kmp算法流程

合集下载

kmp算法原理

kmp算法原理

kmp算法原理KMP算法(Knuth-Morris-Pratt算法)是一种用于快速搜索字符串中某个模式字符串出现位置的算法,由Knuth, Morris 和 Pratt于1977年提出。

KMP算法的工作方式如下:首先,给定一个主串S和一个模式串P,KMP算法的第一步就是先构造一个新的模式串P,其中的每一项存储着P中每一个字符前面由不同字符串组成的最长前缀和最长后缀相同的子串。

接着,在S中寻找P,它会从S的第一个字符开始,如果匹配上,就继续比较下一个字符,如果不匹配上,就根据P中相应位置上保存的信息跳到特定位置,接着再开始比较,如此不断循环下去,直到从S中找到P为止。

KMP算法的思路特别巧妙,比较效率很高,它的复杂度为O(m+n),其中m为主串的长度,n为模式串的长度。

它取代了以前的暴力搜索算法,极大地提高了程序的性能。

KMP算法的实现过程如下:(1)首先确定模式串P的每一个字符,构造模式串P的next数组:next[i]存储P中第i个字符之前最长相同前缀和后缀的长度(P中第i个字符之前最长相同前缀和后缀不包括第i个字符);(2)接着从S中的第一个字符开始比较P中的每一个字符,如果字符不匹配,则采用next数组中保存的信息跳到特定位置,而不是暴力比较,以此不断循环,直到从S中找到P为止。

KMP算法是由Don Knuth, Vaughan Pratt和James Morris在1977年提出的。

它的思想是利用之前遍历过的P的信息,跳过暴力比较,可以把字符串搜索时间从O(m×n)降低到O(m+n)。

KMP算法在很多领域有着重要的应用,如文本编辑,模式匹配,编译器设计与多项式字符串匹配等等,都是不可或缺的。

KMP讲解

KMP讲解
2.2、kmp算法
有了覆盖函数,那么实现kmp算法就是很简单的了,我们的原则还是从左向右匹配,但是当失配发生时,我们不用把target_index向回移动,target_index前面已经匹配过的部分在pattern自身就能体现出来,只要动pattern_index就可以了。
当发生在j长度失配时,只要把pattern向右移动j-overlay(j)长度就可以了。
说了这么半天那么这种方法是什么呢,这种方法是就大名鼎鼎的确定的有限自动机(Deterministic finite state automaton DFA),DFA可识别的文法是3型文法,又叫正规文法或是正则文法,既然可以识别正则文法,那么识别确定的字串肯定不是问题(确定字串是正则式的一个子集)。对于如何构造DFA,是有一个完整的算法,这里不做介绍了。在识别确定的字串时使用DFA实在是大材小用,DFA可以识别更加通用的正则表达式,而用通用的构建DFA的方法来识别确定的字串,那这个overhead就显得太大了。
{
index = overlay_value[index];
}
if(pattern[index+1]==pattern[i])
{
overlay_value[i] = index +1;
KMP 算法可在O(n+m)时间内完成全部的串的模式匹配工作。
ok,最后给出KMP算法实现的c++代码:
#include<iostream>
#include<string>
#include<vector>
using namespace std;
int kmp_find(const string& target,const string& pattern)

kmp算法流程

kmp算法流程

kmp算法流程
KMP算法是一种字符串匹配算法,用于在主串中查找匹配子串的位置。

它的核心思想是通过利用已经匹配过的子串信息来避免不必要的匹配。

具体流程如下:
1. 预处理模式串
在KMP算法中,首先需要对模式串进行预处理,生成一个next 数组。

next数组中记录了模式串中每个字符前面最长的匹配前缀和后缀的长度。

2. 匹配主串
对于主串中的每个字符,逐个与模式串中的字符进行匹配。

如果匹配成功,则继续比较下一个字符;如果匹配失败,则根据next 数组跳转到模式串中下一个可能匹配的位置,继续匹配。

3. 返回匹配结果
如果成功匹配到了整个模式串,则返回匹配的起始位置;否则返回-1,表示匹配失败。

KMP算法的时间复杂度为O(m+n),其中m为模式串长度,n为主串长度。

该算法具有较好的性能和稳定性,在实际应用中得到了广泛的应用。

- 1 -。

KMP算法以及优化(代码分析以及求解next数组和nextval数组)

