态规划是一种通过将问题分解为子问题,并通过组合子问题的解来求解原问题的方法。
动态规划算法通常使用内存空间来存储中间结果,从而避免重复计算。
时间复杂度取决于问题规模。
10、贪心算法:贪心算法是一种通过选择局部最优解来构建全局最优解的算法并以此构建最终解。
时间复杂度取决于问题规模。
11、最短路径算法:最短路径算法用于求解图中两个节点之间的最短路径,常见的算法包括Dijkstra算法和Floyd-Warshall算法。
KMP算法以及优化(代码分析以及求解next数组和nextval数组)

KMP算法以及优化(代码分析以及求解next数组和nextval数组)KMP算法以及优化(代码分析以及求解next数组和nextval数组)来了,数据结构及算法的内容来了,这才是我们的专攻,前⾯写的都是开胃⼩菜,本篇⽂章,侧重考研408⽅向,所以保证了你只要看懂了,题⼀定会做,难道这样思想还会不会么?如果只想看next数组以及nextval数组的求解可以直接跳到相应部分,思想总结的很⼲~~⽹上的next数组版本解惑先总结⼀下,⼀般KMP算法的next数组结果有两个版本,我们需要知道为什么会存在这种问题,其实就是前缀和后缀没有匹配的时候next数组为0还是为1,两个版本当然都是对的了,如果next数组为0是的版本,那么对于前缀和后缀的最⼤匹配长度只需要值+1就跟next数组是1的版本⼀样了,其实是因为他们的源代码不⼀样,或者对于模式串的第⼀个下标理解为0或者1,总之这个问题不⽤纠结,懂原理就⾏~~那么此处,我们假定前缀和后缀的最⼤匹配长度为0时,next数组值为1的版本,考研⼀般都是⽤这个版本(如果为0版本,所有的内容-1即可,如你算出next[5]=6,那么-1版本的next[5]就为5,反之亦然)~~其实上⾯的话总结就是⼀句话next[1]=0,j(模式串)数组的第⼀位下标为1,同时,前缀和后缀的最⼤匹配长度+1即为next数组的值,j所代表的的是序号的意思408反⼈类,⼀般数组第⼀位下标为1,关于书本上前⾯链表的学习⼤家就应该有⽬共睹了,书本上好多数组的第⼀位下标为了⽅便我们理解下标为1,想法这样我们更不好理解了,很反⼈类,所以这⾥给出next[1]=0,前缀和后缀的最⼤匹配长度+1的版本讲解前⾔以及问题引出我们先要知道,KMP算法是⽤于字符串匹配的~~例如:⼀个主串"abababcdef"我们想要知道在其中是否包括⼀个模式串"ababc"初代的解决⽅法是,朴素模式匹配算法,也就是我们主串和模式串对⽐,不同主串就往前移⼀位,从下⼀位开始再和模式串对⽐,每次只移动⼀位,这样会很慢,所以就有三位⼤神⼀起搞了个算法,也就是我们现在所称的KMP算法~~代码以及理解源码这⾥给出~~int Index_KMP(SString S,SString T,intt next[]){int i = 1,j = 1;//数组第⼀位下标为1while (i <= S.length && j <= T.length){if (j == 0 || S.ch[i] == T.ch[j]){//数组第⼀位下标为1,0的意思为数组第⼀位的前⾯,此时++1,则指向数组的第⼀位元素++i;++j; //继续⽐较后继字符}elsej = next[j]; //模式串向右移动到第⼏个下标,序号(第⼀位从1开始)}if (j > T.length)return i - T.length; //匹配成功elsereturn 0;}接下来就可以跟我来理解这个代码~~还不会做动图,这⾥就⼿画了~~以上是⼀般情况,那么如何理解j=next[1]=0的时候呢?是的,这就是代码的思路,那么这时我们就知道,核⼼就是要求next数组各个的值,对吧,⼀般也就是考我们next数组的值为多少~~next数组的求解这⾥先需要给出概念,串的前缀以及串的后缀~~串的前缀:包含第⼀个字符,且不包含最后⼀个字符的⼦串串的后缀:包含最后⼀个字符,且不包含第⼀个字符的⼦串当第j个字符匹配失败,由前1~j-1个字符组成的串记为S,则:next[j]=S的最长相等前后缀长度+1与此同时,next[1]=0如,模式串"ababaa"序号J123456模式串a b a b a anext[j]0当第六个字符串匹配失败,那么我们需要在前5个字符组成的串S"ababa"中找最长相等的前后缀长度为多少再+1~~如串S的前缀可以为:"a","ab","aba","abab",前缀只不包括最后⼀位都可串S的后缀可以为:"a","ba","aba","baba",后缀只不包括第⼀位都可所以这⾥最⼤匹配串就是"aba"长度为3,那么我们+1,取4序号J123456模式串a