动量和动量守恒定律
动量定理及动量守恒定律

20
动量定理及动量守恒定律
oy N1 − m1g = 0 又f1max = N1μ1
以 m2 为隔离体,m2 受重力W = m2 g ;桌面的支持力 N2 ; m1 的压力 N1′ (大小与 N1 相等); m1 作用在 m2 上的最大静摩擦力 f1max′(大小与 f1max 相等) ;桌面作用在 m2 上的
oA y A W3 − TA′ − TB′ = m3a3
(7)
因为不计滑轮及绳的质量,不计轴承摩擦. 且已知绳不可伸长.
∴ TA = TB = TA′ = TB′ = T
f A ,绳的拉力 TA , A 的动力学方程为
动量定理及动量守恒定律
W1 + N A + f A + TA = m1a1 建立如图 3.5.7(1)所示的坐标系 oA − xA y A .
oA xA TA − f A = m1a1
(1)
oA y A W1 − N A = 0
(2)
且 fA = NAμ
动量定理及动量守恒定律
第三章 动量定理及动量守恒定律
(Momentum and Conservation Law of Momentum)
一、内容简介(Abstract) 1.牛顿第一定律(Newton’s first law)
孤立质点静止或作等速直线运动,即质点在不受力或所受力的合力为零时,将保持静 止或匀速直线运动状态不变.(惯性定律) 2.牛顿第三定律(Newton’s third law)
g
y
x o
N
2
α m2
a2
W2
N1′
图3.5.(5 3)
y′
N1 f∗
m1
高中物理力学知识汇总:动量、冲量、动量定理、动量守恒定律

高中物理力学知识汇总:动量、冲量、动量定理、动量守恒定律【知识要点复习】1、动量是矢量,其方向与速度方向相同,大小等于物体质量和速度的乘积,即P=mv。
2、冲量也是矢量,它是力在时间上的积累。
冲量的方向和作用力的方向相同,大小等于作用力的大小和力作用时间的乘积。
在计算冲量时,不需要考虑被作用的物体是否运动,作用力是何种性质的力,也不要考虑作用力是否做功。
在应用公式I=Ft进行计算时,F应是恒力,对于变力,则要取力在时间上的平均值,若力是随时间线性变化的,则平均值为3、动量定理:动量定理是描述力的时间积累效果的,其表示式为I=ΔP=mv-mv0式中I表示物体受到所有作用力的冲量的矢量和,或等于合外力的冲量;ΔP是动量的增量,在力F作用这段时间内末动量和初动量的矢量差,方向与冲量的方向一致。
动量定理可以由牛顿运动定律与运动学公式推导出来,但它比牛顿运动定律适用范围更广泛,更容易解决一些问题。
4、动量守恒定律(1)内容:对于由多个相互作用的质点组成的系统,若系统不受外力或所受外力的矢量和在某力学过程中始终为零,则系统的总动量守恒,公式:(2)内力与外力:系统内各质点的相互作用力为内力,内力只能改变系统内个别质点的动量,与此同时其余部分的动量变化与它的变化等值反向,系统的总动量不会改变。
外力是系统外的物体对系统内质点的作用力,外力可以改变系统总的动量。
(3)动量守恒定律成立的条件a、不受外力b、所受合外力为零c、合外力不为零,但F内>>F外,例如爆炸、碰撞等。
d、合外力不为零,但在某一方向合外力为零,则这一方向动量守恒。
(4)应用动量守恒应注意的几个问题:a、所有系统中的质点,它们的速度应对同一参考系,应用动量守恒定律建立方程式时它们的速度应是同一时刻的。
b、无论机械运动、电磁运动以及微观粒子运动、只要满足条件,定律均适用。
(5)动量守恒定律的应用步骤。
第一,明确研究对象。
第二,明确所研究的物理过程,分析该过程中研究对象是否满足动量守恒的条件。
动量定理和动量守恒定律