KMP算法以及优化(代码分析以及求解next数组和nextval数组)

KMP算法以及优化(代码分析以及求解next数组和nextval数组)KMP算法以及优化(代码分析以及求解next数组和nextval数组)来了,数据结构及算法的内容来了,这才是我们的专攻,前⾯写的都是开胃⼩菜,本篇⽂章,侧重考研408⽅向,所以保证了你只要看懂了,题⼀定会做,难道这样思想还会不会么?如果只想看next数组以及nextval数组的求解可以直接跳到相应部分,思想总结的很⼲~~⽹上的next数组版本解惑先总结⼀下,⼀般KMP算法的next数组结果有两个版本,我们需要知道为什么会存在这种问题,其实就是前缀和后缀没有匹配的时候next数组为0还是为1,两个版本当然都是对的了,如果next数组为0是的版本,那么对于前缀和后缀的最⼤匹配长度只需要值+1就跟next数组是1的版本⼀样了,其实是因为他们的源代码不⼀样,或者对于模式串的第⼀个下标理解为0或者1,总之这个问题不⽤纠结,懂原理就⾏~~那么此处,我们假定前缀和后缀的最⼤匹配长度为0时,next数组值为1的版本,考研⼀般都是⽤这个版本(如果为0版本,所有的内容-1即可,如你算出next[5]=6,那么-1版本的next[5]就为5,反之亦然)~~其实上⾯的话总结就是⼀句话next[1]=0,j(模式串)数组的第⼀位下标为1,同时,前缀和后缀的最⼤匹配长度+1即为next数组的值,j所代表的的是序号的意思408反⼈类,⼀般数组第⼀位下标为1,关于书本上前⾯链表的学习⼤家就应该有⽬共睹了,书本上好多数组的第⼀位下标为了⽅便我们理解下标为1,想法这样我们更不好理解了,很反⼈类,所以这⾥给出next[1]=0,前缀和后缀的最⼤匹配长度+1的版本讲解前⾔以及问题引出我们先要知道,KMP算法是⽤于字符串匹配的~~例如:⼀个主串"abababcdef"我们想要知道在其中是否包括⼀个模式串"ababc"初代的解决⽅法是,朴素模式匹配算法,也就是我们主串和模式串对⽐,不同主串就往前移⼀位,从下⼀位开始再和模式串对⽐,每次只移动⼀位,这样会很慢,所以就有三位⼤神⼀起搞了个算法,也就是我们现在所称的KMP算法~~代码以及理解源码这⾥给出~~int Index_KMP(SString S,SString T,intt next[]){int i = 1,j = 1;//数组第⼀位下标为1while (i &lt;= S.length &amp;&amp; j &lt;= T.length){if (j == 0 || S.ch[i] == T.ch[j]){//数组第⼀位下标为1,0的意思为数组第⼀位的前⾯,此时++1,则指向数组的第⼀位元素++i;++j; //继续⽐较后继字符}elsej = next[j]; //模式串向右移动到第⼏个下标,序号(第⼀位从1开始)}if (j &gt; T.length)return i - T.length; //匹配成功elsereturn 0;}接下来就可以跟我来理解这个代码~~还不会做动图,这⾥就⼿画了~~以上是⼀般情况,那么如何理解j=next[1]=0的时候呢?是的,这就是代码的思路,那么这时我们就知道,核⼼就是要求next数组各个的值,对吧,⼀般也就是考我们next数组的值为多少~~next数组的求解这⾥先需要给出概念,串的前缀以及串的后缀~~串的前缀:包含第⼀个字符,且不包含最后⼀个字符的⼦串串的后缀:包含最后⼀个字符,且不包含第⼀个字符的⼦串当第j个字符匹配失败,由前1~j-1个字符组成的串记为S,则:next[j]=S的最长相等前后缀长度+1与此同时,next[1]=0如,模式串"ababaa"序号J123456模式串a b a b a anext[j]0当第六个字符串匹配失败,那么我们需要在前5个字符组成的串S"ababa"中找最长相等的前后缀长度为多少再+1~~如串S的前缀可以为:"a","ab","aba","abab",前缀只不包括最后⼀位都可串S的后缀可以为:"a","ba","aba","baba",后缀只不包括第⼀位都可所以这⾥最⼤匹配串就是"aba"长度为3,那么我们+1,取4序号J123456模式串a b a b a