七年级上数学五六章知识点
七年级上册数学第五章复习总结

七年级上册数学第五章复习总结七年级上册数学第五章复习总结1代数初步知识1. 代数式:用运算符号+ - 连接数及表示数的字母的式子称为代数式.注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式.2.列代数式的几个注意事项:(1)数与字母相乘,或字母与字母相乘通常使用乘,或省略不写;(2)数与数相乘,仍应使用乘,不用乘,也不能省略乘号;(3)数与字母相乘时,一般在结果中把数写在字母前面,如a5应写成5a;(4)带分数与字母相乘时,要把带分数改成假分数形式,如a 应写成 a;(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3a写成的形式;(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b 时,则应分类,写做a-b和b-a .3.几个重要的代数式:(m、n表示整数)(1)a与b的平方差是: a2-b2 ; a与b差的平方是:(a-b)2 ;(2)若a、b、c是正整数,则两位整数是: 10a+b ,则三位整数是:100a+10b+c;(3)若m、n是整数,则被5除商m余n的数是: 5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是: n-1、n、n+1 ;(4)若b0,则正数是:a2+b ,负数是: -a2-b ,非负数是: a2 ,非正数是:-a2 .七年级上册数学第五章复习总结2一、方程的有关概念1.方程:含有未知数的等式就叫做方程.2. 一元一次方程:只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程.例如: 1700+50x=1800, 2(x+1.5x)=5等都是一元一次方程.3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程. ⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.二、等式的性质等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.等式的性质(1)用式子形式表示为:如果a=b,那么a±c=b±c等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,等式的性质(2)用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c≠0),那么ca=cb三、移项法则:把等式一边的某项变号后移到另一边,叫做移项.四、去括号法则1. 括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.2. 括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.五、解方程的一般步骤1. 去分母(方程两边同乘各分母的最小公倍数)2. 去括号(按去括号法则和分配律)3. 移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)4. 合并(把方程化成ax = b (a≠0)形式)5. 系数化为1(在方程两边都除以未知数的系数a,得到方程的解x=a(b).六、用方程思想解决实际问题的一般步骤1. 审:审题,分析题中已知什么,求什么,明确各数量之间的关系.2. 设:设未知数(可分直接设法,间接设法)3. 列:根据题意列方程.4. 解:解出所列方程.5. 检:检验所求的解是否符合题意.6. 答:写出答案(有单位要注明答案)七年级上册数学第五章复习总结3(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;(2)有理数的分类: ① 整数②分数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数 0和正整数;a0 a是正数;a0 a是负数;a≥0 a是正数或0 a是非负数;a≤ 0 ? a是负数或0 a是非正数.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 0,小数-大数 0.七年级上册数学第五章复习总结4第一章:丰富的图形世界1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。
七年级数学上册各章知识点总结

[二]有理数减法法则: 减去一个数,等于 加上这个数的相反数 ,用字母表示为a-
b= a=+[-b] .
一.四有理数的乘除法
[一]有理数乘法法则:
一、两数相乘,同号 得正 ,异号 得负 ,并把 绝对值相
乘
.
二、几个不是0的数相乘,积的符号由负因数的个数决定,当负因
数有偶数个时,积为 正数 ,当负因数有奇数个时,积为 负数 ;
图1
从正面看
从左面看
从上面看
图2
三、立体图形的展开图有些立体图形是有一些平面图形围 成的,把它们的表面适当剪开后在平面上展开得到的平图形 称为立体图形的展开图. [一]圆柱和圆锥的侧面展开图 [二]棱柱和棱锥的展开图 [三]根据展开图判断立体图形的规律: A展开图全是长方形或正方形时------长方体或正方体; B展开图中含有三角形时-----棱锥或棱柱; 若展开图中含有二个三角形三个长方形-----三棱柱; 若展开图中全是三角形[四个]-----[三]棱锥. C展开图中含有圆和长方形-----圆柱; D展开图中含有扇形------圆锥.
-a
a
-5 -4 -3 -2 -1 0 1 2 3 4
有理数的分类
[四]、绝对值:数轴上表示数a的点与原点的距离叫做数a 的绝对4 -3 -2 -1 0 1 2 3 4
一个正数的绝对值是 是它本身 ,一个负数的绝对值是 它的相反数 ,
0的绝对值是
0
.
注意:一|a|≥0即对任意有理数a,它的绝对值是非负数 二绝对值最小数为0
当a<0时,无解.
五:方程的解与解方程:使方程两边相等的未 知数的值叫做方程的解,求方程解的过程叫 解方程.
六:关于移项:⑴移项实质是等式的基本性质一的 运用. ⑵移项时,一定记住要改变所移项的符号.
七年级上数学书各章知识点