b a b a anext[j]04再⽐如,当第⼆个字符串匹配失败,由前1个字符组成的串S"a"中,我们知道前缀应当没有,后缀应当没有,所以最⼤匹配串应该为0,那么+1就是取1~~其实这⾥我们就能知道⼀个规律了,next[1]⼀定为0(源码所造成),next[2]⼀定为1(必定没有最⼤匹配串造成)~~序号J123456模式串a b a b a anext[j]014再再⽐如,第三个字符串匹配失败,由前两个字符组成的串S"ab"中找最长相等的前后缀长度,之后再+1~~前缀:"a"后缀:"b"所以所以这⾥最⼤匹配串也是没有的长度为0,那么我们+1,取1序号J123456模式串a b a b a anext[j]0114接下来你可以⾃⼰练练4和5的情况~~next[j]011234是不是很简单呢?⾄此,next数组的求法以及kmp代码的理解就ok了~~那么接下来,在了解以上之后,我们想⼀想KMP算法存在的问题~~KMP算法存在的问题如下主串:"abcababaa"模式串:"ababaa"例如这个问题我们很容易能求出next数组序号J123456模式串a b a b a anext[j]011234此时我们是第三个字符串匹配失败,所以我们的next[3]=1,也就是下次就是第⼀个字符"a"和主串中第三个字符"c"对⽐,可是我们刚开始的时候就已经知道模式串的第三个字符"a"和"c"不匹配,那么这⾥不就多了⼀步⽆意义的匹配了么?所以我们就会有kmp算法的⼀个优化了~~KMP算法的优化我们知道,模式串第三个字符"a"不和主串第三个字符"c"不匹配,next数组需要我们的next[3]=1,也就是下次就是第⼀个字符"a"和主串中第三个字符"c"对⽐,之后就是模式串第⼀个字符"a"不和"c"匹配,就是需要变为next[1]=0,那么我们要省去步骤,不就可以直接让next[3]=0么?序号J12345模式串a b a b anext[j]01123nextval[j]00那么怎么省去多余的步骤呢?这就是nextval数组的求法~~nextval的求法以及代码理解先贴出代码for (int j = 2;j <= T.length;j++){if (T.ch[next[j]] == T.ch[j])nextval[j] = nextval[next[j]];elsenextval[j] = next[j];}如序号J123456模式串a b a b a anext[j]011234nextval[j]0⾸先,第⼀次for循环,j=2,当前序号b的next[2]为1,即第⼀个序号所指向的字符a,a!=当前序号b,所以nextval[2]保持不变等于next[2]=1序号J123456模式串a b a b a anext[j]011234nextval[j]01第⼆次for循环,j=3,当前序号a的next[3]为1,即第⼀个序号所指向的字符a,a=当前序号a,所以nextval[3]等于nextval[1]=0序号J123456模式串a b a b a anext[j]011234nextval[j]010第三次for循环,j=4,当前序号b的next[4]为2,即第⼆个序号所指向的字符b,b=当前序号b,所以nextval[4]等于nextval[2]=1序号J123456模式串a b a b a anext[j]011234nextval[j]0101就是这样,你可以练练5和6,这⾥直接给出~~序号J123456模式串a b a b a anext[j]011234nextval[j]010104⾄此nextval数组的求法你也应该会了,那么考研要是考了,那么是不是就等于送分给你呢?⼩练习那么你试着来求⼀下这个模式串的next和nextval数组吧~~next[j]nextval[j]⼩练习的答案序号j12345模式串a a a a b next[j]01234 nextval[j]00004。
c++实现KMP算法

c++实现KMP算法KMPKMP算法解决的问题字符串str1和str2,str1是否包含str2,如果包含返回str2在str1中开始的位置。
如何做到时间复杂度O(N)完成?思路:⾸先判断两个字符串是否为空串,并且str2的长度是否⼩于str1的长度,因为题⽬要求str1中包含str2。
