c语言奇数魔方阵

合集下载

《C语言程序》课程设计报告书-魔方阵程序设计

《C语言程序》课程设计报告书-魔方阵程序设计

吉林工程技术师范学院《C语言程序》课程设计报告书设计题目:魔方阵程序设计专业:计算机科学与技术班级:1054学生姓名:学号:21指导教师:xx2011年1月信息工程学院摘要我的实验题目是对C语言程序设计——魔方阵的编写,主要的功能是实现每一行,每一列以及对角线的相加结果相同,而且每一个数字均不相等。

本次实验能够充分的考核我们对C语言的学习程度以及动手操作能力,对我们提高C语言的能力有极大的帮助,所以这次实验也是十分有必要的。

我的设计内容就是利用循环语句,以及判断条件等函数的合理使用,通过不断的运行,调试,输出,对本程序进行合理的解决,对魔方阵进一步的了解掌握。

关键字:C语言魔方阵程序设计目录摘要................................................. 第1章概述 (1)第2章系统分析 (2)2.1 技术分析 (2)2.2 功能分析 (2)第3章总体设计与详细设计 (3)3.1 系统总体设计 (3)3.2 详细设计 (4)第4章编码实现 (6)4.1 数据输入部分代码设计 (6)4.2 运算部分代码设计 (6)4.3 输出部分代码设计 (7)第5章系统调试 (9)5.1 程序运行结果 (9)5.2 调试过程中的问题与对策 (10)第6章设计总结 (10)参考资料 (12)致谢 (12)附录:1 源代码 (13)2 附图 (14)第1章概述本次实验报告十分有意义,对巩固C语言的学习有很大的帮助。

作用:我的实验课题是魔方阵(魔方阵是一个奇数行列式方阵),主要是实现一行,一列,对角线的和都相等。

意义、帮助:1、能够熟练掌握if、if…else、if…else if语句格式及使用方法,掌握if语句中的嵌套关系和匹配原则,利用if语句实现分支选择结构。

2、能够熟练掌握while语句和for语句格式及使用方法,掌握循环控制语句的循环过程以及循环结构的嵌套,利用循环语句实现循环结构。

魔方阵C语言设计方法及设计理念

魔方阵C语言设计方法及设计理念

與奇數魔術方陣相同,在於求各行、各列與各對角線的和相等,而這次方陣的維度是4的倍數。

先來看看4X4方陣的解法:簡單的說,就是一個從左上由1依序開始填,但遇對角線不填,另一個由左上由16開始填,但只填在對角線,再將兩個合起來就是解答了;如果N大於2,則以4X4為單位畫對角線:至於對角線的位置該如何判斷,有兩個公式,有興趣的可以畫圖印證看看,如下所示:if(i%4==j%4||(i%4+j%4==3)//zaiduijiaoxianshangC方陣的維度整體來看是偶數,但是其實是一個奇數乘以一個偶數,例如6X6,其中6=2X3,我們也稱這種方陣與單偶數方陣。

如果您會解奇數魔術方陣,要解這種方陣也就不難理解,首先我們令n=2(2m+1),並將整個方陣看作是數個奇數方陣的組合,如下所示:首先依序將A、B、C、D四個位置,依奇數方陣的規則填入數字,填完之後,方陣中各行的和就相同了,但列與對角線則否,此時必須在A-D與C- B之間,作一些對應的調換,規則如下:1.將A中每一列(中間列除外)的頭m個元素,與D中對應位置的元素調換。

2.將A的中央列、中央那一格向左取m格,並與D中對應位置對調3.將C中每一列的倒數m-1個元素,與B中對應的元素對調舉個實例來說,如何填6X6方陣,我們首先將之分解為奇數方陣,並填入數字,如下所示:接下來進行互換的動作,互換的元素以不同顏色標示,如下:由於m-1的數為0,所以在這個例子中,C-B部份並不用進行對調。