七年级上数学书各章知识点数学是一门需要理解和掌握的基础学科,对于初中学生来说,学好数学不仅能够为以后的学习打下良好的基础,更能够培养逻辑思维和解决问题的能力。
以下是七年级上数学书各章的知识点总结,希望能够对同学们的学习有所帮助。
第一章:有理数本章重点讲解正数、负数、零的概念和表示方法。
同时,学生也需要理解有理数的概念,包括正数、负数和零。
第二章:代数式与方程本章讲解了一元一次方程的解法,以及代数式的概念和计算方法。
通过本章的学习,学生能够掌握解方程的方法,并能够应用到后续的数学学习中。
第三章:图形的认识本章主要介绍了各种常见的平面图形和立体图形的定义,并讲解了图形的性质和分类规律。
学生需要通过本章的学习,掌握图形的基本知识和分类方法。
第四章:分数本章主要讲解了分数的概念和运算方法,包括分数的约分、通分、加减、乘除等。
学生需要掌握分数的定义和基本运算方法,并能够熟练应用。
第五章:比例与相似本章主要介绍了比例和相似的概念和计算方法,包括比例的意义、性质和计算以及相似三角形的定义和判定方法。
学生需要掌握比例和相似的概念和计算方法,并能够进行应用。
第六章:数据的处理本章主要介绍了统计图表的表示方法和读取方法,包括条形图、折线图、饼图等。
同时,也讲解了平均数、中位数和众数等统计指标的计算方法。
学生需要通过本章的学习,熟悉各种常见的统计图表和统计指标的计算方法。
第七章:平面向量本章讲解了向量的概念和运算法则,包括向量的加法和数乘、向量的减法和模长的计算等。
学生需要掌握向量的基本概念和运算方法。
第八章:一次函数本章主要讲解了一次函数的概念和图像以及函数图象的基本性质和特征。
通过本章的学习,学生能够掌握一次函数的基本知识和应用方法。
第九章:三角形本章讲解了三角形的定义、分类和性质,包括三角形内角和、外角和、面积、重心、垂心等概念和计算方法。
学生需要通过本章的学习,掌握三角形的基本知识和求解方法。
总结:以上是七年级上数学书各章的知识点总结,每一章的内容都是需要同学们耐心理解和掌握的。
人教版七年级数学上册各章知识点总结(最新最全)

人教版七年级数学上册各章知识点总结(最新最全)在有理数加法中,同号两数相加时,取相同的符号,绝对值相加;异号两数相加时,取绝对值较大的加数的符号,用较大的绝对值减去较小的绝对值;互为相反数的两数相加得0;一个数与0相加仍得这个数。
2、绝对值与加法的关系:1)︱a+b︱≤︱a︱+︱b︱;2)︱a︱-︱b︱≤︱a+b︱;3)︱a︱≤︱a+b︱+︱b︱.3、有理数减法:a-b=a+(-b)4、有理数乘法法则:1)同号得正,异号得负;2)0与任何数相乘得0;3)1与任何数相乘得这个数本身。
5、有理数乘方:1)a的平方表示为a²,a²=a×a;2)a的立方表示为a³,a³=a×a×a;3)a的n次方表示为aⁿ,aⁿ=a×a×a×……×a(n个a相乘).6、有理数除法:1)a÷b=a×(1÷b)(b≠0);2)a÷0没有意义.7、有理数的混合运算:先乘方,再乘除,最后加减.有理数运算法则有理数是指可以表示为分数形式的数,包括整数、分数和小数。
有理数的运算法则包括加法、减法、乘法、除法和乘方。
加法法则同号相加:若a>0,b>0,则a+b=|a|+|b|;若a<0,b<0,则a+b=-(|a|+|b|)。
异号相加:若a>0,b|b|,则a+b=|a|-|b|;若a>0,b<0,|a|<|b|,则a+b=-(|b|-|a|);若a、b互为相反数,则a+b=0.加法交换律:a+b=b+a。
加法结合律:(a+b)+c=a+(b+c)。
减法法则减去一个数,等于加上这个数的相反数。
即a-b=a+(-b)。
乘法法则同号相乘:若a>0,b>0,则ab=+|a|×|b|;若a<0,b<0,则ab=+|a|×|b|。
七年级上册数学五章知识点

