第七节单侧置信区间
置信区间(详细定义及计算)

21
为了估计一批钢索所能承受的平均张力(单位 kg/cm2), 随机选取了9个样本作试验, 由试验所得数据得
x 6720 s 2 28 2 设钢索所能承受的张力X, X ~ N ( , 2 ) 分别估计这批钢索所能承受的平均张力 的范围与所能承受的平均张力。 0.05
解 本题是在σ2未知的条件下求正态总体参数μ的 S t 2 ( n 1)] 置信区间。 由公式知μ的置信区间为 [ X n 查表 t 0.05 (8) t 0.025 (8) 2.306 x 6720 s 2 28 2
S S S t 2 ( n 1)] [X t 2 ( n 1), X t 2 ( n 1)] [ X n n n 19
则μ的置信度为1- α的置信区间为
为了调查某地旅游者的消费额为X, 随机访问了 40名旅游者。 得平均消费额为 x 105 元,样本方差 s 2 28 2 设 X ~ N ( , 2 )求该地旅游者的平均消费额 μ的置信区间。 0.05 解 本题是在σ2未知的条件下求正态总体参数μ的 置信区间。选取统计量为
4 4
2
z0.01} 0.95
14
第一个区间为优
(单峰对称的)。 可见,像 N(0,1)分布那样概率密度
z 2 ] 的图形是单峰且对称的情况。 当n固定时以[ X n
的区间长度为最短,我们一般选择它。
若以L为区间长度,则
2 L z 2 n
可见L随 n 的增大而减少(α 给定时),
可靠度与精度是一对矛盾, 一般是在保证可靠度的 16 条件下尽可能提高精度.
已知某种油漆的干燥时间X(单位:小时) 服从正态分布 X ~ N ( ,1), 其中μ未知,现在抽取 25个样品做试验, 得数据后计算得 1 n x xk 6 25 k 1 取 0.05 (1 0.95), 求μ的置信区间。 解
置信区间的计算与解读

置信区间的计算与解读置信区间是统计学中常用的一种方法,用于估计总体参数的范围。
在实际应用中,我们往往无法获得总体的全部数据,而只能通过抽样得到一部分样本数据。
通过计算置信区间,我们可以利用样本数据对总体参数进行估计,并给出一个范围,以表明我们对估计结果的不确定性程度。
一、置信区间的计算方法置信区间的计算方法主要有两种:参数估计法和非参数估计法。
1. 参数估计法参数估计法是基于总体参数的已知分布进行计算的。
常见的参数估计法有正态分布的置信区间和二项分布的置信区间。
正态分布的置信区间计算方法如下:假设总体服从正态分布N(μ, σ^2),样本容量为n,样本均值为x̄,样本标准差为s。
置信水平为1-α,α为显著性水平。
置信区间的计算公式为:x̄± Z(1-α/2) * (σ/√n)其中,Z(1-α/2)为标准正态分布的上分位数,可以在标准正态分布表中查找。
二项分布的置信区间计算方法如下:假设总体服从二项分布B(n, p),样本容量为n,样本成功次数为x,置信水平为1-α,α为显著性水平。
置信区间的计算公式为:p̄± Z(1-α/2) * √(p̄(1-p̄)/n)其中,p̄为样本成功率,可以通过样本成功次数除以样本容量得到。
2. 非参数估计法非参数估计法是基于样本数据的分布进行计算的。
常见的非参数估计法有中位数的置信区间和百分位数的置信区间。
中位数的置信区间计算方法如下:假设样本容量为n,样本数据按升序排列,第k个观测值为中位数,置信水平为1-α,α为显著性水平。
置信区间的计算公式为:[x(k-1)/2, x(n-k+1)/2]其中,x(k-1)/2为第k-1个观测值,x(n-k+1)/2为第n-k+1个观测值。
百分位数的置信区间计算方法类似,只需将中位数的位置换成相应的百分位数的位置。
二、置信区间的解读置信区间给出了对总体参数的估计范围,通常以置信水平来表示。
置信水平越高,估计结果的可信度越高,但估计范围也会相应增大。
置信区间(详细定义及计算)