以上都满⾜的情况下,⾸先定义两个变量分别为 x ,y 作为后续字符串中字符遍历的下标,然后再⽣成⼀个vector容器next,⽤来后续的匹配加速然后在str2中,做加速操作,也就是看当前 i - 1和之前的所有字符,有没有相同的,最⼤匹配长度。
从上图可以看到,下标0和1位置的值永远都是固定的-1和0,。
x 字符是 i 位置,x 前⾯的 c 是 i - 1 位置,也就是从下标0位置到5位置,找最⼤的匹配长度,然后填到 i 的next中。
这是循环中的case1如果当next中的值⼤于0的时候,从b开始,找到next中的2位置,然后跳转到当前位置的next中的坐标上,接着进⾏匹配。
最后如果到next为0或者-1的位置上,就标记当前位置为0,然后到下⼀个坐标继续判断。
当 i 遍历完str2后,循环结束,代表next中的值已经全部设置好了。
当str1 和 str2 没有循环遍历到尾部的时候,只要 str1 中 x 的位置等于 str2 中 y 的位置,x 和 y 就同时⾃增。
如果next中的值等于 -1 ,就说没有匹配成功,x 单独⾃增。
让str1往后挪⼀位如果str2中的没有匹配成功,就往前找next数组的值,只要不等于 -1 ,就⼀直执⾏这个往前移的过程。
最后看 y 是否已经到了str2的位置,如果到了就说明找到了,直接返回 x的位置减去 y的位置,就是匹配开始的位置,否则就是没有找到,直接返回 -1void getNextArray(string str, vector<int>& next){if (str.length() == 1){next.push_back(-1);}next.resize(str.length());next[0] = -1;next[1] = 0;int i = 2;int cn = 0;while (i < next.size()){if (str[i - 1] == str[cn]){next[i++] = ++cn;}else if (cn > 0){cn = next[cn];}else {next[i++] = 0;}}}int getIndexOf(string s, string m){if (s == "" || m == "" || s.length() < 1 || s.length() < m.length()){return -1;}int x = 0;int y = 0;vector<int> next;getNextArray(m,next);while (x < s.length() && y < m.length()){if (s[x] == m[y]){x++;y++;}else if (next[y] == -1){x++;}else {y = next[y];}}return y == m.length() ? x - y : -1;}以上就是c++ 实现KMP算法的详细内容,更多关于c++ KMP算法的资料请关注其它相关⽂章!。
KMP算法详解

KMP算法详解KMP 算法详解KMP 算法是⼀个⼗分⾼效的字符串查找算法,⽬的是在⼀个字符串 s 中,查询 s 是否包含⼦字符串 p,若包含,则返回 p 在 s 中起点的下标。
KMP 算法全称为 Knuth-Morris-Pratt 算法,由 Knuth 和 Pratt 在1974年构思,同年 Morris 也独⽴地设计出该算法,最终由三⼈于1977年联合发表。
举⼀个简单的例⼦,在字符串 s = ababcabababca 中查找⼦字符串 p = abababca,如果暴⼒查找,我们会遍历 s 中的每⼀个字符,若 s[i] = p[0],则向后查询p.length() 位是否都相等。
这种朴素的暴⼒的算法复杂度为O(m×n),其中m和n分别是 p 和 s 的长度。
KMP 算法可以⽅便地简化这⼀查询的时间复杂度,达到O(m+n)。
1. PMT 序列PMT 序列是 KMP 算法的核⼼,即 Partial Match Table(部分匹配表)。
举个例⼦:char a b a b a b c aindex01234567PMT00123401PMT 的值是字符串的前缀集合与后缀集合的交集中最长元素的长度。
PMT[0] = 0: 字符串 a 既没有前缀,也没有后缀;PMT[1] = 0: 字符串 ab 前缀集合为 {a},后缀集合为 {b},没有交集;PMT[2] = 1: 字符串 aba 前缀集合为 {a, ab},后缀集合为 {ba, a},交集为 {a},交集元素的最长长度为1;PMT[3] = 2: 字符串 abab 前缀集合为 {a, ab, aba},后缀集合为 {bab, ab, b},交集为 {ab},交集元素的最长长度为2;…… 以此类推。
