第一单元正数和负数知识点总结
正数与负数完全解析

正数与负数完全解析一、引言正数与负数是数学中的基本概念,对于我们日常生活和各个领域的应用都具有重要意义。
本文将对正数与负数进行全面解析,包括其定义、性质以及相关应用等方面展开探讨。
二、正数与负数的定义正数是大于零的数,用正号"+"表示;负数是小于零的数,用负号"-"表示。
正数和负数在数轴上位于原点的两侧,它们之间的距离被定义为其绝对值。
三、正数与负数的性质1. 加法性质:- 正数与正数相加,结果仍然是正数;- 负数与负数相加,结果仍然是负数;- 正数与负数相加,结果可能是正数、负数或者零。
2. 减法性质:任何数减去相同数的结果都是零。
3. 乘法性质:- 两个正数相乘,结果是正数;- 两个负数相乘,结果是正数;- 正数与负数相乘,结果是负数。
4. 除法性质:- 正数除以正数,结果是正数;- 负数除以负数,结果是正数;- 正数除以负数,结果是负数。
5. 混合运算性质:正数与负数进行混合运算时,需要根据运算规则进行计算。
四、正数与负数的应用1. 数轴:正数和负数在数轴上有对称性,可以用来表示温度、海拔高度、财务收支等有方向性的数据。
2. 财务管理:正数和负数在财务管理中应用广泛,表示收入和支出,利润与亏损等,帮助进行财务分析和决策。
3. 温度计:正数和负数在温度计中用来表示高温和低温,帮助我们了解天气情况和控制环境温度。
4. 债务与资产:正数表示资产,负数表示债务,通过资产和债务的相对值可以了解个人或企业的财务状况。
五、正数与负数之间的运算法则1. 加法法则:- 正数与正数相加,结果仍然是正数,取两数之和的绝对值;- 负数与负数相加,结果仍然是负数,取两数之和的绝对值;- 正数与负数相加,结果的绝对值等于两数之差的绝对值。
2. 减法法则:正数与负数相减时,可以转化为加法运算进行计算。
3. 乘除法法则:正数与正数、负数与负数相乘或相除,结果均为正数;正数与负数相乘或相除,结果为负数。
人教版七年级数学上册:1-1、正数和负数(含知识点、练习与答案)

人教版七年级数学上册:1-1、正数和负数(含知识点、练习与答案)人教版七年级数学上册:第一章:有理数1.1、正数和负数【知识点总结】1、正数和负数的概念负数:比0小的数;正数:比0大的数;0既不是正数,也不是负数。
2、注意:①当字母x表示正数时,-x是负数;当字母x表示负数时,-x是正数;当字母x表示0时,-x是0。
②正数有时也可以在前面加“+”,有时“+”可以省略不写。
3、具有相反意义的量如果正数表示某种意义的量,那么负数可以表示具有与该正数相反意义的量。
4、0表示的意义(1)0表示“没有”;(2)0是正数和负数的分界线,0既不是正数,也不是负数;(3)0表示一个确切的量。
【新课同步练习】1、下列各数中,是负数的是()。
A、0.8B、-5C、0D、32、在-3.1,+2,5.7,0,-9,13这几个数中,正数有()。
A、1个B、2个C、3个D、4个3、如果把向左走8米记为+8,则向右走6米可记为()。
A、+2B、-2C、+6D、-64、如果+250米表示一辆汽车向东行驶了250米,那么-380米表示这辆汽车()。
A、向西行驶了380米B、向南行驶了380米C、向北行驶了380米D、向上行驶了380米5、学校新买了4个新的排球,每个排球的标准质量是250克。
这4个新排球的质量(单位:克)纪录分别是:-0.7、+0.8、+1.2、-1,其中正数表示超过标准质量的克数,负数表示不足标准质量的克数。
仅从轻重的角度看,这4个新排球最接近标准的排球质量的是()。
A、-0.7B、+0.8C、+1.2D、-16、下列说法中,正确的是()。
A、-y一定是一个负数。
B、不大于0的数一定是负数。
C、一个数如果不是正数,则一定是负数。
D、负数比0小。
7、观察下列一组数:-2,4,-6,8,-10,12,…,则第50个数是()。
A、100B、-100C、102D、-1028、某种溶液的说明书上标明,这种溶液的保存温度为(18±2)℃,那么这种溶液可以在()保存。
1~4单元知识点总结

