Matlab 使用之线性代数综合实例讲解
用matlab解决线性代数的问题

生成向量(1)
• 初值:步长:终值 生成从初值开始、以步长为间隔、小于或等于终值的行向量 如果不设步长,则默认步长为1
x是行向量;x’是其转置,为列向量
节约计算时间的技巧
对于需要对其元素循环赋值的矩阵,可预先对整个矩阵赋值,例如赋值为零矩阵。 以某20X500个循环的 脚本为例:
提示:循环越多,矩阵越大, 节约计算时间就越重要。
利用函数生成矩阵(2)
• eye(n)生成n×n的单位矩阵; eye (m,n)生成m×n的单位矩阵; eye(size(A))生成与A同维数的单位矩阵
– AX=B的解是X=A\B,等价于inv(A)*B – XA=B的解是X=B/A,等价于B*inv(A)
• • • • • • • •
方矩阵A的行列式:det(A) 方矩阵A的逆:inv(A) 矩阵A的共轭转置:A’ 矩阵A的转置:conj(A’) 方矩阵A的乘方:A^n 方矩阵A的迹:trace(A) 矩阵A的秩:rank(A) 方矩阵A的特征向量(矩阵)v和特征值(对角矩阵) d : [v d]=eig(A) • 对矩阵A作行初等变换化为行最简矩阵:rref(A) • 对矩阵A作奇异值分解:svd(A)
用matlab解决线性代数的问题
张宏浩
Matlab的一些常识
• • • • • • • • pi表示圆周率π=3.14159… i或j表示虚数单位sqrt(-1) conj(x):取x的复共轭 log(x):以e为底的对数函数ln(x) log10(x):以10为底的对数函数 exp(x):指数函数e^x sin(x),cos(x),tan(x),cot(x):三角函数 asin(x),acos(x),atan(x),acot(x):反三角函数
Matlab在线性代数中的应用

利用Matlab的控制设计方法,如PID控制、状态反馈控制等,可以 设计出有效的控制系统。
THANKS
感谢观看
利用Matlab的图像处理函数,可以从图像中提取 特征,如边缘、角点等,用于目标检测和识别。
在控制系统中的应用
系统建模
使用Matlab的控制系统工具箱,可以对系统进行建模,如线性时 不变系统、非线性系统等。
系统分析和仿真
通过Matlab的控制系统函数,可以对系统进行稳定性分析、控制 性能分析和仿真测试。
向量运算
向量的基本运算
包括向量的加法、减法、数乘、向量的模等。
向量的内积和外积
内积和外积是描述向量之间关系的运算,用于计算向量的长度、角 度等。
向量运算的实际应用
向量运算在物理、工程等领域有广泛应用,如描述物体运动轨迹、计 算力的合成等。
特征值与特征向量
01
特征值和特征向量 的定义
特征值和特征向量是描述矩阵特 性的重要概念,用于描述矩阵变 换的性质。
04
Matlab在线性代数中的优势与 局限性
优势
高效计算能力
Matlab提供了强大的矩阵运算 和数值计算功能,使得线性代
数问题的求解更加高效。
可视化工具
Matlab内置了丰富的可视化工 具,可以直观地展示线性代数 中的向量、矩阵和线性变换等 概念。
易于学习和使用
Matlab的语法相对简单,使得 线性代数运算变得容易理解和 实现。
解的精度和稳定性
Matlab在线性方程组求解过程中考虑了精 度和稳定性问题,能够提供可靠的解。
向量运算和特征值问题
向量运算
Matlab支持向量的基本运算 ,如加法、减法、数乘、点 积等。
#实验1 MATLAB续:MATLAB在线性代数中的应用