动量定理和动量守恒定律
动量定理(或称为莱布尼兹动量定理)是物理学中的一条基本定理,它说明了物体受
力时动量发生变化的定律,即在任何时刻点,物体动量的变化等于向物体施加的力的矢量积。
动量定理的数学公式可以表达为:
$$\vec{P}= \frac{d\vec{p}}{dt} = \sum \vec{F_T}$$
其中,$P$ 代表物体的动量,$F_T$代表施加在物体上的外力,$p$代表物体的线速度,$t$代表时间。
从上式可以看出,动量的定义比较宽泛,除了物体的位置和速度外,还包括了力对物
体的作用,也就是动量改变的原因就是因为物体受力,所以又叫做力学定理。
在微分形式中,动量定理也可以写作:
动量定理的重要意义是:动量是物体受力变化的定律,这个定律蕴含着物体受力量变
化的定律,即动量守恒定律。
动量守恒定律是物理学中最基本也是最重要的定律,它非常宽泛地适用于物理学问题,它宣布了外力作用下物体总动量(包括质量和速度)保持不变。
即:
总动量 $$P_1 + P_2 + ...+ P_N = P_1^{'} + P_2^{'} + ...+ P_N^{'}$$
因此,当外力改变物体的总动量时,实际上就是通过物体内部各外力矢量积之和改
变物体的总动量。
动量守恒定律是一个强有力的物理定律,依照这个定律,动量的总和将
始终守恒不变。
动量与动量守恒定律

动量与动量守恒定律动量是物体运动的重要物理量,它反映了物体运动的特征。
动量守恒定律则是一个重要的物理定律,它描述了在某些特定条件下,系统总动量保持不变的现象。
本文将从动量的定义、动量守恒定律的表达以及应用举例等方面进行阐述。
我们来了解一下动量的概念。
动量是物体运动的基本属性,它的大小与物体的质量和速度有关。
动量的定义为物体的质量乘以其速度,即p=mv,其中p表示动量,m表示物体的质量,v表示物体的速度。
从这个定义可以看出,动量是一个矢量量,具有大小和方向。
接下来,我们来讨论一下动量守恒定律的表达。
动量守恒定律可以表达为:在一个孤立系统中,如果没有外力作用,系统总动量保持不变。
换句话说,系统中各个物体的动量之和在运动过程中保持不变。
这个定律适用于各种情况,无论是弹性碰撞还是非弹性碰撞,只要没有外力作用,系统的总动量都会保持不变。
动量守恒定律的应用非常广泛。
在物理学中,它被广泛应用于解释和预测各种运动现象。
下面我们通过几个例子来具体说明一下。
第一个例子是弹性碰撞。
在弹性碰撞中,物体之间发生碰撞后会相互弹开,并且动量守恒。
例如,当两个球碰撞时,它们会以相等的速度相互弹开,且动量的代数和保持不变。
第二个例子是非弹性碰撞。
在非弹性碰撞中,物体之间碰撞后会粘连在一起或者发生形变,但动量仍然守恒。
例如,当一个球从一定高度自由落下撞击到地面时,球的速度会减小,但地面会产生反作用力,使得球的动量保持不变。
除了碰撞,动量守恒定律还可以应用于其他运动情景。
比如,当一个人站在冰面上,他可以通过手臂的摆动来改变自己的速度和方向。
由于没有外力作用,他的动量在运动过程中保持不变。
动量与动量守恒定律是物理学中非常重要的概念和定律。
通过对动量的定义和动量守恒定律的阐述,我们可以更好地理解物体运动的特征和规律。
动量守恒定律的应用广泛,可以用于解释和预测各种运动现象。
通过研究动量与动量守恒定律,我们可以深入了解物体运动的本质,为实际问题的解决提供有效的理论支持。
动量定理与动量守恒定律

动量定理与动量守恒定律动量是物体运动的重要物理量,揭示了物体运动的性质以及相互作用过程中的变化规律。
动量定理和动量守恒定律是描述物体运动中动量变化和守恒的重要原理。
一、动量定理动量定理又称牛顿第二定律,它指出:当外力作用于物体时,物体的动量变化率等于外力的合力。
在公式表示上,动量定理可以表达为:F = ma其中,F为物体所受到的合外力,m为物体的质量,a为物体的加速度。
根据动量定理,可以得出以下结论:1. 外力对物体的作用时间越长,物体的动量变化越大。
2. 给定外力作用时间不变的情况下,物体的质量越大,其动量的变化越小。
3. 给定物体质量不变的情况下,外力的大小越大,物体的动量变化越大。
二、动量守恒定律动量守恒定律是描述封闭系统中动量守恒的原理。
在封闭系统中,物体之间发生相互作用,它们的动量之和保持不变。
根据动量守恒定律,可以得出以下结论:1. 在没有外力作用的封闭系统中,物体的总动量保持不变。
2. 当物体发生碰撞或相互作用时,只要没有外力干扰,物体的动量总和保持不变。
3. 动量的守恒还适用于多个物体之间的相互作用,无论是弹性碰撞还是非弹性碰撞。
应用动量守恒定律,可以对各种现象进行解释,例如:1. 汽车碰撞:当两辆车发生碰撞时,它们的合动量在碰撞前后保持不变,因此可以用动量守恒定律来分析和解释碰撞过程。
2. 运动员跳远:运动员在起跳瞬间通过腿部发力,推动自己前进。
由于系统是封闭的,跳远过程中动量守恒,从而产生更大的跳远距离。
3. 火箭喷气推进:火箭通过排出高速喷射的气体,产生反冲力推动自身前进。
根据动量守恒,喷气气体的动量变化与火箭的动量变化相互抵消,从而实现火箭的推进。
综上所述,动量定理和动量守恒定律是物理学中对物体运动和相互作用过程进行描述的重要原则。
了解和应用这些定律,可以更好地理解和解释物体的运动行为,对各种物理现象进行分析和解决问题。
动力学三大守恒定律