2. 算法主体现在我们已经知道了 PMT 序列的含义,那么假设在 PMT 序列已经给定的情况下,如何加速字符串匹配算法?tar 存储 s 的下标,从 0 开始,若 tar > s.length() - 1,代表匹配失败;pos 存储 p 的下标,从 0 开始,若 s[tar] != p[pos],则 pos ⾛到下⼀个可能匹配的位置。
KMP模式匹配算法

KMP模式匹配算法KMP算法是一种字符串匹配算法,用于在一个主串中查找一个模式串的出现位置。
该算法的核心思想是通过预处理模式串,构建一个部分匹配表,从而在匹配过程中尽量减少不必要的比较。
KMP算法的实现步骤如下:1.构建部分匹配表部分匹配表是一个数组,记录了模式串中每个位置的最长相等前后缀长度。
从模式串的第二个字符开始,依次计算每个位置的最长相等前后缀长度。
具体算法如下:-初始化部分匹配表的第一个位置为0,第二个位置为1- 从第三个位置开始,假设当前位置为i,则先找到i - 1位置的最长相等前后缀长度记为len,然后比较模式串中i位置的字符和模式串中len位置的字符是否相等。
- 如果相等,则i位置的最长相等前后缀长度为len + 1- 如果不相等,则继续判断len的最长相等前后缀长度,直到len为0或者找到相等的字符为止。
2.开始匹配在主串中从前往后依次查找模式串的出现位置。
设置两个指针i和j,分别指向主串和模式串的当前位置。
具体算法如下:-当主串和模式串的当前字符相等时,继续比较下一个字符,即i和j分别向后移动一个位置。
-当主串和模式串的当前字符不相等时,根据部分匹配表确定模式串指针j的下一个位置,即找到模式串中与主串当前字符相等的位置。
如果找到了相等的位置,则将j移动到相等位置的下一个位置,即j=部分匹配表[j];如果没有找到相等的位置,则将i移动到下一个位置,即i=i+13.检查匹配结果如果模式串指针j移动到了模式串的末尾,则说明匹配成功,返回主串中模式串的起始位置;如果主串指针i移动到了主串的末尾,则说明匹配失败,没有找到模式串。
KMP算法的时间复杂度为O(m+n),其中m为主串的长度,n为模式串的长度。
通过预处理模式串,KMP算法避免了在匹配过程中重复比较已经匹配过的字符,提高了匹配的效率。
总结:KMP算法通过构建部分匹配表,实现了在字符串匹配过程中快速定位模式串的位置,减少了不必要的比较操作。
C语言程序设计的常用算法

C语言程序设计的常用算法1.排序算法-冒泡排序:通过多次比较和交换来将最大(小)的数移到最后(前),时间复杂度为O(n^2)。
适用于数据较少、数据基本有序的情况。
- 快速排序:通过一趟排序将待排序序列分隔成独立的两部分,其中一部分的所有元素都比另一部分的所有元素小。
然后递归地对两部分进行排序,时间复杂度为O(nlogn)。
适用于大规模数据的排序。
-插入排序:将待排序序列分为已排序和未排序两部分,每次从未排序部分取一个元素插入到已排序部分的适当位置,时间复杂度为O(n^2)。
适用于数据量较小的排序场景。
- 归并排序:将待排序序列分为若干个子序列,分别进行排序,然后再将排好序的子序列合并成整体有序的序列,时间复杂度为O(nlogn)。
适用于需要稳定排序且对内存空间要求不高的情况。
2.查找算法-顺序查找:从头到尾依次对每个元素进行比较,直到找到目标元素或者遍历完整个序列。
时间复杂度为O(n)。
- 二分查找:对于有序序列,将序列的中间元素与目标元素进行比较,根据比较结果缩小查找范围,直到找到目标元素或者查找范围为空。
时间复杂度为O(logn)。
3.图算法-广度优先(BFS):从给定的起始顶点开始,按照“先访问当前顶点的所有邻接顶点,再依次访问这些邻接顶点的所有未访问过的邻接顶点”的顺序逐层访问图中的所有顶点。
适用于寻找最短路径、连通性等问题。
-深度优先(DFS):从给定的起始顶点开始,按照“先递归访问当前顶点的一个邻接顶点,再递归访问这个邻接顶点的一个邻接顶点,直到无法再继续递归”的方式遍历图中的所有顶点。
适用于寻找路径、判断连通性等问题。
4.动态规划算法-背包问题:给定一个背包容量和一组物品的重量和价值,选择一些物品装入背包,使得装入的物品总重量不超过背包容量,且总价值最大。
利用动态规划的思想可以通过构建二维数组来解决该问题。