5 1
4
s2 5
28.5 5.339
n 1 4 0.01
S
查表 t0.01 (4) t0.005(4) 4.6041
[ X n t 2 (n 1)]
则所求μ的2 置信区间为 [1259 24.58 , 1259 24.58] 21
为了估计一批钢索所能承受的平均张力(单位
kg/cm2), 随机选取了9个样本作试验,由试验所得数据得
只依赖于样本的界限(构造统计量) (ˆ1 ˆ2 )
ˆ1 ˆ1( X1, X 2 , X n ) ˆ2 ˆ2 ( X1, X 2 , X n )
一旦有了样本,就把 估计在区间 [ˆ1,内ˆ2 .]
这里有两个要求:
1. 要求 很大的可能被包含在区间 [ˆ内1,,ˆ2 ]
就是说,概率 P{ˆ1 ˆ2} 要尽可能大.
求温度真值的置信度为 0.99 的置信区间。
解 设μ为温度的真值, X表示测量值,通常是一个
正态随机变量 EX .
问题是在未知方差的条件下求μ的置信区间。 由公式
x 1250 1 [0 15 510 25] 1259
s2
1
5 [(1250
1259)2
(1275
1259)2 ]
570
程度为0.95. 或“该区间包含μ”这一事实的可信程度 为0.95.
注: μ的置信水平1-α的置信区间不唯一。
11
μ的置信区间是总体 X ~ N (, 2)的前提下提出的。
分布,都近似有
当 n 充分大时,无论X服从什么
Z X EX ~ N (0,1) DX n
[X
n
z 2 ,
X
n
z 2 ]
均可看作EX的置信区间。
第七节单侧置信区间

X X P( t (n 1)) 1 (即 ~ t (n 1)) s S n n
概率统计
S P( X t ( n 1)) 1 n 于是得到 的一个置信水平为 1 的单侧置信
即: 区间ຫໍສະໝຸດ S (X t ( n 1), ) n
得:该区域职工家庭人均月收入的 最低下限为219.3 (元).
概率统计
为为置信度
概率统计
二. 单侧置信区间的求法 思路: 同双侧量区间的求法 不同处: 在求单侧置信区间时不是查双侧 点,而是查单侧 分位点。
分位
例7. 设有某部门对所属区域的职工家庭人均月收入 进行调查,现抽取 20 个家庭,所得的月平均 2 收入 X 234.7 (元), s 1590.85
即:
X
s
n
t ( n 1)
X 234.7
t (n 1) t0.05 (20 1) t0.05 (19) 1.7291
概率统计
所求的 的单侧置信下限为:
s
1590.85 8.92 20 n
234.7 8.92 1.7291 234.7 15.43 219.3(元)
第 7节
问题的引出
单侧置信区间
前面介绍的置信区间中置信限都是双侧的,但在 有些实际问题,人们所关心的只是参数在一个方 向的界限。 例如, 对于设备、元件的使用寿命来说,平均寿命过 长没什么问题,过短就有问题了.
这时,可将置信上限取为 +∞,而只着眼于置信下限, 这样求得的置信区间称为 单侧置信区间.
试以 95% 的置信度估计该区域职工家庭人均月收 入的最低下限为多少?(单侧置信下限)
置信区间(详细定义及计算)

可见,对参数 作区间估计,就是要设法找出两个 只依赖于样本的界限(构造统计量) (ˆ1 ˆ2 )
[ˆ1 ,ˆ2 ] 内.
1. 要求 很大的可能被包含在区间 [ˆ1 , ˆ2 ] 内,
就是说,概率 P {ˆ1 ˆ2 } 要尽可能大. 即要求估计尽量可靠.
ˆ ˆ 2. 估计的精度要尽可能的高.如要求区间长度 2 1 尽可能短,或能体现该要求的其它准则.
查正态分布表得临界值 Z 1.96,由此得置信区间:
18
当总体X的方差未知时, 容易想到用样本方差Ѕ 2代替σ2。 X T ~ t (n 1) 已知 2 S n X t (n 1)} 1 则对给定的α,令 P{ S 2 2 n 查t 分布表,可得 t (n 1) 的值。 2 S S P{ X t 2 ( n 1) X t 2 ( n 1)} 1 n n
有时我们嫌置信度0.95偏低或偏高, 也可采用0.99或
0.9. 对于 1- α不同的值, 可以得到不同的置信区间。
15
ˆ1 ˆ1 ( X 1 , X 2 , X n ) ˆ2 ˆ2 ( X 1 , X 2 , X n )
一旦有了样本,就把 估计在区间 这里有两个要求:
[96.05 , 113.95]
用某仪器间接测量温度,重复测量5次得 1250 0 12650 1245 0 1260 0 12750 求温度真值的置信度为 0.99 的置信区间。
解
设μ为温度的真值,X表示测量值,通常是一个 正态随机变量 EX .
问题是在未知方差的条件下求μ的置信区间。 由公式 1 x 1250 [0 15 5 10 25] 1259 5 1 570 2 2 2 s [(1250 1259) (1275 1259) ] 5 1 4 2 s n 1 4 0.01 28.5 5.339 5 S [X t 2 ( n 1)] t ( 4 ) t ( 4 ) 4 . 6041 查表 0.01 0.005 n 则所求μ的置信区间为 [1259 24 .58 , 1259 24 .58]
第7节 单侧置信区间