C將1到n(為奇數)的數字排列在nxn的方陣上,且各行、各列與各對角線的和必須相同,如下所示:填魔術方陣的方法以奇數最為簡單,第一個數字放在第一行第一列的正中央,然後向右(左)上填,如果右(左)上已有數字,則向下填,如下圖所示:一般程式語言的陣列索引多由0開始,為了計算方便,我們利用索引1到n的部份,而在計算是向右(左)上或向下時,我們可以將索引值除以n值,如果得到餘數為1就向下,否則就往右(左)上,原理很簡單,看看是不是已經在同一列上繞一圈就對了。

魔方阵

魔方阵

C语言程序求魔方阵如下:(求奇数幻方)代码一:#include <stdio.h>#define N 16 //这里可以修改N的值int main(){int a[N][N]={0},i,j,k,p,m,n;p=1;while(p==1){printf("Enter n(1~%d): ",N-1);/*可以输入小于等于N-1的整数*/ scanf("%d",&n);if((n!=0)&&(n<N)&&(n%2!=0)) p=0;}i=n+1;j=n/2+1; /*建立魔方阵*/a[1][j]=1;for(k=2;k<=n*n;k++){i=i-1;j=j+1;if((i<1)&&(j>n)){i=i+2;j=j-1;}else{if(i<1) i=n;if(j>n) j=1;}if(a[i][j]==0) a[i][j]=k;else{i=i+2;j=j-1;a[i][j]=k;}}for(i=1;i<=n;i++)/*输出魔方阵*/{for(j=1;j<=n;j++)printf("%4d",a[i][j]);}printf("\n");}代码二:(相对于代码一条理更清晰,更简单、更容易理解)将1~n的平方这几个数构成一个n阶魔方阵。

算法:依以下法则,你可以很快的写出奇数阶幻方!当然,这种写法只是其中一个答案,而不是唯一答案。

1)将1填入第一行中间;2)将每个数填在前一个数的右上方。

3)若该位置超出最上行,则改填在最下行的对应位置;4)若该位置超出最右列,则该填在最左列的对应行位置;5)若某元素填在第一行最右列,下一个数填在该数同列的下一行;6)若某数已填好,但其右上角已填了其他数据,则下一个数填在该数同列的下一行位置。

c语言魔方阵课程设计

c语言魔方阵课程设计

c语言魔方阵课程设计一、课程目标知识目标:1. 理解魔方阵的概念,掌握其基本性质和特点;2. 学会使用C语言实现魔方阵的生成、显示和验证;3. 掌握魔方阵相关算法,如:奇数阶魔方阵的生成方法、行列、对角线求和等;4. 了解魔方阵在实际应用中的价值,如:数学游戏、密码学等。

技能目标:1. 能够运用C语言编写程序,生成指定阶数的魔方阵;2. 能够分析魔方阵算法的时间复杂度和空间复杂度;3. 能够运用所学知识解决魔方阵相关实际问题,提高编程能力;4. 能够通过魔方阵编程实践,培养解决问题的策略和逻辑思维能力。

情感态度价值观目标:1. 培养学生对C语言编程的兴趣,激发学习热情;2. 培养学生合作探究、积极参与的精神,增强团队协作能力;3. 培养学生勇于克服困难、面对挑战的信心,提高自主学习能力;4. 引导学生认识到编程在生活中的应用价值,激发学生创新意识和实践能力。