动力学三大守恒定律【知识专栏】动力学三大守恒定律1. 引言及概述动力学三大守恒定律是物理学中非常重要的概念,它们为我们理解和描述物体运动提供了基础规律。
这三大守恒定律分别是动量守恒定律、角动量守恒定律和能量守恒定律。
本文将以从简到繁、由浅入深的方式来逐步探讨这三大守恒定律的背后原理和应用,以帮助读者更全面地理解这一主题。
2. 动量守恒定律2.1 动量的基本概念为了更好地理解动量守恒定律,首先需要了解动量的基本概念。
动量是物体运动的数量度,表示物体在运动过程中所具有的惯性。
动量的大小与物体的质量和速度相关,可以用数学公式 p = m * v 表示,其中 p 为动量,m 为物体的质量,v 为物体的速度。
2.2 动量守恒定律的表述根据动量守恒定律,一个封闭系统中物体的总动量在没有外力作用的情况下保持不变。
也就是说,如果一个物体的动量发生改变,那么系统中其他物体的动量总和将相应地发生改变,以保持系统的总动量守恒。
2.3 动量守恒定律的应用动量守恒定律在多个领域中都有应用,例如力学、流体力学和电磁学等。
在碰撞问题中,我们可以利用动量守恒定律来分析碰撞前后物体的速度和质量变化。
在交通事故中,通过应用动量守恒定律,我们可以了解事故发生时车辆的速度和冲击力对乘客的影响,并提出相应的安全建议。
3. 角动量守恒定律3.1 角动量的基本概念角动量是物体绕某一轴旋转时所具有的运动状态,它是描述物体旋转惯性的量度。
角动量的大小与物体的惯性和旋转速度相关,可以用数学公式L = I * ω 表示,其中 L 为角动量,I 为物体的转动惯量,ω 为物体的角速度。
3.2 角动量守恒定律的表述根据角动量守恒定律,一个封闭系统中物体的总角动量在没有外力矩作用的情况下保持不变。
即使系统中发生了旋转速度的改变,但系统的总角动量仍然保持恒定。
3.3 角动量守恒定律的应用角动量守恒定律在天体物理学、自然界中的旋转现象等领域中具有广泛的应用。
它被用来解释行星和卫星的自转、陀螺的稳定性以及漩涡旋转等自然现象。
动量定理与动量守恒定律的比较

动量定理与动量守恒定律的比较
动量定理和动量守恒定律都是描述物体运动状态的基本定律。
动量定理指出,当一个物体受到外力作用时,它的动量会发生变化,变化量等于外力作用时间内的动量变化率。
动量守恒定律则指出,当物体间只有内力作用时,它们的总动量保持不变。
两个定律都是基于牛顿第二定律推导而来的。
动量定理适用于描述瞬时的动量变化,比如撞击、碰撞等过程。
它可以用来计算物体在受力作用下的运动状态变化,如速度、位移等。
而动量守恒定律适用于描述长时间内的物体运动,比如行星绕太阳的运动、宇宙中物体的演化等。
它可以用来预测物体间的相对位置和速度等运动状态。
动量定理和动量守恒定律之间的关系是密切的,它们可以互相验证。
动量定理的推导基于牛顿第二定律,而牛顿第二定律的推导又基于动量守恒定律。
因此,这两个定律是相互支撑、相互补充的。
总之,动量定理和动量守恒定律是描述物体运动状态的基本定律,它们分别适用于不同的物理过程和时间尺度。
它们的相互关系是相当重要的,可以用来解释和预测物理现象。
- 1 -。
动量与动量守恒