anext[j]04再⽐如,当第⼆个字符串匹配失败,由前1个字符组成的串S"a"中,我们知道前缀应当没有,后缀应当没有,所以最⼤匹配串应该为0,那么+1就是取1~~其实这⾥我们就能知道⼀个规律了,next[1]⼀定为0(源码所造成),next[2]⼀定为1(必定没有最⼤匹配串造成)~~序号J123456模式串a b a b a anext[j]014再再⽐如,第三个字符串匹配失败,由前两个字符组成的串S"ab"中找最长相等的前后缀长度,之后再+1~~前缀:"a"后缀:"b"所以所以这⾥最⼤匹配串也是没有的长度为0,那么我们+1,取1序号J123456模式串a b a b a anext[j]0114接下来你可以⾃⼰练练4和5的情况~~next[j]011234是不是很简单呢?⾄此,next数组的求法以及kmp代码的理解就ok了~~那么接下来,在了解以上之后,我们想⼀想KMP算法存在的问题~~KMP算法存在的问题如下主串:"abcababaa"模式串:"ababaa"例如这个问题我们很容易能求出next数组序号J123456模式串a b a b a anext[j]011234此时我们是第三个字符串匹配失败,所以我们的next[3]=1,也就是下次就是第⼀个字符"a"和主串中第三个字符"c"对⽐,可是我们刚开始的时候就已经知道模式串的第三个字符"a"和"c"不匹配,那么这⾥不就多了⼀步⽆意义的匹配了么?所以我们就会有kmp算法的⼀个优化了~~KMP算法的优化我们知道,模式串第三个字符"a"不和主串第三个字符"c"不匹配,next数组需要我们的next[3]=1,也就是下次就是第⼀个字符"a"和主串中第三个字符"c"对⽐,之后就是模式串第⼀个字符"a"不和"c"匹配,就是需要变为next[1]=0,那么我们要省去步骤,不就可以直接让next[3]=0么?序号J12345模式串a b a b anext[j]01123nextval[j]00那么怎么省去多余的步骤呢?这就是nextval数组的求法~~nextval的求法以及代码理解先贴出代码for (int j = 2;j &lt;= T.length;j++){if (T.ch[next[j]] == T.ch[j])nextval[j] = nextval[next[j]];elsenextval[j] = next[j];}如序号J123456模式串a b a b a anext[j]011234nextval[j]0⾸先,第⼀次for循环,j=2,当前序号b的next[2]为1,即第⼀个序号所指向的字符a,a!=当前序号b,所以nextval[2]保持不变等于next[2]=1序号J123456模式串a b a b a anext[j]011234nextval[j]01第⼆次for循环,j=3,当前序号a的next[3]为1,即第⼀个序号所指向的字符a,a=当前序号a,所以nextval[3]等于nextval[1]=0序号J123456模式串a b a b a anext[j]011234nextval[j]010第三次for循环,j=4,当前序号b的next[4]为2,即第⼆个序号所指向的字符b,b=当前序号b,所以nextval[4]等于nextval[2]=1序号J123456模式串a b a b a anext[j]011234nextval[j]0101就是这样,你可以练练5和6,这⾥直接给出~~序号J123456模式串a b a b a anext[j]011234nextval[j]010104⾄此nextval数组的求法你也应该会了,那么考研要是考了,那么是不是就等于送分给你呢?⼩练习那么你试着来求⼀下这个模式串的next和nextval数组吧~~next[j]nextval[j]⼩练习的答案序号j12345模式串a a a a b next[j]01234 nextval[j]00004。

kmp算法python代码

kmp算法python代码

kmp算法python代码摘要:1.KMP 算法简介2.KMP 算法的Python 实现3.KMP 算法的应用示例正文:1.KMP 算法简介KMP(Knuth-Morris-Pratt)算法是一种高效的字符串匹配算法,用于在一个主字符串中查找一个子字符串出现的位置。