解
µ 是 X 的无偏估计且
X S
−
µ
~
t(n
− 1)
n
⎧
⎫
Q
P
⎪ ⎨ ⎪⎩
X S
−
µ
n
<
tα (n − 1)
⎪ ⎬ ⎪⎭
=1−α
⇒
P⎧⎨µ
⎩
>
X
−
tα
(n−1)
S
n⎫⎬⎭=1−α
⇒µ>X−
S n
tα
(n
−
1)
由题设 x = 41117, s = 1347, 1 − α = 0.95, n = 16
41250 40187 43175 41010 39265 41872 42654 41287 38970 40200 42550 41095 40680 43500 39775 40400
假设这些数据来自正态总体 N (µ,σ 2 ) . 其中µ,σ 2 未知,试求 µ 的置信水平为0.95的置信下限.
2、
σ
2 1
σ
2 2
的单侧置信区间(µ1, µ2 未知)
(n1 − 1)S12
S12
σ
2 1
S22
=
σ
2 1
(n2 − 1)S22
(n1
− 1)
~
F (n1 − 1, n2
− 1)
σ
2 2
σ
2 2
(n2 − 1)
⇒
⎧ ⎪
S12
P
⎪⎨σ
2 1
⎩
S
2 2
σ
2 2
⎫
⎪ ⎬
=
1
−
α
置信区间详解(详细定义及计算)

38
代入样本值算得 估计为
, 得到μ的一个区间
[12.706,13.294].
注:该区间不一定包含μ.
总结此例,做了以下工作: 1)根据优良性准则选取统计量来估计参数;
是μ的优良估计量:无偏、有效、相合.
39
生产的稳定性与精度问题是需要的。 我们利用样本方差对σ2进行估计,由于不知道S2与
σ2差多少? 容易看出把
看成随机变量,又能找到
它的概率分布,则问题可以迎刃而解了。
的概率分布是难以计算的,而
对于给定的
23
则得到σ2随机区间
以 的概率包含未知方差σ2,这就是σ2的置信度为
1-α的置信区间。
24
某自动车床加工零件,抽查16个测得长度(毫米)
例如,通常可取显著水平
等.
即取置信水平
或 0.95,0.9 等.
根据一个实际样本,由给定的置信水平,我们求出
一个尽可能小的区间 ,使
由于正态随机变量广泛存在,特别是很多产品的 指标服从正态分布,我们重点研究一个正态总体情形 数学期望 和方差 的区间估计。
5
设
为总体
的样本,
分别是样本均值和样本方差。 对于任意给定的α,我们的任务是通过样本寻找一 个区间,它以1-α的概率包含总体X的数学期望μ。
6
1、已知σ2时,μ的置信区间 设
则随机变量 令
7
这就是说随机区间
它以1-α的概率包含总体 X的数学期望μ。
由定义可知,此区间即为μ的置信区间。
8
它以1-α的概率包含总体X的数学期望μ。
由定义可知,此区间即为μ的置信区间。
其置信度为 1-α。
置信下限
置信上限
置信区间

