第7篇参数估计7.7单侧置信区间

合集下载

第七节单侧置信区间

第七节单侧置信区间

即:
=X
s n
tα ( n 1)
∵ X = 234.7
tα ( n 1) = t 0.05 ( 20 1) = t 0.05 (19) = 1.7291
概率统计
的单侧置信下限为: 所求的 的单侧置信下限为
s
1590.85 = = 8.92 20 n
= 234.7 8.92 × 1.7291 = 234.7 15.43 = 219.3(元 )
概率统计
解: 用 表示职工家庭人均月收入 X 表示测到的数 表示职工家庭人均月收入, 值,它是一个正态随机变量. 它是一个正态随机变量. 现要根据所抽取的20 个家庭所得的月平均收入 现要根据所抽取的 的数据, 的数据,在方差未知的条件下求 E ( X ) = 的 单侧置信下限. 单侧置信下限. 由题设可知 为:
概率统计
一. 单侧置信区间定义 定义: 定义 给定 α (0 < α < 1), 若由样本 X 1 , X 2 X n 确定 的 θ = θ ( X 1 , X 2 X n ) (或θ = θ ( X 1 , X 2 , X n )) 满足: 满足 P (θ > θ ) = 1 α (或 P (θ < θ ) = 1 α ) 则称随机区间: ( θ , + ∞ ) (或 ( ∞ , θ ) ) 是 θ 称随机区间 单侧置信区间. 的置信度为1 α 的单侧置信区间.θ 称为置信 单侧置信下限( 度为 1 α 单侧置信下限(或称 置信度为1 α 的单侧置信上信区间的求法 思路: 思路 同双侧量区间的求法 不同处: 在求单侧置信区间时不是查双侧 不同处: 在求单侧置信区间时不是查双侧 分位点. 点,而是查单侧 α 分位点.
α 分位
例7. 设有某部门对所属区域的职工家庭人均月收入 进行调查, 个家庭, 进行调查,现抽取 20 个家庭,所得的月平均 收入 X = 234.7 (元),2 = 1590.85 s 试以 95% 的置信度估计该区域职工家庭人均月收 入的最低下限为多少? 单侧置信下限) 入的最低下限为多少?(单侧置信下限)

参数估计第三讲分布参数的区间估计 单侧置信区间

参数估计第三讲分布参数的区间估计 单侧置信区间

第三讲(0-1)分布参数的区间估计 单侧置信区间Ⅰ.授课题目(章节)§7.6 (0-1)分布参数的区间估计§7.7 单侧置信区间Ⅱ.教学目的与要求1. 了解(0-1)分布参数的区间估计;2. 掌握正态总体均值和方差的单侧置信区间的求法.Ⅲ.教学重点与难点:重点:单侧置信区间的概念的理解难点:正态总体均值和方差的单侧置信区间的求法.Ⅳ.讲授内容:§7.6 (0-1)分布参数的区间估计设有一容量50>n 的大样本,它来自(0-1)分布的总体X ,X 的分布律为x x p p p x f --=1)1();(, 1,0=x ,其中p 为未知参数。