第一单元:负数1.负数的由来:为了表示相反意义的两个量(如盈利亏损、收入支出……),光有学过的0,1,3.4,2/5……是远远不够的。
所以出现了负数,以盈利为正、亏损为负;以收入为正、支出为负。
2.负数:小于0的数叫负数(不包括0),数轴上0左边的数叫做负数。
若一个数小于0,则称它是一个负数。
负数有无数个,其中有(负整数,负分数和负小数)负数的写法:数字前面加负号“-”号,不可以省略,例如:-2,-5.33,-45,-2/53.正数:大于0的数叫正数(不包括0),数轴上0右边的数叫做正数。
若一个数大于0,则称它是一个正数。
正数有无数个,其中有(正整数,正分数和正小数)正数的写法:数字前面可以加正号“+”号,也可以省略不写。
例如:+2,5.33,+45,2/54.0既不是正数,也不是负数,它是正、负数的分界线。
负数都小于0,正数都大于0,负数都比正数小,正数都比负数大5.数轴:数轴三要素:原点,正方向,单位长度6.比较两数的大小:①利用数轴:负数<0<正数或左边<右边②利用正负数含义:正数之间比较大小,数字大的就大,数字小的就小。
负数之间比较大小,数字大的反而小,数字小的反而大。
例如:1/3>1/6 -1/3<-1/6第二单元百分数(二)(一).折扣和成数1.折扣:用于商品,现价是原价的百分之几,叫做折扣。
通称“打折”。
几折就是十分之几,也就是百分之几十。
例如:八折=8/10=80﹪,六折五=6.5/10=65/100=65﹪解决打折的问题,关键是先将打的折数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。
例如:商品现在打八折:现在的售价是原价的80﹪商品现在打六折五:现在的售价是原价的65﹪2.成数:几成就是十分之几,也就是百分之几十。
例如:一成=1/10=10﹪八成五=8.5/10=85/100=80﹪解决成数的问题,关键是先将成数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。
人教版六年级下册数学单元知识点归纳——第一单元 负数

1 负数一、正、负数的意义1.正数:像+1、+2、3、300、+、+6.3、+26%这样的数都是正数。
2.负数:像-1、-2、-300、-、-0.68、-5%这样的数都是负数。
3.正数和负数可以用来表示两个相反意义的量。
....................例如:零上温度和零下温度、向东行和向西行、上车人数与下车人数、收入与支出、增加与减少等,都是互为相反意义的两个量,其中一个用正数表示,另一个就用负数表示。
4.0.既不是正数.....,.也不是负数。
......它是正数与负数的分界点。
二、正、负数的读写1.正、负数的读法:“+”读作正,“-”读作负;按照从左往右的顺序读数,先读“正”或“负”,再读符号后面的数字。
读正数时....,.若数字前面有“.......+.”号..,.读数时一定要读出“正”字............,.若数字前面的正号省略不...........写.,.则读数时也不读。
........2.正、负数的写法:先在数的左侧写上“+”或“-”,再写数字。
写正数时,数左侧的“+”可以省略不写。
三、用直线上的点表示正、负数1.正数、...0.、负数都可以用直线的上点表示出来。
.................直线上的每一个点都与一个数相对应,任何一个数都可以用直线上的点来表示。
例如:2.用直线上的点表示数时,要先确定好0的位置,并用箭头表示出正数的方向。
3.用有正数和负数的直线可以表示距离和相反的....................方向。
...注意:除0外,整数、小数、分数、百分数都有正数和负数两种形式。
提示:在表示两种相反意义的两个量时,谁是正数、谁是负数不是固定不变的,可以根据需要确定其中一个量是正数,另一个量就是负数。
例如:+87.25读作正八十七点二五;-20%读作负百分之二十。
例如:正三十二写作+32,也可写作32。
负四十八写作-48。
第一单元负数1、负数的由来:为了表示相反意义的两个量(如盈利亏损、收入支出……),光有学过的0 1 3.4 2/5……是远远不够的。
正负数、百分数复习

《第一单元负数》知识点归纳总结1、负数:负数是数学术语,指小于0的实数,如-3。
任何正数前加上负号都等于负数。
在数轴线上,负数都在0的左侧,所有的负数都比自然数小。
负数用负号“-”标记,如-2,-5.33,-45,-0.6等。
2、正数:大于0的数叫正数(不包括0)。
若一个数大于零(>0),则称它是一个正数。
正数的前面可以加上正号“+”来表示也可以不加“+”。
正数有无数个,其中分正整数,正分数和正无理数。
3、正数的几何意义:数轴上0右边的数叫做正数。
4、0既不是整数,也不是负数。
5、数轴:规定了原点,正方向和单位长度的直线叫数轴。
所有的实数都可以用数轴上的点来表示。
也可以用数轴来比较两个实数的大小。
6、数轴的三要素:原点、单位长度、正方向。
练习题:一、填空。
1、如果下降5米,记作-5米,那么上升4米记作()米。
2、二月份,妈妈在银行存入5000元,存折上应记作()元。
三月一日妈妈又取出1000元,存折上应记作()元。
3、+8.7读作(),-25 读作()。
4、如果把平均成绩记为0分,+9分表示比平均成绩(),-18分表示(),比平均成绩少2分,记作()。
5、数轴上所有的负数都在0的()边,所有正数都在0的()边。
6、在数轴上,从表示0的点出发,向右移动3个单位长度到A点,A点表示的数是();从表示0的点出发向左移动6个单位长度到B点,B点表示的数是()。
8、比较大小:-7○-5 1.5○520○-2.4 -3.1○3.1《百分数》知识点归纳总结(一)百分数的基本概念 1.百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。
百分数也叫做百分率或百分比。
百分数表示两个数之间的比率关系,不表示具体的数量,所以百分数不能带单位。
2.百分数的意义:表示一个数是另一个数的百分之几。
例如:25%的意义:表示一个数是另一个数的25%。
3.百分数通常不写成分数形式,而在原来分子后面加上“%”来表示。
第一单元正数和负数知识点总结