该算法的关键在于通过预处理子字符串,减少不必要的字符比较,从而提高匹配速度。

2.KMP 算法的Python 实现以下是KMP 算法的Python 实现:```pythondef compute_prefix_function(pattern):m = len(pattern)prefix_function = [0] * (m + 1)prefix_function[0] = 0i, j = 1, 0while i < m:if pattern[i] == pattern[j]:j += 1prefix_function[i] = ji += 1else:if j!= 0:j = prefix_function[j - 1]else:prefix_function[i] = 0i += 1return prefix_functiondef kmp_search(text, pattern):m, n = len(text), len(pattern)prefix_function = compute_prefix_function(pattern) i, j = 0, 0while i < m:if pattern[j] == text[i]:i += 1j += 1if j == n:return i - jelif i < m and pattern[j]!= text[i]:if j!= 0:j = prefix_function[j - 1]else:i += 1return -1if __name__ == "__main__":text = "我国是一个伟大的国家"pattern = "伟大的"result = kmp_search(text, pattern)if result!= -1:print("子字符串"{}" 在主字符串中第{} 位置出现。

KMP算法(改进的模式匹配算法)——next函数

KMP算法(改进的模式匹配算法)——next函数

KMP算法(改进的模式匹配算法)——next函数KMP算法简介KMP算法是在基础的模式匹配算法的基础上进⾏改进得到的算法,改进之处在于:每当匹配过程中出现相⽐较的字符不相等时,不需要回退主串的字符位置指针,⽽是利⽤已经得到的部分匹配结果将模式串向右“滑动”尽可能远的距离,再继续进⾏⽐较。

在KMP算法中,依据模式串的next函数值实现字串的滑动,本随笔介绍next函数值如何求解。

next[ j ]求解将 j-1 对应的串与next[ j-1 ]对应的串进⾏⽐较,若相等,则next[ j ]=next[ j-1 ]+1;若不相等,则将 j-1 对应的串与next[ next[ j-1 ]]对应的串进⾏⽐较,⼀直重复直到相等,若都不相等则为其他情况题1在字符串的KMP模式匹配算法中,需先求解模式串的函数值,期定义如下式所⽰,j表⽰模式串中字符的序号(从1开始)。

若模式串p 为“abaac”,则其next函数值为()。

解:j=1,由式⼦得出next[1]=0;j=2,由式⼦可知1<k<2,不存在k,所以为其他情况即next[2]=1;j=3,j-1=2 对应的串为b,next[2]=1,对应的串为a,b≠a,那么将与next[next[2]]=0对应的串进⾏⽐较,0没有对应的串,所以为其他情况,也即next[3]=1;j=4,j-1=3 对应的串为a,next[3]=1,对应的串为a,a=a,所以next[4]=next[3]+1=2;j=5,j-1=4 对应的串为a,next[4]=2,对应的串为b,a≠b,那么将与next[next[4]]=1对应的串进⾏⽐较,1对应的串为a,a=a,所以next[5]=next[2]+1=2;综上,next函数值为 01122。

题2在字符串的KMP模式匹配算法中,需先求解模式串的函数值,期定义如下式所⽰,j表⽰模式串中字符的序号(从1开始)。

若模式串p为“tttfttt”,则其next函数值为()。

KMP算法详解

KMP算法详解

KMP算法详解KMP 算法详解KMP 算法是⼀个⼗分⾼效的字符串查找算法,⽬的是在⼀个字符串 s 中,查询 s 是否包含⼦字符串 p,若包含,则返回 p 在 s 中起点的下标。