课程性质:本课程为C语言编程实践课程,旨在让学生通过魔方阵编程实践,巩固C语言知识,提高编程能力。

学生特点:学生具备一定的C语言基础,对编程有兴趣,但可能缺乏实际编程经验。

教学要求:注重理论与实践相结合,强调动手实践,培养学生编程思维和解决问题的能力。

通过本课程的学习,使学生能够将所学知识运用到实际编程中,提高编程水平。

二、教学内容1. 魔方阵基本概念与性质- 魔方阵的定义与特点- 魔方阵的数学性质:行列、对角线求和等2. C语言编程基础回顾- 数据类型与变量- 控制结构:顺序、选择、循环- 数组的使用3. 魔方阵生成算法- 奇数阶魔方阵生成方法- 魔方阵生成程序的编写与调试4. 魔方阵显示与验证- 魔方阵的格式化输出- 验证魔方阵的正确性:行列、对角线求和检验5. 魔方阵编程实践- 编写生成指定阶数魔方阵的程序- 分析算法的时间复杂度和空间复杂度- 解决魔方阵相关实际问题6. 教学案例分析与讨论- 分析实际编程案例,总结编程技巧- 讨论编程中遇到的问题及解决方法7. 创新思维与实践- 探讨魔方阵在其他领域的应用- 鼓励学生进行创新编程实践,提高编程能力教学内容安排与进度:1. 基本概念与性质(1课时)2. C语言编程基础回顾(1课时)3. 魔方阵生成算法(2课时)4. 魔方阵显示与验证(1课时)5. 魔方阵编程实践(2课时)6. 教学案例分析与讨论(1课时)7. 创新思维与实践(1课时)教材章节关联:本教学内容与教材中关于数组、循环控制结构、函数等章节相关,通过魔方阵编程实践,使学生将所学理论知识应用于实际问题中,提高编程能力。

奇数阶魔方阵算法分析

奇数阶魔方阵算法分析

奇数阶魔方阵一、提出问题所谓“奇数阶魔方阵”是指n 为不小于3的奇数的魔方阵。

这类魔方阵的形式多样,这里我们仅讨论其中的一种形式的正规魔方阵。

例如:3阶、5阶和7阶的魔方阵如图3 – 4 所示。

294753618 ,92251811321191210222013641614752315812417 ,20112494031221234341322321444423324151345363425161453735261786462927189747382819101183930 图3 – 4 3阶5阶和7阶魔方阵容易知道,这三个魔方阵的魔方常数分别是15、65和175。

现在要求给出:能让计算机自动输出类似图3 – 4 所示的n 阶奇数魔方阵的算法,其中n 为任意给定的一个不小于3的奇数。

二、简单分析决定“奇数阶魔方阵”的关键是要按要求决定其方阵中的各个数字。

观察图3 – 4中的三个奇数阶魔方阵,不难发现:1.由于是正规魔方,故所填入的n 2个不同整数依次为1、2、3、…、n 2 ;2.各行、列和对角线上的数字虽各不相同,但其和却是相同的。

这表明,其魔方常数可由公式n ( n 2 + 1 ) / 2得到。

3.数字在阵列中的次序,并没有遵从阵列单元的行、列下标的顺序,但数字“1”却始终出现在阵列第一行的正中间位置,而数字“n 2”也始终出现在阵列第n 行的正中间位置,这说明阵列中的数字排列应该是有一定规律的。

通过对两个奇数阶魔方阵的简单分析,下面几个基本问题必须得到解决:◆ 奇数阶魔方阵中的数字有些什么规律?◆ 数字“1”的位置应如何确定?三、设计准备1.奇数阶魔方阵中的数字规律通过对奇数阶魔方阵的分析,其中的数字排列有如下的规律:(1)自然数1出现在第一行的正中间;(2)若填入的数字在第一行(不在第n 列),则下一个数字在第n 行(最后一行)且列数加1(列数右移一列);(3)若填入的数字在该行的最右侧,则下一个数字就填在上一行的最左侧;(4)一般地,下一个数字在前一个数字的右上方(行数少1,列数加1);(5)若应填的地方已经有数字或在方阵之外,则下一个数字就填在前一个数字的下方。

C语言实现魔方阵

C语言实现魔方阵

(1)魔方阵 ①问题描述魔方阵是一个古老的智力问题,它要求在一个m ×m 的矩阵中填入1~m 2的数字(m 为奇数),使得每一行、每一列、每条对角线的累加和都相等,如图1所示。

②基本要求● 输入魔方阵的行数m ,要求m 为奇数,程序对所输入的m 作简单的判断,如m 有错,能给出适当的提示信息。

● 实现魔方阵。

● 输出魔方阵。

③实现提示本实验使用的数据结构是数组。

解魔方阵问题的方法很多,这里采用如下规则生成魔方阵。

● 由1开始填数,将1放在第0行的中间位置。

● 将魔方阵想象成上下、左右相接,每次往左上角走一步,会有下列情况:✧ 左上角超出上方边界,则在最下边相对应的位置填入下一个数字; ✧ 左上角超出左边边界,则在最右边相应的位置填入下一个数字; ✧ 如果按上述方法找到的位置已填入数据,则在同一列下一行填入下一个数字。