现在来求p 的置信水平为1—α的置信区间.已知(0-1)分布的均值和方差分别为: 2,σμp ==p )1(p -.设1X ,n X X ,,2 是一个样本. 因样本容量n 较大,由中心极限定理,知)1()1(1p np npX n p np np Xn i i --=--∑=近似地服从)1,0(N 分布,于是有⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<--<-2/2/)1(ααz p np np X n z P α-≈1 而不等式 2/2/)1(ααz p np np X n z <--<- 等价于 0)2()(222/222/<++-+X n p z X n p z n αα.记 )4(2121ac b b a p ---=, )4(2122ac b b ap -+-=. 其中222/22/),2(),(X n c z X n b z n a =+-=+=αα.于是可得p 的一个近似的置信水平为1—α的置信区间为),(21p p .例 设自一大批产品的100个样品中,得到一级品60个,求这批产品的一级品率p 的置信水平为0.95的置信区间.解 一级品率p 是(0-1)分布的的参数,此时100=n ,6.010060==x ,1—α=0.95,025.02/=α,96.12/=αz ,按上面的公式求p 的置信区间,其中36,84.123)2(,84.103)(222/22/==-=+-==+=X n c z X n b z n a αα 于是 50.0)4(2121=---=ac b b a p , 69.0)4(2122=-+-=ac b b ap 故p 的一个近似的置信水平为0.95的置信区间为(0. 50, 0.69).§7.7 单侧置信区间对于给定值α)10(<<α,若由来自X 的样本1X ,n X X ,,2 确定的统计量θ=θ(1X ,n X X ,,2 ),对于任意Θ∈θ满足αθθ-≥>1}{P ,则称随机区间(θ,∞)是θ的置信水平为α-1的单侧置信区间,θ称为θ的置信水平为α-1的单侧置信下限.又若统计量θ=θ(1X ,n X X ,,2 )(θθ<),对于任意Θ∈θ满足αθθ-≥<1}{P则称随机区间(∞-,θ)是θ的置信水平为α-1的单侧置信区间,θ称为θ的置信水平为α-1的单侧置信上限.例如对于正态总体X ,若均值μ,方差2σ均为未知,设1X 2X ,……,n X 是一个样本,由n S X /μ- ~ t(n-1)有 ⎭⎬⎫⎩⎨⎧-<-)1(/n t n S X p αμα-=1,即 αμα-=⎭⎬⎫⎩⎨⎧-->1)1(n t n S X P . 于是得到μ的一个置信水平为α-1的单侧置信区间(),1(--n t n SX α∞).μ的置信水平为α-1的单侧置信下限为).1(--=n t n SX αμ又由 22)1(σS n -~),1(2-n χ有 ,1)1()1(2122αχσα-=⎭⎬⎫⎩⎨⎧->--n S n P 即 αχσα-=⎭⎬⎫⎩⎨⎧--<-1)1()1(2122n S n P 于是得2σ的一个置信水平为1α-的单侧置信区间 ⎪⎪⎭⎫ ⎝⎛---)1()1(,0212n S n αχ .2σ的置信水平为1α-的单侧置信上限为 .)1()1(2122--=-n S n αχσ 例 从一批灯泡中随机地取5只作寿命试验,测得寿命(以小时计)为1050 1100 1120 1250 1280设灯泡寿命服从正态分布.求灯泡寿命平均值的置信水平为0.95的单侧置信下限.解 1,95.0=-α n=5, ,1318.2)4()1(05.0==-t n t α ,1160=x .99502=s 由此可得所求单侧置信下限为1065)1(=--=n t n sx αμⅤ. 小结与提问:小结:首先了解(0-1)分布参数p 的近似的置信水平为1—α的置信区间的求法, 其次理解单侧置信区间的概念,且掌握正态总体均值和方差的单侧置信区间的求法.提问:思考题1:(0-1)分布参数p 的近似的置信水平为1—α的置信区间的求法是怎样?思考题2:正态总体均值和方差在给定置信水平为α-1条件下的单侧置信区间的求法与双侧置信区间的求有什么区别? Ⅵ.课外作业:P 22, 23211。

7.7 单侧置信区间

7.7 单侧置信区间
( n 1) S 2 0, 2 ( n 1) , 1
2 ( n 1 ) S 2 2 . 1 ( n 1)


2
( n 1) S 2

P{
2
~ 2 ( n 1) ,
2 ( n 1)} 1 ,
( n 1) S 2
2
故 的置信水平1 的单侧置信区间
( n 1) S 2 ( 2 , ) , ( n 1)
( n 1) S 单侧置信下限为 2 。 ( n 1)
2 2
例1 设从一批灯泡中, 随机地取5只作寿命试验,测得寿 命(以小时计)为1050, 1100, 1120, 1250, 1280, 设灯泡 寿命服从正态分布, 求灯泡寿命平均值的置信度为0.95 的单侧置信下限.