6 x3 5 x3
6
x4
0 0
x3 5x4 6x5 0
x4 5x5 1
A=[5 6 0 0 0 15600 01560 00156 0 0 0 1 5];
B=[1 0 0 0 1]'; R_A=rank(A) %求秩 X=A\B %求解
例2
求解方程组
3xx112xx2253xx333xx44
>>B=null(A,'r') %求解空间的有理基
得到:B =
2
5/3
-2 -4/3
1
0
0
1
MATLAB初步
于是,我们得到原线性方程组的解:
syms k1 k2 % 定义两个符号 X=k1*B(:,1)+k2*B(:,2) %写出方程组的通解 pretty(X) %让通解表达式更加精美
求解的完整代码如下:
%V已经被归一化为单位向量了
例 4: 求矩阵
MATLAB初步
2 1 1
A
0 4
2 1
0 3
的特征值和特征向量.
A=[-2 1 1;0 2 0;-4 1 3]; [V,D]=eig(A)
V=
-0.7071 -0.2425
0
0
-0.7071 -0.9701
0.3015 0.9045 0.3015
1 2
有否解? 2x1 x2 2x3 2x4 3
MATLAB初步
A=[1 -2 3 -1;3 -1 5 -3;2 1 2 -2];%输入系数矩阵A的值
% first,input the coefficient matrix A
利用Matlab进行线性代数问题求解的方法与案例

利用Matlab进行线性代数问题求解的方法与案例引言线性代数是数学的一个重要分支,广泛应用于工程、物理、计算机科学等领域。
而Matlab作为一种功能强大的数值计算软件,提供了各种实用的工具和函数,可以方便地解决线性代数问题。
本文将介绍一些常用的线性代数问题求解方法,并通过具体的案例来展示Matlab在实际应用中的效果。
一、线性方程组的求解线性方程组是线性代数中最基础的问题之一。
Matlab提供了多种求解线性方程组的函数,如“backslash”操作符(\)和“linsolve”函数等。
下面通过一个实例来说明Matlab的线性方程组求解功能。
案例:假设有以下线性方程组需要求解:2x + 3y - 4z = 53x - 2y + z = 8x + 5y - 3z = 7在Matlab中输入以下代码:A = [2 3 -4; 3 -2 1; 1 5 -3];b = [5; 8; 7];x = A\b;通过以上代码,我们可以得到线性方程组的解x=[1; -2; 3]。
这表明在满足以上方程组的条件下,x=1,y=-2,z=3。
可以看出,Matlab在求解线性方程组时,使用简单且高效。
二、矩阵的特征值和特征向量求解矩阵的特征值和特征向量也是线性代数中的重要概念。
利用特征值和特征向量可以得到矩阵的许多性质和信息。
在Matlab中,我们可以通过“eig”函数来求解矩阵的特征值和特征向量。
案例:假设有一个2x2矩阵A,需要求解其特征值和特征向量。
在Matlab中输入以下代码:A = [2 3; 1 4];[V, D] = eig(A);通过以上代码,我们可以得到矩阵A的特征向量矩阵V和特征值矩阵D。
具体结果如下:特征向量矩阵V = [0.8507 -0.5257; 0.5257 0.8507]特征值矩阵D = [1.5858 0; 0 4.4142]由结果可知,矩阵A的特征向量矩阵V和特征值矩阵D可以提供有关该矩阵的很多信息,如相关线性变换、对称性等。
用MATLAB做线性代数实验

【2】参数方程解的判别 【注意】 :含有参数情况的线性方程组的解的情况讨论,不能直接使用 Matlab 中 的函数:rank,rref,因为 Matlab 会默认这些参数及其表达式不等于零。因此,应 该编写独立的过程加以讨论。 试就参数 s 的各种情况,讨论下述线性方程组的解的情况:
sx y z 1 x sy z s 。 2 x y sz s
p1 ( x ) q( x ) p2 ( x ) r ( x ) , d (r ( x )) d ( p2 ( x ))
例如,求多项式 f ( x ) x 3 6 x 2 11 x 6 , g( x ) x 5 2 x 2 1 的最大公因式和最小公倍 式。 p=[1 -6 11 -6]; q=[1 0 0 -2 0 1]; [q1,r1]=deconv(q,p) [q2,r2]=deconv(p,r1(4:6)) %注意保证第一个分量不能为零 [q3,r3]=deconv(r1(4:6),r2(3:4))
x2 x3 2 x2 3 x 2
分解为最简分式之和的程序如下:
-0.5000 - 1.3229i -1.0000 r = [] 结果表示出来即是:
f ( x)
如果是在实数范围内分解:
0.25 0.4725 i x 0.51.3229 i
0.25 0.4725 i x 0.51.3229 i
用 MATLAB 做线性代数实验
1. 多项式运算
【1】表示方法与根 表示方法:降幂,向量形式. 例如, p( x ) 2 x x 3 x5 被表示为向量 p=[-1 0 1 0 2 0] 而不是 p=[0 2 0 1 0 -1] 或者 p=[2 1 -1]. 相关 MATLAB 函数 函数名 含义 %注意保证第一个分量不能为零
MATLAB软件在线性代数教学中的应用