动量与动量守恒动量是物体运动的重要性质,它描述了物体运动的速度和质量对运动的影响。
动量守恒定律是自然界中一项重要的物理定律,它指出,在封闭系统中,总动量在时间推移中保持不变。
本文将探讨动量的概念、动量守恒定律及其应用。
一、动量的概念动量是描述物体运动的物理量,用字母"P"表示,它等于物体的质量乘以其速度。
动量的公式可以表示为P = m * v,其中m代表物体的质量,v代表物体的速度。
动量的单位是千克·米/秒(kg·m/s)。
二、动量守恒定律动量守恒定律是描述封闭系统中动量守恒的物理定律。
封闭系统是指不受外部力或物体影响的系统。
根据动量守恒定律,在封闭系统中,总动量在时间推移中保持不变。
换句话说,当没有外力作用于系统时,系统的总动量保持恒定。
三、动量守恒定律的应用动量守恒定律在许多物理问题中有着广泛应用。
下面分别介绍动量守恒定律在碰撞和火箭推进中的应用。
1. 碰撞中的动量守恒在碰撞中,物体之间会相互作用,产生动量的转移或改变。
根据动量守恒定律,碰撞前后物体的总动量是相等的。
这意味着如果一个物体获得了动量,那么另一个物体将失去相同大小的动量。
碰撞可以分为完全弹性碰撞和非完全弹性碰撞两种情况。
- 完全弹性碰撞:在完全弹性碰撞中,碰撞物体之间的动能完全转化为动量,并且在碰撞后物体的速度改变方向但不改变大小。
这种碰撞常见于理论推导中或在理想条件下的情况。
- 非完全弹性碰撞:在非完全弹性碰撞中,碰撞物体之间的动能损失,部分动能被转化为变形或其他形式的能量。
这种碰撞在现实世界中更为常见。
2. 火箭推进中的动量守恒火箭推进原理基于动量守恒定律。
火箭通过排放燃料和推进气体来产生向反方向的推力,实现推进。
根据动量守恒定律,当火箭底部以高速排出燃料与气体时,火箭就会向相反的方向获得相等大小的动量。
火箭推进中使用的喷气推进和火箭发动机等技术都是基于动量守恒定律的应用。
这些技术在航天领域、导弹技术以及船舶推进等方面有着广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动量和动量守恒定律
动量是物体运动的重要物理量,它描述了物体在运动中的惯性和力的效果。
动量守恒定律是描述一个孤立系统中动量守恒的原理。
本文将详细介绍动量和动量守恒定律的概念、公式以及实际应用。
一、动量的概念和公式
动量是一个矢量量,它的大小等于物体的质量乘以其速度。
动量的公式可以表示为:
p = m * v
其中,p代表动量,m代表物体的质量,v代表物体的速度。
根据动量的定义和公式,我们可以得出以下结论:
1. 动量与物体的质量成正比,即物体的质量越大,其动量也越大。
2. 动量与物体的速度成正比,即物体的速度越大,其动量也越大。
3. 动量是矢量量,具有方向性。
方向与速度的方向一致。
二、动量守恒定律的原理
动量守恒定律是描述一个孤立系统中动量守恒的基本原理。
在一个孤立系统中,如果没有外力作用,系统内物体的动量总和保持不变。
具体而言,如果一个物体在没有外力作用下,其动量守恒定律可以表示为:
m1 * v1 + m2 * v2 = m1 * v'1 + m2 * v'2
其中,m1和m2分别代表参与碰撞的两个物体的质量,v1和v2分
别代表碰撞前两个物体的速度,而v'1和v'2则代表碰撞后两个物体的
速度。
三、动量守恒定律的应用
动量守恒定律是物理学中的重要定律,广泛应用于各个领域。
以下
是一些常见的应用:
1. 碰撞问题:动量守恒定律可用于解析碰撞问题。
在碰撞中,通过
应用动量守恒定律,可以计算出物体碰撞前后的速度。
2. 火箭推进原理:根据动量守恒定律,当火箭喷射出高速废气时,
枪炮发射子弹时,火箭或子弹的向后喷射废气或火药的速度减小,而
火箭或子弹的速度相应增加。
3. 交通安全:根据动量守恒定律,人行道上的行人在与汽车碰撞时,如果行人速度较快,可能会对汽车产生较大的碰撞力,导致严重伤害。
因此,交通中的速度限制和行人过街设施的设置都是基于动量守恒定
律的。
4. 运动员技巧:运动员在一些体育项目中,通过善用动量守恒定律
来改变自身的状态。
例如,滑雪运动员在滑雪过程中,通过控制自己
的速度和角度,来实现优雅的动作和技巧。
综上所述,动量和动量守恒定律在物理学中起着非常重要的作用。
了解和应用动量守恒定律不仅可以帮助我们理解物体运动的规律,还
可以应用于实际生活中的各个领域,提高我们的安全意识和运动能力。
因此,我们应该深入学习和掌握动量和动量守恒定律的概念、公式和应用。