X X ~ t (n 1), 有 P t (n 1) 1 , S/ n S / n
于是得的一个置信度为1 的单侧置信区间 S t ( n 1), , X n
1 0.95, n 5, x 1160, s 2 9950, t ( n 1) t0.05 (4) 2.1318, s t ( n 1) 1065. 的置信度为0.95的置信下限 x n
2. 正态总体均值的单侧置信区间
X X1, X 2 ,, X n iid N (, ) ,, 未知 取 ~ t (n 1), S/ n
2 2
X 有 P t ( n 1) 1 , S / n
S 即 P X t ( n 1) 1 , n 于是得的一个置信度为1 的单侧置信区间

第七章 参数估计

第七章 参数估计

第七章 参数估计
1、正态总体、方差已知或非正态总体,大样本 当总体服从正态分布且方差已知时,或者总体不是正态分布但是大样本时,样本 均值的抽样分布均为正态分布,其数学期望为总体均值u,方差为Ϭ2/n。而样本均 值经过标准化以后的随机变量则服从标准正态分布,即 Z=(x-u)/(Ϭ/n0.5)~N(0,1) 根据上式和正态分布的性质可以得出总体均值u在1-α置信水平下的置信区间为: xα+是(-)事Z(α先/2)所(Ϭ确/n定0.5的)。而其一中个,概x率+Z值(α/2,) (Ϭ也/n称0.为5)为风置险信值上,限是,总x体-Z均(α/2值) (Ϭ不/包n0.含5)为在置置信信下区限间,的 概是率估;计1总- 体α称均为值置时信的水估平计,误Z差(α/。2) 是标准正态分布右侧面积为α/2的z值;Z(α/2) (Ϭ/n0.5) 也即是说,总体均值的置信区间由两个部分构成:点估计值和描述估计量精度的 +(-)值,这个+(-)值称为估计误差。
第七章 参数估计
在区间估计中,由样本统计量所构造的总体参数的估计区间称为置信区间。
其中,区间的最小值称为置信下限,最大值称为置信上限。
由于统计学家在某种程度上确信这个区间会包含真正的总体参数,所以给它取名 为置信区间。原因是:如果抽取了许多不同的样本,比如说抽取100个样本,根据 每一个样本构造了一个置信区间,这样,由100个样本构造的总体参数的100个置 信区间中,有95%的区间包含了总体参数的真值,而5%则没有包含,则95%这个值 称为置信水平。一般,如果将构造置信区间的步骤重复多次,置信区间中包含总 体参数真值的次数所占的比例称为置信水平,也称为置信度或置信系数。
自然使用估计效果最好的那种估计量。什么样的估计量才算一个好的估计量呢? 统计学家给出了评价估计量的一些标准,主要包括以下几个:

7.4单正态总体下未知参数的置信区间 课件- 《概率论与数理统计(第2版)》同步教学(人民邮电版)

7.4单正态总体下未知参数的置信区间 课件- 《概率论与数理统计(第2版)》同步教学(人民邮电版)

2 的无偏估计为 ˆ 2
1 n
n i 1
X
2 i
2 ,
取 a b 满足
G ˆ 2, 2
1
2
n
(Xi
i 1
)2
~
2 n
P
a
1
2
n
(Xi
i1
)2
b
1
二、方差的置信区间

a
2 2
n,b
2 12
n
此时,对应的 2 的双侧1 置信区间为:
n
X
i
2
n
X
i
2
i1
, i1

第7章 参数估计
1
07
参数估计
目录/Contents
第7章 参数估计
2
7.1 点估计
7.2 点估计的良好性评判标准
7.3 置信区间
7.4 单正态总体下未知参数的置信区间
7.5
两个正态总体下未知参数的置信区间
目录/Contents
第7章 参数估计
3
7.4 单正态总体下未知参数的置信区间
一、均值的置信区间 二、方差的置信区间
故 的双侧 0.95 置信区间的观测值为[1485.69,1514.31] .
二、方差的置信区间
第7章 参数估计
12
1
期望 已知, 方差 2的双侧置信区间;
2
期望 未知, 方差 2的双侧置信区间.
二、方差的置信区间
第7章 参数估计
13
(1)期望 已知, 方差 2 的双侧置信区间
当 已知时,
0.95 的双侧置信区间.
解 由题设条件知 n 10, 0.05, x 1500, s 20, 查表得