第一单元正数和负数知识点总结1.1 正数和负数以前学过的0以外的数前面加上负号“-”的书叫做负数。
以前学过的0以外的数叫做正数。
数0既不是正数也不是负数,0是正数与负数的分界。
在同一个问题中,分别用正数和负数表示的量具有相反的意义1.2 有理数1.2.1 有理数——正整数、0、负整数统称整数,正分数和负分数统称分数。
整数和分数统称有理数。
1.2.2 数轴规定了原点、正方向、单位长度的直线叫做数轴。
数轴的作用:所有的有理数都可以用数轴上的点来表达。
注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。
⑵同一根数轴,单位长度不能改变。
一般地,设是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。
1.2.3 相反数只有符号不同的两个数叫做互为相反数。
数轴上表示相反数的两个点关于原点对称。
在任意一个数前面添上“-”号,新的数就表示原数的相反数。
1.2.4 绝对值一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。
一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0。
在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。
比较有理数的大小:⑴正数大于0,0大于负数,正数大于负数。
⑵两个负数,绝对值大的反而小。
1.3 有理数的加减法1.3.1有理数的加法有理数的加法法则:⑴同号两数相加,取相同的符号,并把绝对值相加。
⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
⑶一个数同0相加,仍得这个数。
两个数相加,交换加数的位置,和不变。
加法交换律:a+b=b+a 三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。
加法结合律:(a+b)+c=a+(b+c)1.3.2有理数的减法有理数的减法可以转化为加法来进行。
(完整版)有理数知识点总结

有理数知识点总结(2016)第一章有理数1.1正数和负数一、概念1、正数:大于零的数,有时根据需要在正数前面加“+”(正号)2、负数:在正数前面加上“—”(负号)的数说明:一个数前面的“+”“—”叫做它的号,其中“+”有时可以省略,但仍然表示正数,有时“+”是为了强调它是正数,但“—”号是绝对不能省略的。
3、0既不是正数也不是负数,它是正负数的分界。
说明:关于0的总结——实数,自然数,有理数,整数,非正数,非负数,偶数,相反数是本身,没有倒数,绝对值是本身,正负数分界二、实际应用在解决一些实际问题时,可以认为规定具有相反意义的量的正负。
例如:收入为正,支出为负,收支平衡为0 零上为正,零下为负,分界为0 向北(东)走为正,向南(西)走为负,原地不动为0 加分为正,扣分为负,不加不扣为0 逆时针为正,顺时针为负超标为正,低标为负,标准为0 地上为正,地下为负,地面基准为0 盈余为正,亏空为负,收支平衡为0 水位上升为正,水位下降为负,水平面为0 高于平均分为正,低于平均分为负增加为正,减少为负,不增不减为0 海平面以上为正,以下为负,海平面记为0三、易错易误点1、-a一定是负数么?答案:不一定,需要分类分析解析:当a大于0时,-a就是负数;当a等于0时,-a为0;当a小于0时,-a是正数因此,a不一定是正数也不一定是负数,判断字母的正负时,需要分类讨论,也不能忽略0的存在。
2、海拔0米并不表示没有海拔,而是说海拔中海平面的平均高度为0米。
3、非正数:0和负数非负数:0和正数1.2 有理数1、概念1、有理数:正整数,0,负整数,正分数,负分数都可以写成分数(含有限小数和无限循环小数)的形式,这样的数称为有理数。
2、无理数:既不是正数也不是分数,就一定不是有理数。
如无限不循环小数π=3.1415926…它不能化成分数形式。
2、分类1、按定义分类;有理数分为整数(正整数、0、负整数);分数(正分数、负分数)2、按性质符号分类;有理数分为正有理数(正整数、正分数)、0、负有理数(负整数、负分数)三、数轴1、定义:数轴是一条可以向两端无限延伸的直线规定三要素——原点,正方向,单位长度注意“规定”二字,是说三要素是根据实际需要认为规定的。
初中数学正数和负数