七年级上册数学五章知识点数学是一个重要的学科,在学习过程中,数学的知识点是必不可少的。
特别是对于七年级的学生来说,掌握好基础知识是十分重要的,因此本文将介绍七年级上册数学的知识点,主要包括数学五个章节的内容。
一、整数整数是数学中的基本概念之一,在七年级上册数学中,首先学习的就是整数。
学习整数,主要涉及到整数的概念、整数的表示法、整数的比较、绝对值等方面的内容。
1. 整数的概念整数指的是正整数、负整数和零。
其中,正整数和负整数是相反的数。
2. 整数的表示法正整数用正号表示,负整数用负号表示,零用0表示。
3. 整数的比较当两个整数进行比较时,可以通过它们的大小关系来判断。
如果两数大小相等,则它们相等;如果两数大小不等,则它们中较大的数对应的正整数一定比较大;如果它们都是负数,那么它们中绝对值较小的那个负数一定较大。
4. 绝对值绝对值是一个数离0的距离,即一个数与0之间的距离。
对于一个正数,它的绝对值就是它本身;对于一个负数,它的绝对值就是它的相反数。
二、分数分数是另一个重要的数学概念,在学习整数后,接下来将学习分数的知识。
学习分数,主要包括分数的概念、分数的化简、分数的加减乘除等方面的内容。
1. 分数的概念分数指的是一个整数的部分和一个真分数。
其中,真分数指的是分子小于分母的分数。
2. 分数的化简化简一个分数就是将分子和分母同时除以它们的最大公约数,然后将结果约简为最简分数。
3. 分数的加减乘除分数的加减乘除也是学习分数的重要内容。
分数的加减可以先将两数化为通分,然后分别加上或减去分子的和或者差即可;分数的乘法则是将两个分数的分子和分母一一对应相乘,然后将结果约简;分数的除法可以转化为乘法,先将除数取倒数,然后进行乘法运算。
三、小数小数是以小数点为分隔符的十进制数。
学习小数,主要包括小数的概念、小数的读法、小数的进位和退位等方面的内容。
1. 小数的概念小数指的是分数的分母为10的整数次幂的分数。
例如,0.1是10的负一次幂,0.25是25的负二次幂。
人教版七年级数学上册各章知识点总结

人教版七年级数学上册各章知识点总结第一章:有理数1. 有理数和整数的关系- 自然数是有理数,因为每个自然数都可以表示为分子为自然数、分母为1的有理数。
- 整数是有理数,因为每个整数都可以表示为分母为1的有理数。
- 分数是有理数,因为每个真分数都可以表示为分母不为0的有理数。
2. 有理数的加减法- 同号两数相加,取相同的符号,并将绝对值相加。
- 异号两数相加,取绝对值较大的符号,并将绝对值较大的数减去较小的数的绝对值。
3. 有理数的乘除法- 同号两数相乘,积为正数。
- 异号两数相乘,积为负数。
- 有理数相除,分子乘以倒数。
第二章:代数初步1. 代数式的基本概念- 代数式由变量、常数和运算符号组成。
- 代数式可以通过代入变量的具体数值来求得结果。
2. 代数式的计算- 同类项相加或相减,保持字母不变,系数相加或相减。
- 不同类项之间无法进行运算。
3. 代数式的应用- 通过列式子,可以将一个具体问题转化为代数式,从而解决问题。
第三章:小数1. 小数的定义和读法- 小数是有理数的一种表示形式,可以用分数的形式表示。
- 小数读法遵循读整数部分,读小数点,读小数部分的规则。
2. 小数的加减法- 小数相加减时,要保持小数点的位置对齐,然后按照整数加减法的规则进行运算。
3. 小数与分数的相互转化- 将小数转为分数,小数点后的位数作为分母,去掉小数点后的位数作为分子。
- 将分数转为小数,分子除以分母。
第四章:倍数和约数1. 倍数的概念- 如果一个数能被另一个数整除,则这个数是另一个数的倍数。
2. 倍数和公倍数- 两个数的公倍数是能同时整除这两个数的数。
- 两个数的最小公倍数是能整除这两个数的最小正整数。
3. 约数的概念- 如果一个数能整除另一个数,则这个数是另一个数的约数。
4. 因数和公因数- 两个数的公因数是能够同时整除这两个数的数。
- 两个数的最大公因数是能够整除这两个数的最大正整数。
第五章:比例1. 比例的基本概念- 比例是两个数之间的比较关系,可以用两个等比例的分数表示。
七年级上册数学各章知识点