统计学第七章、第八章课后题答案

统计学第七章、第八章课后题答案

统计学复习笔记第七章 参数估计一、 思考题1. 解释估计量和估计值在参数估计中,用来估计总体参数的统计量称为估计量。

估计量也是随机变量。

如样本均值,样本比例、样本方差等。

根据一个具体的样本计算出来的估计量的数值称为估计值。

2. 简述评价估计量好坏的标准(1)无偏性:是指估计量抽样分布的期望值等于被估计的总体参数。

(2)有效性:是指估计量的方差尽可能小。

对同一总体参数的两个无偏估计量,有更小方差的估计量更有效。

(3)一致性:是指随着样本量的增大,点估计量的值越来越接近被估总体的参数。

3. 怎样理解置信区间 在区间估计中,由样本统计量所构造的总体参数的估计区间称为置信区间。

置信区间的论述是由区间和置信度两部分组成。

有些新闻媒体报道一些调查结果只给出百分比和误差(即置信区间),并不说明置信度,也不给出被调查的人数,这是不负责的表现。

因为降低置信度可以使置信区间变窄(显得“精确”),有误导读者之嫌.在公布调查结果时给出被调查人数是负责任的表现.这样则可以由此推算出置信度(由后面给出的公式),反之亦然.4. 解释95%的置信区间的含义是什么置信区间95%仅仅描述用来构造该区间上下界的统计量(是随机的)覆盖总体参数的概率.也就是说,无穷次重复抽样所得到的所有区间中有95%(的区间)包含参数。

不要认为由某一样本数据得到总体参数的某一个95%置信区间,就以为该区间以0。

95的概率覆盖总体参数.5. 简述样本量与置信水平、总体方差、估计误差的关系。

1. 估计总体均值时样本量n 为2. 样本量n 与置信水平1-α、总体方差、估计误差E 之间的关系为其中: 2222)(E z n σα=n z E σα2=▪与置信水平成正比,在其他条件不变的情况下,置信水平越大,所需要的样本量越大;▪与总体方差成正比,总体的差异越大,所要求的样本量也越大;▪与与总体方差成正比,样本量与估计误差的平方成反比,即可以接受的估计误差的平方越大,所需的样本量越小。

第7节 单侧置信区间

第7节 单侧置信区间


µ 是 X 的无偏估计且
X S

µ
~
t(n
− 1)
n


Q
P
⎪ ⎨ ⎪⎩
X S

µ
n
<
tα (n − 1)
⎪ ⎬ ⎪⎭
=1−α

P⎧⎨µ

>
X


(n−1)
S
n⎫⎬⎭=1−α
⇒µ>X−
S n


(n

1)
由题设 x = 41117, s = 1347, 1 − α = 0.95, n = 16
41250 40187 43175 41010 39265 41872 42654 41287 38970 40200 42550 41095 40680 43500 39775 40400
假设这些数据来自正态总体 N (µ,σ 2 ) . 其中µ,σ 2 未知,试求 µ 的置信水平为0.95的置信下限.
2、
σ
2 1
σ
2 2
的单侧置信区间(µ1, µ2 未知)
(n1 − 1)S12
S12
σ
2 1
S22
=
σ
2 1
(n2 − 1)S22
(n1
− 1)
~
F (n1 − 1, n2
− 1)
σ
2 2
σ
2 2
(n2 − 1)

⎧ ⎪
S12
P
⎪⎨σ
2 1

S
2 2
σ
2 2

⎪ ⎬
=
1

α

07心理统计学-第七章 参数估计

07心理统计学-第七章 参数估计

犯错误的概率,常用α(或p)表示。则1-α为置信 度。(显著性水平越高表示的是α值越小,即犯错误的可
能性越低) α为预先设定的临界点,常用的如.05、.01、.001;p 为检验计算所得的实际(犯错误)概率。
第一节 点估计、区间估计与标准误
三、区间估计与标准误
3、区间估计的原理与标准误
转换成比率为
p