初一数学第1章有理数知识点:正数和负数⒈正数和负数的概念负数:比0小的数正数:比0大的数 0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。
(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。
所以省略“+”的正数的符号是正号。
2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3.0表示的意义⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。
初一数学第1章有理数知识点:有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①π是无限不循环小数,不能写成分数形式,不是有理数。
②有限小数和无限循环小数都可化成分数,都是有理数。
注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。
2.有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数整数正有理数正分数有理数有理数(0不能忽视) 负整数分数负有理数负分数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数初一数学第1章有理数知识点:数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。
注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1 正数和负数
以前学过的0以外的数前面加上负号“-”的书叫做负数。
以前学过的0以外的数叫做正数。
数0既不是正数也不是负数,0是正数与负数的分界。
在同一个问题中,分别用正数和负数表示的量具有相反的意义
1.2 有理数
1.2.1 有理数——正整数、0、负整数统称整数,正分数和负分数统称分数。
整数和分数统称有理数。
1.2.2 数轴
规定了原点、正方向、单位长度的直线叫做数轴。
数轴的作用:所有的有理数都可以用数轴上的点来表达。
注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。
⑵同一根数轴,单位长度不能改变。
一般地,设是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。
1.2.3 相反数
只有符号不同的两个数叫做互为相反数。
数轴上表示相反数的两个点关于原点对称。
在任意一个数前面添上“-”号,新的数就表示原数的相反数。
1.2.4 绝对值
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。
一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0。
在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。
比较有理数的大小:⑴正数大于0,0大于负数,正数大于负数。
⑵两个负数,绝对值大的反而小。
1.3 有理数的加减法
1.3.1有理数的加法
有理数的加法法则:⑴同号两数相加,取相同的符号,并把绝对值相加。
⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
⑶一个数同0相加,仍得这个数。
两个数相加,交换加数的位置,和不变。
加法交换律:a+b=b+a
三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。
加法结合律:(a+b)+c=a+(b+c)
1.3.2有理数的减法
有理数的减法可以转化为加法来进行。
有理数减法法则:减去一个数,等于加这个数的相反数。
a-b=a+(-b)
1.4 有理数的乘除法
1.4.1 有理数的乘法有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0。
乘积是1的两个数互为倒数。
几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。
两个数相乘,交换因数的位置,积相等。
ab=ba
三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
(ab)c=a(bc)
一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
a(b+c)=ab+ac
数字与字母相乘的书写规范:
⑴数字与字母相乘,乘号要省略,或用“”⑵数字与字母相乘,当系数是1或-1时,1要省略不写。
⑶带分数与字母相乘,带分数应当化成假分数。
用字母x表示任意一个有理数,2与x的乘积记为2x,3与x的乘积记为3x,则式子2x+3x是2x与3x的和,2x与3x叫做这个式子的项,2和3分别是着两项的系数。
一般地,合并含有相同字母因数的式子时,只需将它们的系数合并,所得结果作为系数,再乘字母因数,即ax+bx=(a+b)x 上式中x是字母因数,a与b分别是ax与bx这两项的系数。
去括号法则:
括号前是“+”,把括号和括号前的“+”去掉,括号里各项都不改变符号。
括号前是“-”,把括号和括号前的“-”去掉,括号里各项都改变符号。
括号外的因数是正数,去括号后式子各项的符号与原括号内式子相应各项的符号相同;括号外的因数是负数,去括号后式子各项的符号与原括号内式子相应各项的符号相反。
1.4.2 有理数的除法
有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
a÷b=a?(b≠0)
两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,都得0。
因为有理数的除法可以化为乘法,所以可以利用乘法的运算性质简化运算。
乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。
1.5 有理数的乘方
1.5.1 乘方:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
在an中,a叫做底数,n叫做指数,当an看作a 的n次方的结果时,也可以读作a的n次幂。
负数的奇次幂是负数,负数的偶次幂是正数。
正数的任何次幂都是正数,0的任何正整数次幂都是0。
有理数混合运算的运算顺序:
⑴先乘方,再乘除,最后加减;⑵同级运算,从左到右进行;⑶如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行
1.5.2 科学记数法
把一个大于10的数表示成a×10n的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学记数法。
用科学记数法表示一个n位整数,其中10的指数是n-1。
1.5.3 近似数和有效数字
接近实际数目,但与实际数目还有差别的数叫做近似数。
精确度:一个近似数四舍五入到哪一位,就说精确到哪一位。
从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字。
对于用科学记数法表示的数a×10n,规定它的有效数字就是a中的有效数字。