MATLAB软件在线性代数教学中的应用
MATLAB是一个具有强大计算和图形处理功能的数学软件,它广泛应用于各个领域,包括线性代数教学。
在线性代数教学中,MATLAB可以帮助学生更好地理解和应用矩阵和线性方程组等基础概念。
首先,在矩阵的操作方面,MATLAB可以用来进行矩阵的创建、转置、逆矩阵计算、乘法运算、矩阵方程求解等操作。
例如,通过输入命令行“A=[1 2;3 4]”创建一个
$2\times 2$矩阵,通过输入命令行“B=A'”可以得到A的转置矩阵,通过输入命令行
“inv(A)”可以得到A的逆矩阵,通过输入命令行“C=A*B”可以得到A和B的乘积矩阵,在输入命令行“x=A\b”可以求解矩阵方程$Ax=b$。
其次,在解决线性方程组的问题上,MATLAB可以用来求解线性方程组、得到线性方程组解的唯一性和存在性,并且可以比较不同求解方法的效率。
例如,通过输入命令行
“x=A\b”就可以得到线性方程组$Ax=b$的解,通过输入命令行“rank(A)”可以得到矩阵
A的秩,通过输入命令行“cond(A)”可以得到矩阵A的条件数。
此外,在线性代数的复杂问题求解上,MATLAB可以用来进行特征值和特征向量的计算、矩阵的奇异值分解等问题的求解。
例如,通过输入命令行“[V,D]=eig(A)”可以得到矩阵
A的特征值和特征向量,通过输入命令行“[U,S,V]=svd(A)”可以得到矩阵A的奇异值分解。
总之,MATLAB的强大计算和图形处理功能,可以为线性代数教学的理解和应用提供很好的帮助。
通过学生编写MATLAB程序,实现矩阵和线性方程组的数值求解,可以加深对
线性代数基础概念的理解,提高线性代数教学的效果。
使用Matlab求解线性代数问题(一)

使用Matlab求解线性代数问题一、用行列式求解线性方程组x1+ x2–2*x3 = -35*x1–2*x2+ 7*x3 = 222*x1–5*x2+ 5*x3 = 4解法1:使用矩阵求解方程组在Matlab 7.1命令行界面中输入(A表示系数矩阵,b表示向量)A = [1 1 -2; 5 -2 7; 2 -5 5]; % 系数矩阵b = [-3; 22; 4]; % 向量format rat; % 设置结果的显示形式为分数x = A\b; % 计算结果x = x' % 转置以行向量形式显示界面显示结果为x = 47/56 163/56 27/8即方程的解为x1 = 47/56; x2 = 163/56; x3 = 27/8解法2:使用Cramer法则求解方程组在Matlab 7.1命令行界面中输入D(系数行列式)D = [1 1 -2; 5 -2 7; 2 -5 5]; % 系数矩阵DD1 = [b D(:,2) D(:, 3)]; % D1D2 = [D(:,1) b D(:, 3)]; % D2D3 = [D(:, 1) D(:,2) b]; % D3format rat; % 设置结果的显示形式为分数x1 = det(D1)/det(D)x2 = det(D2)/det(D)x3 = det(D3)/det(D)输出结果为x1 = 47/56x2 = 163/56x3 = 27/8即方程的解为:x1 = 47/56; x2 = 163/56; x3 = 27/8二、求排列65872134的逆序数,并确定其奇偶性。
解:排列的逆序数定义为:如在1,2,3,…,n的一个全排列(s1 s2 s3…s n)中,有i<j时,s i >s j,这时s i、s j违反了自然顺序,就说它们构成了一个逆序。
排列(s1 s2 s3…s n)中逆序的总数称为该序列的逆序数。
根据定义计算逆序数的Matlab程序如下:a = [6 5 8 7 2 1 3 4]; % 将排列看作行向量Num = 0; % 逆序数初始值设为0Len = length(a); % 行向量中元素的个数for i = 1:1:(Len-1)n = length(find( a(i+1: Len) < a(i))); % 计算第i个元素% 的逆序数disp(strcat('第', num2str(i), '个元素', num2str(a(i)), '的逆序数为', num2str(n) ));Num = Num + n; %增加序列逆序数的个数end;disp(strcat('排列', num2str(a), '的逆序数为', num2str(Num)))将上述Matlab命令输入Matlab窗口命令行,执行结果为:第1个元素6的逆序数为5第2个元素5的逆序数为4第3个元素8的逆序数为5第4个元素7的逆序数为4第5个元素2的逆序数为1第6个元素1的逆序数为0第7个元素3的逆序数为0排列6 5 8 7 2 1 3 4的逆序数为19即排列65872134的逆序数为19,由于19为基数,所以排列65872134为逆排列。
《基于MATLAB的线性代数实用教程》第十二章:综合实例(3)