七年级上册数学各章知识点第一章:有理数的概念有理数是指可以写成两个整数比的数,包括正数、负数和零。
有理数中整数为其中的一种特殊情况。
第二章:有理数的大小关系有理数大小的比较可以通过绝对值的比较来进行,还可以比较其大小关系的逆否命题。
第三章:有理数的加减法有理数的加减法需要注意符号的应用和绝对值的计算。
同时,根据可交换律和结合律可以注意到运算次序的灵活运用。
第四章:数字的认识和应用数字的认识包括数字的名称和数字的含义。
数字的应用涉及到数字的运用和数字的转换。
第五章:图形的认识图形的认识包括直线、线段和射线。
此外,还需要掌握平面图形的组成和性质。
第六章:勾股定理勾股定理是指在直角三角形中,直角边的平方和等于斜边的平方。
通过勾股定理可以推导出三角形的周长和面积。
第七章:比例的概念和性质比例是指两个量之间的关系,可以按照比例关系进行运算。
比例的性质包括可逆性、同比例性和反比例性。
第八章:图形的变换图形的变换包括平移、旋转、对称等,需要掌握各种变换的特点及其在图形变换中的应用。
第九章:分式的概念和性质分式是指带分数和真分数的统称,分式具有可约分、可转化为小数和分数大小比较等特点。
第十章:解方程解方程需要掌握方程的定义、方程的性质以及各种方程的求解方法,如一元一次方程、一元二次方程等。
总结:七年级上册的数学学习内容涉及到有理数、数字认识、图形的认识和变换、比例、分式和解方程等方面。
在学习时应注重掌握每个知识点的概念和性质,加强自己的计算能力和逻辑推理能力,同时注重拓展思路,开展创新思维。
七年级上数学每章知识点

七年级上数学每章知识点第一章有理数
有理数的概念
有理数的表示方法
有理数的大小比较
有理数的加减运算
有理数的乘除运算
有理数的应用
第二章整式与因式分解
整式的概念
整式的基本运算
整式的因式分解
公式与分式
整式的应用
第三章方程与不等式
方程的概念
一元一次方程
解一元一次方程的应用
不等式的概念
一元一次不等式
解一元一次不等式的应用
第四章分数
分数的概念
分数的基本性质
分数的基本运算
分数的化简与换算
分数的应用
第五章比例与比例的应用比例的概念
比例的表示方法
比例的性质与基本计算
分项与比例
应用题目
第六章相似与相似三角形
相似的概念与判定
相似三角形的性质
重心、中点、垂心、外心的性质相似三角形的应用
第七章平面直角坐标系
平面直角坐标系的建立
平面直角坐标系中点、距离公式点、线段、中点的坐标表示
图形的坐标表示
平面直角坐标系的应用
第八章线性方程组的解法
方程组的概念
二元一次方程组
三元一次方程组
解线性方程组的方法
线性方程组的应用
第九章一次函数
函数的概念
一次函数的定义与性质
一次函数的图象及相关概念
一次函数的应用
以上为七年级上数学的每章知识点内容,每章内容较多,需要
认真理解掌握。
为了更好的学习效果,建议结合教材里的示例和
习题进行练习。
掌握每章的知识点,对于学习数学后续的知识和
应用都将起到很好的帮助作用。
祝愿每位同学在学习中有所收获!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级上数学五六章知识点在七年级上数学中,五六章是一个非常重要的学习阶段。
本篇文章将为读者详细介绍这两章的知识点。
第五章:数与代数
1.正数、负数和零
在这一章中,同学们需要了解正数、负数和零这三个概念。
在日常生活中,我们经常会遇到这些数字。
比如,气温超过0度为正数,低于0度为负数,等于0度为零。
同时,在数学中,这三个数字也有着非常重要的地位。
2.代数式
代数式主要是指包含数字、字母、运算符等成分的表达式。
在学习代数式时,同学们需要了解如何对其进行加、减、乘和除等运算。
同时,在计算代数式时,同学们还需要学习化简和因式分解等方法。
3.方程
方程是指包含未知数的等式。
在学习方程时,同学们需要了解
如何求解未知数的具体方法,比如利用加减消元、代入法等等。
第六章:图形的认识
1.图形的种类
这一章主要介绍了一些基础的图形,包括三角形、四边形、圆
形等。
同时,同学们还需要了解如何对这些图形进行分类和比较。
2.几何变换
几何变换是指对图形进行平移、旋转、翻折等变换。
在学习几
何变换时,同学们需要了解如何将图形变换到指定位置,并且可
以通过一些特殊方法来快速计算出变换后的图形。
3.坐标系
坐标系是指在二维平面上建立的一个直角坐标系。
在学习坐标
系时,同学们需要了解如何利用坐标来确定图形在平面上的位置,并且可以通过一些特殊的坐标表示方法来简化计算过程。
总结:
以上就是七年级数学五六章的知识点了。
同学们在学习这些知
识时,需要认真听讲,积极完成课堂作业,并且多做练习题。
只
有这样才能够掌握这些知识点,更好地应对数学考试。