以3×3魔方阵为例,说明其填数过程,如图2所示。

图2 三阶魔方阵的生成过程由三阶魔方阵的生成过程可知,某一位置(x,y)的左上角的位置是(x-1,y-1),如果x-1≥0,不用调整,否则将其调整为x-1+m ;同理,如果y-1≥0,不用调整,否则将其调整为y-1+m 。

所以,位置(x,y)的左上角的位置可以用求模的方法获得,即:x=(x-1+m)%my=(y-1+m)%m如果所求的位置已经有数据了,将该数据填入同一列下一行的位置。

这里需要注意的是。

此时的x和y已经变成之前的上一行上一列了,如果想变回之前位置的下一行同一列,x需要跨越两行,y需要跨越一列,即:x=(x+2)%my=(y+1)%m源代码:#include<stdio.h>void mofangzhen(int m){int a[100][100];int b,x,y;for(x=0;x<m;x++){for(y=0;y<m;y++)a[x][y]=0;}x=0;y=(m-1)/2;a[x][y]=1;for(b=2;b<=m*m;b++){if(x-1<0) x=(x-1+m)%m;else x=x-1;if(y-1<0) y=(y-1+m)%m;else y=y-1;if(a[x][y]!=0){x=(x+2)%m;y=(y+1)%m;}a[x][y]=b;}for(x=0;x<m;x++){for(y=0;y<m;y++)printf("%4d",a[x][y]);printf("\n");}}void main(){int m;m=0;while(m%2!=1){printf("请输入矩阵阶数m(奇数):");scanf("%d",&m);if(m%2!=1)printf("m输入错误\n");}mofangzhen(m);}。

c语言经典案例

c语言经典案例

1、用筛选法求100之内的素数。

#include <stdio.h>void main(){int num[100],i,j;for (i=0;i<100;i++) num[i]=1;for (i=2;i<=10;i++)for (j=2;i*j<=100;j++) num[i*j-1]=0;printf("0至100内素数有:\n");for (i=j=0;i<100;i++)if (num[i]==1) {printf("%-4d",i+1);if (++j%4==0) printf("\n");}}2、用选择法对10个整数排序。

#include <stdio.h>void main(){int num[10],n,i,j,t,k;printf("请输入十个整数:");for (n=0;n<10;n++) scanf("%d",&num[n]);for (i=0;i<9;i++){k=i;for (j=i+1;j<10;j++)if (num[k]<num[j]) k=j;if (k!=i) {t=num[i];num[i]=num[k];num[k]=t;}}printf("从大到小排序为:");for (n=0;n<10;n++) printf("%d ",num[n]);}3、求一个3*3的整型二维数组对角线元素之和。

#include <stdio.h>void main(){int num[3][3],i,j;printf("输入二维数组:\n");for (i=0;i<3;i++)for (j=0;j<3;j++)scanf("%d",&num[i][j]);printf("两对角线和分别为%d 和%d\n",num[0][0]+num[1][1]+num[2][2],num[0][2]+num[1][1]+num[2][0]);}5、将一个数组中的值按逆序重新存放。