KMP 算法全称为 Knuth-Morris-Pratt 算法,由 Knuth 和 Pratt 在1974年构思,同年 Morris 也独⽴地设计出该算法,最终由三⼈于1977年联合发表。

举⼀个简单的例⼦,在字符串 s = ababcabababca 中查找⼦字符串 p = abababca,如果暴⼒查找,我们会遍历 s 中的每⼀个字符,若 s[i] = p[0],则向后查询p.length() 位是否都相等。

这种朴素的暴⼒的算法复杂度为O(m×n),其中m和n分别是 p 和 s 的长度。

KMP 算法可以⽅便地简化这⼀查询的时间复杂度,达到O(m+n)。

1. PMT 序列PMT 序列是 KMP 算法的核⼼,即 Partial Match Table(部分匹配表)。

举个例⼦:char a b a b a b c aindex01234567PMT00123401PMT 的值是字符串的前缀集合与后缀集合的交集中最长元素的长度。

PMT[0] = 0: 字符串 a 既没有前缀,也没有后缀;PMT[1] = 0: 字符串 ab 前缀集合为 {a},后缀集合为 {b},没有交集;PMT[2] = 1: 字符串 aba 前缀集合为 {a, ab},后缀集合为 {ba, a},交集为 {a},交集元素的最长长度为1;PMT[3] = 2: 字符串 abab 前缀集合为 {a, ab, aba},后缀集合为 {bab, ab, b},交集为 {ab},交集元素的最长长度为2;…… 以此类推。

2. 算法主体现在我们已经知道了 PMT 序列的含义,那么假设在 PMT 序列已经给定的情况下,如何加速字符串匹配算法?tar 存储 s 的下标,从 0 开始,若 tar > s.length() - 1,代表匹配失败;pos 存储 p 的下标,从 0 开始,若 s[tar] != p[pos],则 pos ⾛到下⼀个可能匹配的位置。

kmp算法next原理

kmp算法next原理

kmp算法next原理
KMP算法,全称是Knuth-Morris-Pratt算法,是字符串匹配中一种高效率的算法。

该算法的核心是,利用已经匹配过的部分来减少比较次数。

具体实现是,当出现不匹配时,可以根据已经匹配的前缀和后缀的关系,避免重新匹配已经匹配过的字符,直接跳过这些字符,将模式串向后移动到下一个需要匹配的位置。

那么如何计算这个“已经匹配的前缀和后缀的关系”呢?这就需要用到next数组了。

next数组,本质上是一个数组,用于存储模式串的最长相同真前缀和真后缀的长度。

其中“真前缀”和“真后缀”,是指除了字符串本身的前缀和后缀,即不包含整个字符串的前缀和后缀。

通过预处理模式串生成next数组,我们就可以在匹配过程中根据已经匹配的前缀和后缀的长度,来跳过不必要的比较,从而达到优化匹配速度的目的。

以上就是KMP算法及其核心原理--next数组的简要介绍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

kmp算法流程
KMP算法流程:
1.定义两个指针i和j,分别指向模式串和匹配串的初始位置,初始化i=0,j=0。

2. 预处理获取模式串的next数组。

3.如果模式串的第i个字符等于匹配串的第j个字符,将i和j分别向后移动一位,即i=i+1,j=j+1。

4. 如果模式串的第i个字符不等于匹配串的第j个字符,则将i更新为next[i],即将i跳到next[i]的位置,j不动。

5.重复步骤3和步骤4,直到匹配成功(即j匹配成功)或者匹配失败(j超过了匹配串的长度)。

KMP算法的核心思想是利用模式串的信息来避免无效匹配。

next数组是KMP算法的关键,它记录了模式串中每个位置的最长相等前缀和后缀的长度。

在匹配过程中,如果当前匹配到模式串的某个位置i和匹配串的某个位置j不匹配,那么就可以根据next数组跳过一些无需匹配的位置,从而能够提高匹配效率。

相关文档
最新文档