n
p, SE p

n

pq n
同理可得公式7-17。自习[例7-12、例7-13]
1、从某地区抽样调查400人,得到每月人均文化消费为 160元。已知该地区文化消费的总体标准差为40元。试 问该地区的每月人均文化消费额。(α=.05,总体呈正态
分布)
2、上题中总体方差未知,已知Sn-1=44元。 3、已知某中学一次数学考试成绩的分布为正态分布,总 体标准差为5。从总体中随机抽取16名学生,计算得平 均数为81、标准差为Sn=6。试问该次考试中全体考生成 绩平均数的95%置信区间。 4、上题中总体方差未知,样本容量改为17人。 5、假定智商服从正态分布。随机抽取10名我班学生测 得智商分别为98、102、105、105、109、111、117、 123、124、126(可计算得M=112,Sn≈9.4),试以95% 的置信区间估计我班全体的智商平均数。 返回
值表,求tα /2(df)。
5、计算置信区间CI。
σ2已知,区间为M-Zα /2 SE <μ< M+Zα /2 SE;
σ2未知,区间为M-tα /2(df)SE <μ< M+tα /2(df)SE。
6、对置信区间进行解释。
二、σ2已知,对μ的区间估计(Z分布,例7-1 & 2) 三、σ2未知,对μ的区间估计(t分布,例7-3 & 4)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

测得寿命(以小时计)为 1050, 1100, 1120, 1250,
1280, 设灯泡寿命服从正态分布, 求灯泡寿命平均
值的置信水平为 0.95 的单侧置信下限.

1 0.95,
n 5, x 1160,
t (n 1) t0.05 (4) 2.1318, s2 9950,
的置信水平为0.95 的置信下限
侧置信下限.
又如果统计量 ( X1 , X2 , , Xn ), 对于任 意 满足
P{ } 1 ,
则称随机区间( , ) 是 的置信水平为1 的 单侧置信区间, 称为 的置信水平为1 的单侧
置信上限.
2. 正态总体均值与方差的单侧置信区间
例如对于正态总体X,若均值, 方差 2 均为
未知 , 设 X1, X2 , , Xn 是一个样本, 由
X ~ t(n 1),
S/ n

P
X S/
n
t
(n
1)
1
,

P X
S n
t
(n
1)
1
,
于是得 的一个置信水平为1 的单侧置信区间
X
S n
t
(n
1),
,
的置信水平为1 的置信下限
X
S n
t
(n
Байду номын сангаас
1).
又由
(n 1)S 2
2
~
2 (n 1),

(n P
1)S 2
2
2 1
(n
1)
1,

P
2
(n 1)S 2
2 1
(n
1)
1 ,
于是得 2 的一个置信水平为1 的单侧置信区

0,
(n 1)S
12 (n
2
1)
,
2 的置信水平为1 的单侧置信上限
2
(n 1)S 2
2 1
(
n
1)
.
例 设从一批灯泡中, 随机地取5只作寿命试验,
x
s n
t
(n
1)
1065.
补充例题
三、小结
正态总体均值的置信度为1 的单侧置信区间
, X
S n
t
(
n
1),
单侧置信上限
X
S n
t
(n
1),
,
单侧置信下限
正态总体方差 2 的置信度为1 的单侧置信区间
0,
(n 1)S 2
2 1
(n
1)
.
单侧置信上限 2
第七节 单侧置信区间
一、问题的引入 二、基本概念 三、典型例题 四、小结
一、问题的引入
在以上各节的讨论中, 对于未知参数 , 我们 给出两个统计量 , , 得到的双侧置信区间( , ).
但在某些实际问题中, 例如, 对于设备、元件的寿 命来说, 平均寿命长是我们希望的, 我们关心的是
平均寿命 的“下限”; 与之相反, 在考虑化学药品 中杂质含量的均值 时, 我们常关心参数 的
“上限”. 这就引出了单侧置信区间的概念.
二、基本概念
1. 单侧置信区间的定义
对于给定值 ( 0 1), 若由样本 X1 , X 2 , , X n 确定的统计量 ( X1 , X 2 , , X n ) , 对于任 意 满足
P { } 1 ,
则称随机区间( , ) 是 的置信水平为1 的 单侧置信区间, 称为 的置信水平为1 的单
相关文档
最新文档