• • • • • • • • • • • •
>> xmin=2; >> xmax=4 >> ymin=2 >> ymax=4; >> x1=linspace(xmin,xmax,20); >> x2=linspace(ymin,ymax,20); >> [X1,X2]=meshgrid(x1,x2); >> [Z,DZ1,DZ2]=jt(X1,X2); >> subplot(122) >> contour(X1,X2,Z,40) -1 0 2 3 4 >> hold on 1 >> quiver(X1,X2,-DZ1,-DZ2)
年代 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 27.3 16.0 15.9 14.8 19.7 百分比 11.9 21.4 22.1 21.2 36.4
• 试建立一个食饵-捕食系统的数学模型,定量地回答这个 问题,并用MATLAB进行分析和仿真。
12.10 滤除高频噪声
• 本实验通过在原信号中混入和滤除噪声信号,展 示MATLAB在信号处理中的应用。首先让我们导 入一个音频文件,在MATLAB中,输入:
• >> load handel
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、上机目的
1、培养学生运用线性代数的知识解决实际问题的意识、兴趣和能力;
2、掌握常用计算方法和处理问题的方法;
二、上机内容
1、求向量组的最大无关组;
2、解线性方程组;
三、上机作业
1、设A=[2 1 2 4; 1 2 0 2; 4 5 2 0; 0 1 1 7];
求矩阵A列向量组的一个最大无关组.
>> A=[2 1 2 4;1 2 0 2;4 5 2 0;0 1 1 7]
A =
2 1 2 4
1 2 0 2
4 5 2 0
0 1 1 7
>> rref(A)
ans =
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
所以矩阵A的列向量组的一个最大无关组就是它本身;
2、用Matlab解线性方程组
(1)
>> A=[2 4 -6;1 5 3;1 3 2]
A =
2 4 -6
1 5 3
1 3 2
>> b=[-4;10;5]
b =
-4
10
5
>> x=inv(A)*b
x =
-3.0000
2.0000
1.0000
>> B=[3 41 -62;4 50 3;11 38 25]
B =
3 41 -62
4 50 3
11 38 25
>> c=[-41;100;50]
c =
-41
100
50
>> x=inv(B)*c
x =
-8.8221
2.5890
1.9465
3、(选作)减肥配方的实现
设三种食物每100克中蛋白质、碳水化合物和脂肪的含量如下表,表中还给出了20世纪80年代美国流行的剑桥大学医学院的简捷营养处方。
现在的问题是:如果用这三种食物作为每天的主要食物,那么它们的用量应各取多少才能全面准确地实现这个营养要求?
四、上机心得体会
通过此次上机实验,我进一步的认识到了Matlab软件的功能。
Matlab操作简单、功能强大,它使一些复杂的线性代数问题的计算变得更加简单,有效地提高了人们计算的效率。
而且把一些复杂的实际问题转化为矩阵后再利用Matlab求解既简单有快捷。
通过线性代数的学习,能使学生获得应用科学中常用的矩阵、线性方程组等理论及其有关基本知识,并具有较熟练的矩阵运算能力和用矩阵方法解决一些实际问题的能力。
同时,该课程对于培养学生的逻辑推理和抽象思维能力、空间直观和想象能力具有重要的作用。
所以我们要掌握Matlab,并熟练地使用它来解决遇到的实际问题。