C语言奇偶排序算法详解及实例代码

C语言奇偶排序算法详解及实例代码

C语言奇偶排序算法详解及实例代码奇偶排序(Odd-Even Sort)算法是一种简单的排序算法,它可以同时对数组中的奇数和偶数进行排序。

这个算法的原理比较简单,它的思想类似冒泡排序,只不过比较的对象从相邻的两个数变为了相隔一个位置的两个数。

奇偶排序算法的步骤如下:1.将数组分为两个部分,分别存放奇数和偶数。

2.在奇数部分中进行一轮冒泡排序,将较大的数往右移。

3.在偶数部分中进行一轮冒泡排序,将较小的数往左移。

4.重复执行步骤2和步骤3,直到数组完全有序。

下面我们来详细解析奇偶排序算法,并给出一个实例代码。

1. 定义一个函数 `void oddEvenSort(int arr[], int n)`,用于实现奇偶排序。

2. 在函数内部创建两个变量 `sorted` 和 `exchange`,分别表示数组是否已经完全有序和两个相邻元素是否发生交换。

3. 使用一个循环,首先将 `sorted` 和 `exchange` 初始化为`false`。

4. 使用两个嵌套循环,外层循环控制数组两个部分的排序,内层循环控制每个部分的冒泡排序。

5. 内层循环的初始条件为 `j = i % 2`,其中 `i` 表示当前循环的次数。

当 `i` 为偶数时,`j` 为 0,表示要对偶数部分排序;当`i` 为奇数时,`j` 为 1,表示要对奇数部分排序。

6. 内层循环用于对数组中的一部分进行冒泡排序,如果发生交换,则将 `exchange` 设置为 `true`。

冒泡排序的过程和一般的冒泡排序算法类似。

7. 当内层循环结束后,判断 `exchange` 是否为 `false`,如果是,则说明数组已经完全有序,将 `sorted` 设置为 `true`,并退出外层循环。

8. 最后,在函数末尾添加一个循环,用于输出排序后的数组。

下面是完整的实例代码:```c#include <stdio.h>void swap(int *a, int *b){int temp = *a;*a = *b;*b = temp;}void oddEvenSort(int arr[], int n)int sorted = 0; // 数组是否已经完全有序int exchange = 0; // 两个相邻元素是否发生交换 while (!sorted){sorted = 1;for (int i = 0; i < n - 1; i++){exchange = 0;int j = i % 2;for (; j < n - 1; j += 2){if (arr[j] > arr[j + 1]){swap(&arr[j], &arr[j + 1]);exchange = 1;sorted = 0;}}if (!exchange){break;}}}}int main(){int arr[] = {9, 2, 7, 4, 5, 6, 3, 8, 1};int n = sizeof(arr) / sizeof(arr[0]);oddEvenSort(arr, n);for (int i = 0; i < n; i++){printf("%d ", arr[i]);}return 0;}```以上是奇偶排序算法的详细解析及一个示例代码。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

魔方阵,古代又称“纵横图”,是指组成元素为自然数1、2…n的平方的n×n 的方阵,其中每个元素值都不相等,且每行、每列以及主、副对角线上各n个元素之和都相等。

如3×3的魔方阵:
8 1 6 =15
3 5 7 =15
4 9 2 =15
|| || ||
15 15 15 15(对角线)
魔方阵的排列规律(奇数阵):
1.将1放在第一行中间一列。

2.从2开始直到n×n止各数依次按下列规则存放:每一个数存放的行比前一个数的行数减1,列数加1。

3.如果上一个数的行数为1,则下一个数的行数为n,列数加1。

如果上一个数的列数的n时,下一个数的列数为1,行数减1。

4.如果按上面的规则确定的位置上已有数,或上一个数是第一行第n列时,则把下一个数放在上一个数的下面。

#include <stdio.h>
main()
{ int a[16][16],i,j,k,p,n;
p=1;
while(p==1) /*要求阶数为1~15的奇数*/ { printf("Enter n(n=1~15):");
scanf("%d",&n);
if((n!=0)&&(n<=15)&&(n%2!=0)) p=0;
}
for(i=1;i<=n;i++) /*初始化*/
for(j=1;j<=n;j++) a[i][j]=0;
j=n/2+1; /*建立魔方阵*/
a[1][j]=1;
i=1;
for(k=2;k<=n*n;k++)
{ i=i-1;
j=j+1;
if((i<1)&&(j>n)) /*上一个数是第一行第n列时,则把下一个数放在上一个数的下面*/
{ i=i+2;
j=j-1;
}
else
{ if(i<1) i=n; /*上一个数的行数为1,则下一个数的行数为n,上一个数的列数的n时,下一个数的列数为1*/
if(j>n) j=1;
}
if(a[i][j]==0) a[i][j]=k;
else
{ i=i+2; /*如果按上面的规则确定的位置上已有数,则把下一个数放在上一个数的下面*/
j=j-1;
a[i][j]=k;
}
}
for(i=1;i<=n;i++) /*输出魔方阵*/
{ for(j=1;j<=n;j++)
printf("%4d",a[i][j]);
printf("\n");
}
}
n=5:。

相关文档
最新文档