-最长公共子序列(LCS):给定两个序列,找出一个最长的子序列,且该子序列在两个原序列中的顺序保持一致。
C语言常用算法大全

C语言常用算法大全1.排序算法-冒泡排序:依次比较相邻的两个元素,如果顺序不对则交换,每轮找出一个最大或最小的元素-选择排序:从未排序的元素中选择最小或最大的放到已排序的最后,以此类推-插入排序:将未排序的元素插入到已排序的合适位置,从后向前进行比较和交换-快速排序:选择一个基准元素,将小于基准元素的放在左边,大于基准元素的放在右边,然后对左右两边递归地进行快速排序-归并排序:将待排序的序列不断划分为左右两部分,分别排序后再将排序好的左右两部分按顺序合并-堆排序:构建大顶堆,将堆顶元素与末尾元素交换,然后重新调整堆,重复这个过程直到排序完成2.查找算法-顺序查找:从给定的元素序列中逐个比较,直到找到目标元素或遍历完整个序列-二分查找:对于有序序列,在序列的中间位置比较目标元素和中间元素的大小关系,通过每次缩小一半的范围来查找目标元素-插值查找:根据目标元素与有序序列的最小值和最大值的比例推测目标元素所在的位置,然后递归地进行查找-斐波那契查找:根据斐波那契数列的性质来确定目标元素所在的位置,然后递归地进行查找3.图算法-深度优先(DFS):从图的一些顶点出发,依次访问其未被访问过的邻接顶点,直到所有顶点都被访问过为止-广度优先(BFS):从图的一些顶点出发,逐层遍历图的顶点,直到所有顶点都被访问过为止- 最小生成树算法:Prim算法和Kruskal算法,用于找到连接图中所有顶点的最小权值边,构成一棵包含所有顶点的生成树- 最短路径算法:Dijkstra算法和Floyd-Warshall算法,用于找到图中两个顶点之间的最短路径-拓扑排序:用于有向无环图(DAG)中的顶点排序,确保排序后的顶点满足所有依赖关系-关键路径算法:找出网络中的关键路径,即使整个工程完成的最短时间4.字符串算法- KMP算法:通过预处理模式串构建next数组,利用next数组在匹配过程中跳过一部分不可能匹配的子串- Boyer-Moore算法:从模式串的末尾开始匹配,利用坏字符和好后缀规则进行跳跃匹配- Rabin-Karp算法:利用哈希函数对主串和匹配串的子串进行哈希计算,然后比较哈希值是否相等- 字符串匹配算法:BM算法、Shift-And算法、Sunday算法等,用于寻找模式串在主串中的出现位置5.动态规划算法-最长公共子序列(LCS):用于寻找两个序列中最长的公共子序列-最长递增子序列(LIS):用于寻找给定序列中最长的递增子序列-0-1背包问题:将有限的物品放入容量为C的背包中,使得物品的总价值最大-最大子数组和:用于求解给定数组中连续子数组的最大和-最大正方形:在给定的0-1矩阵中,找出只包含1的最大正方形的边长这些算法是在C语言中常用的算法,它们涵盖了排序、查找、图、字符串和动态规划等多个领域。
c语言数据结构及算法

C语言是一种广泛应用于编程和软件开发的编程语言,它提供了一系列的数据结构和算法库,使得开发者能够在C语言中使用这些数据结构和算法来解决各种问题。
以下是C语言中常用的数据结构和算法:数据结构:1. 数组(Array):一组相同类型的元素按顺序排列而成的数据结构。
2. 链表(Linked List):元素通过指针连接而成的数据结构,可分为单向链表、双向链表和循环链表等。
3. 栈(Stack):具有后进先出(LIFO)特性的数据结构,可用于实现函数调用、表达式求值等。
4. 队列(Queue):具有先进先出(FIFO)特性的数据结构,可用于实现任务调度、缓冲区管理等。
5. 树(Tree):一种非线性的数据结构,包括二叉树、二叉搜索树、堆、A VL树等。
6. 图(Graph):由节点和边组成的数据结构,可用于表示网络、关系图等。
7. 哈希表(Hash Table):基于哈希函数实现的数据结构,可用于高效地查找、插入和删除元素。
算法:1. 排序算法:如冒泡排序、插入排序、选择排序、快速排序、归并排序等。
2. 查找算法:如线性查找、二分查找、哈希查找等。
3. 图算法:如深度优先搜索(DFS)、广度优先搜索(BFS)、最短路径算法(Dijkstra、Floyd-Warshall)、最小生成树算法(Prim、Kruskal)等。
4. 字符串匹配算法:如暴力匹配、KMP算法、Boyer-Moore 算法等。
5. 动态规划算法:如背包问题、最长公共子序列、最短编辑距离等。
6. 贪心算法:如最小生成树问题、背包问题等。