1)sn2
mn
mn(m
n
2)
例1.有两台车床A和B同生产一种型号的 零件,为了比较这两台车床所生产的零件 的直径的均值,随机地抽取A车床生产的 零 差件s8A个 0,.3测1(。m得m随平) 机均地直x抽A 取15.B20车(m,m床)标生准产离的零 件 差9个,测得sB。平根0均.2据8直(m以m往) 经验y,B可标以14准.认82离(为mm,) 这两台车床所生产的零件的直径都服从正 态 值分差布,且的它95们%的置方A信差区相B间等。,求二总体均
2
P{| U | z } 1 1 2
即
P
x
/
n
z1 2
1
P
x
z1 2
n
x
z1 2
1
n
区间
[x z12
,
n
x z12
]
n
即为的置信区间。称z1-/2为在置信 度1-下的临界值,或称为标准正态分布
的双侧分位点。
当=0.05时,查标准正态分布表
得临界值
z12 z0.975 1.96
样本均值和样本方差分别记为 和 .
我们的x 任, s务m 2 是求y
,
s
பைடு நூலகம்
2 n
1 2
的置信区间.下面按总体方差的不同情况
分别进行讨论。
1. 方差 和12 都 22已知
由第七章第三节中的结论可知
x
~
N
1,
12
m
,
y
~
N
2
,
2 2
n
x
y
~
N (1
2
,
2 1
m
2 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
即:
=X
s n
tα ( n 1)
∵ X = 234.7
tα ( n 1) = t 0.05 ( 20 1) = t 0.05 (19) = 1.7291
概率统计
的单侧置信下限为: 所求的 的单侧置信下限为
s
1590.85 = = 8.92 20 n
= 234.7 8.92 × 1.7291 = 234.7 15.43 = 219.3(元 )
概率统计
解: 用 表示职工家庭人均月收入 X 表示测到的数 表示职工家庭人均月收入, 值,它是一个正态随机变量. 它是一个正态随机变量. 现要根据所抽取的20 个家庭所得的月平均收入 现要根据所抽取的 的数据, 的数据,在方差未知的条件下求 E ( X ) = 的 单侧置信下限. 单侧置信下限. 由题设可知 为:
概率统计
一. 单侧置信区间定义 定义: 定义 给定 α (0 < α < 1), 若由样本 X 1 , X 2 X n 确定 的 θ = θ ( X 1 , X 2 X n ) (或θ = θ ( X 1 , X 2 , X n )) 满足: 满足 P (θ > θ ) = 1 α (或 P (θ < θ ) = 1 α ) 则称随机区间: ( θ , + ∞ ) (或 ( ∞ , θ ) ) 是 θ 称随机区间 单侧置信区间. 的置信度为1 α 的单侧置信区间.θ 称为置信 单侧置信下限( 度为 1 α 单侧置信下限(或称 置信度为1 α 的单侧置信上信区间的求法 思路: 思路 同双侧量区间的求法 不同处: 在求单侧置信区间时不是查双侧 不同处: 在求单侧置信区间时不是查双侧 分位点. 点,而是查单侧 α 分位点.
α 分位
例7. 设有某部门对所属区域的职工家庭人均月收入 进行调查, 个家庭, 进行调查,现抽取 20 个家庭,所得的月平均 收入 X = 234.7 (元),2 = 1590.85 s 试以 95% 的置信度估计该区域职工家庭人均月收 入的最低下限为多少? 单侧置信下限) 入的最低下限为多少?(单侧置信下限)
第7节 节 问题的引出
单侧置信区间
前面介绍的置信区间中置信限都是双侧的, 前面介绍的置信区间中置信限都是双侧的,但在 有些实际问题, 有些实际问题,人们所关心的只是参数在一个方 向的界限. 向的界限. 例如, 例如, 对于设备,元件的使用寿命来说, 对于设备,元件的使用寿命来说,平均寿命过 长没什么问题,过短就有问题了. 长没什么问题,过短就有问题了 这时, 这时,可将置信上限取为 +∞,而只着眼于置信下限 而只着眼于置信下限, 而只着眼于置信下限 这样求得的置信区间称为 单侧置信区间. 单侧置信区间
得:该区域职工家庭人均月收入的 该区域职工家庭人均月收入的 最低下限为219.3 (元). 最低下限为 元
概率统计
�
的置信度为 1 α 的单侧置信下限
X X P( < tα ( n 1)) = 1 α(即 ~ t ( n 1) ) s S n n
概率统计
区间
S P( > X tα ( n 1)) = 1 α n 于是得到 的一个置信水平为 1 α 的单侧置信
即:
S (X tα ( n 1),+∞ ) n