7. 回溯算法:如八皇后问题、0-1背包问题等。
这只是C语言中常用的一部分数据结构和算法,实际上还有更多的数据结构和算法可以在C语言中实现。
开发者可以根据具体需求选择适合的数据结构和算法来解决问题。
同时,C语言也支持自定义数据结构和算法的实现,开发者可以根据需要进行扩展和优化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
kmp算法c语言
KMP算法(Knuth-Morris-Pratt算法)是一种字符串匹配算法,可以在一个主文本字符串中查找一个模式字符串的出现位置。
它的优势在于,在匹配过程中不会回溯主文本字符串,而是利用已经匹配过的信息,尽量减少比较次数,提高匹配效率。
本文将介绍KMP 算法的原理、实现以及应用场景。
一、KMP算法的原理
KMP算法的核心思想是利用模式字符串中已经匹配过的信息,避免不必要的比较。
它通过构建一个部分匹配表(Partial Match Table)来实现这一目的。
部分匹配表是模式字符串中每个位置上的前缀和后缀的最长公共长度。
通过部分匹配表,KMP算法可以在匹配过程中根据已经匹配的长度,跳过一些比较,从而提高匹配效率。
二、KMP算法的实现
KMP算法的实现包括两个步骤:构建部分匹配表和匹配过程。
首先,我们需要构建部分匹配表,具体步骤如下:
1. 初始化部分匹配表的第一个元素为0;
2. 从第二个元素开始,依次计算每个位置上的最长公共长度,直到计算完整个部分匹配表。
构建部分匹配表的代码如下所示:
```c
void buildPartialMatchTable(char *pattern, int *table) {
int len = strlen(pattern);
table[0] = 0;
int i = 1, j = 0;
while (i < len) {
if (pattern[i] == pattern[j]) {
j++;
table[i] = j;
i++;
} else {
if (j > 0) {
j = table[j-1];
} else {
table[i] = 0;
i++;
}
}
}
}
```
匹配过程则是利用已经构建好的部分匹配表,在主文本字符串中查
找模式字符串的出现位置。
具体步骤如下:
1. 初始化两个指针i和j,分别指向主文本字符串和模式字符串的第一个字符;
2. 在循环中,比较主文本字符串和模式字符串当前位置上的字符,如果相等,则继续比较下一个字符;
3. 如果模式字符串已经匹配完毕,则说明找到了一个匹配的位置,记录下来并继续查找下一个位置;
4. 如果当前字符不匹配,则根据部分匹配表,移动模式字符串的指针j到合适的位置,继续匹配。
KMP算法的匹配过程代码如下所示:
```c
int kmpSearch(char *text, char *pattern) {
int n = strlen(text);
int m = strlen(pattern);
int *table = (int *) malloc(sizeof(int) * m);
buildPartialMatchT able(pattern, table);
int i = 0, j = 0;
while (i < n) {
if (text[i] == pattern[j]) {
i++;
j++;
if (j == m) {
free(table);
return i - j;
}
} else {
if (j > 0) {
j = table[j-1];
} else {
i++;
}
}
}
free(table);
return -1;
}
```
三、KMP算法的应用场景
KMP算法可以用于解决各种字符串匹配问题,特别是在大文本中查找模式字符串的场景中,由于它的高效性能,被广泛应用于文本编辑器、代码编辑器、搜索引擎等工具中。
例如,在代码编辑器中,我们经常需要查找某个特定的函数或变量
名,KMP算法可以帮助我们快速定位到目标位置。
在搜索引擎中,KMP算法可以用于实现关键字的搜索,帮助用户快速找到相关的信息。
总结:
KMP算法是一种高效的字符串匹配算法,它通过构建部分匹配表,在匹配过程中利用已经匹配的信息,避免不必要的比较,提高匹配效率。
KMP算法的实现包括构建部分匹配表和匹配过程两个步骤,可以应用于各种字符串匹配问题,特别是在大文本中查找模式字符串的场景中。
通过掌握KMP算法,我们可以更高效地解决字符串匹配问题,提高程序的执行效率。