垂径定理、圆心角、弧、弦、弦心距间的关系 人教版

合集下载

24.1.3 弧、弦、圆心角、弦心距四者之间的关系定理

24.1.3 弧、弦、圆心角、弦心距四者之间的关系定理

一、概念
圆心角:我们把顶点在圆心的角叫做圆心角.
A O· B
判别下列各图中的角是不是圆心角, 并说明理由。




思考
1、在圆O中,圆心角∠AOB对应的弧是谁?弦是 谁?弦心距是谁?
2、在圆O中,圆心角∠AOB确定后,其他对应的 三个量确定吗?
O B D A
二、探究
如图,将圆心角∠AOB绕圆心O旋转到∠A’OB’ 的位置,你能发现哪些等量关系?为什么?
六、练习
如图,AB是⊙O 的直径,BC = CD ∠COD=35°,求∠AOE 的度数. 解:
E D C A
= DE

BC = CD
= DE

O
·
BOC= COD= DOE=35
B
AOE 180 3 35


75

七、思考
1.如图,已知AB、CD为⊙O的两条弦, ⌒ ⌒
辨析1
定理“在同圆或等圆中,相等的圆心角所对的 弧相等,所对的弦也相等.”中,可否把条件 “在同圆或等圆中”去掉?为什么?
辨析2
定理“在同圆或等圆中,相等的弦所对的弦心距 相等,所对的圆心角相等,所对的优弧和劣弧分 别相等”中,为什么说是“所对的优弧和劣弧分 别相等”?直接说成“所对的弧相等”行吗?
A′ B
B′
O
·
根据旋转的性质,将圆心角 ∠AOB绕圆心O旋转到∠A′OB′的 位置时,显然∠AOB=∠A′OB′, 半径OA与OA′重合,OB与OB′重 A 合.而同圆的半径相等,OA=OA′, OB=OB′,从而点A与A′重合,B与 B′重合.
⌒ ⌒ 因此,AB与A'B' 重合, AB与A′B′ 的弦心距 AB与A′B′重合. 相等吗? ⌒ ⌒ = A'B' AB A ' B '. AB

24.1.3 弧、弦、圆心角 课件(共25张PPT) 人教版数学九年级上册

24.1.3  弧、弦、圆心角   课件(共25张PPT)  人教版数学九年级上册

E
B

D
F C
在同圆或等圆中,圆心角及所对的弧、弦之间的关系:
在同圆或等圆中,如果①两个圆心角;②两条弧;③两 条弦;④两条弦心距,有一组量相等,那么它们所对应的 其余各组量都分别相等.
1.如果两个圆心角相等,那么 A.这两个圆心角所对的弦相等
( D)
B.这两个圆心角所对的弧相等
C.这两个圆心角所对的弦的弦心距相等
第二十四章 圆
24.1 圆的有关性质 24.1.3 弧、弦、圆心角
圆的对称性
圆的轴对称性 圆的中心对称性
垂径定理 及其推论
???
1.理解圆心角的概念,掌握圆的中心对称性和旋转不变性. 2.探索圆心角、弧、弦之间关系定理并利用其解决相关问 题.(重点) 3.理解圆心角、弧、弦之间关系定理中的“在同圆或等圆” 条件的意义.(难点)
观察:将圆绕圆心旋转180°后,得到的图形与原图形重 合吗?由此你得到什么结论呢?
180
A
°
所以圆是中心对称图形
把圆绕圆心旋转任意一个角度呢?仍与原来的圆重合吗?
·
α O
圆是旋转对称图形,具有旋转不变性
观察在⊙O中,这些角有什么共同特点?
A

B
·O
A
B
顶点在圆心上
O
A
B
1.圆心角:顶点在圆心的角,叫圆心角,如∠AOB .
A
E
B

D
F C
(4)如果AB=CD,OE⊥AB于E,OF⊥CD于F,OE与OF相 等吗?为什么?
解:OE=OF.
理由如下:
OE AB, OF CD
AE 1 AB, CF 1 CD
2

人教版 数学九年级上册24.1.3弧、弦、圆心角教案

人教版 数学九年级上册24.1.3弧、弦、圆心角教案

五、教学方法自主学习,合作探究六、教学准备1、教师使用多媒体教学课件。

2、直尺,圆规。

七、教学过程教学内容教师活动学生活动1、复习引入2、探索新知活动1:圆具有旋转不变性活动2:探究圆心角的概念。

圆是中心对称图形吗?它的对称中心在哪里?活动1:圆具有旋转不变性问:圆还有其它旋转性质吗?观察多媒体,圆的旋转过程,你有什么收获?活动2:探究圆心角的概念。

如图所示,∠AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角.巩固练习:判别下列各图中的角是不是圆心角?观察思考作答;带着问题进入学习。

观察圆的旋转并思考作答。

(圆具有旋转不变性。

)教师引导,学生自学圆心角,学生完成巩固练习活动3:探究圆心角、弧、弦之间的关系1()2()3()4()活动3:探究圆心角、弧、弦之间的关系操作:将圆心角∠AOB绕圆心O旋转到∠A′OB′的位置。

B'BAA'O问题1:在旋转过程中你能发现哪些等量关系?为什么?问题2:如图,⊙O与⊙O1是等圆,∠AOB =∠A1OB1=600,请问上述结论还成立吗?为什么?问题3:由上面的现象你能猜想出什么结论?综上所述,我们可以得到关于圆心角、弧、弦之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.问题4:分析定理:去掉“在同圆或等圆中”这个条件,行吗?问题5:定理拓展:○1在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角,•所对的弦也分别相等吗?○2在同圆或等圆中,如果两条弦相等,那么它们所学生观察图形,结合圆的旋转不变性和相关知识进行思考,尝试得出关系定理,再进行几何证明.学生思考,明白该前提条件的不可缺性,师生分析,进一步理解定理.教师引导学生类比定理独立用类似的方法进行探究,得到推论3、应用新知4、例题探究5、应用提高对的圆心角,•所对的弧也分别相等吗?综上得到在同圆或等圆中,相等的弧所对的圆心角相等,所对的弦也相等.在同圆或等圆中,相等的弦所对的弧相等,所对的圆心角也相等.综上所述,同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,就可以推出它们所对应的其余各组量也相等.应用新知1、判断下列说法是否正确:(1)相等的圆心角所对的弧相等。

人教版九年级数学讲义垂径定理(含解析)(2020年最新)

人教版九年级数学讲义垂径定理(含解析)(2020年最新)

第11讲垂径定理知识定位讲解用时:3分钟A、适用范围:人教版初三,基础一般B、知识点概述:本讲义主要用于人教版初三新课,本节课我们主要学习垂径定理及其相关推论,着重理解垂径定理及其相关推论在实际问题以及几何图形中的应用,掌握关于垂径定理部分题型的常见辅助线的做法,能够结合勾股定理进行熟练计算。

本节课的难点是垂径定理及其推论在几何图形中的应用,涉及的知识点较多,考查的内容较广,具有一定的综合性。

希望同学们认真学习,为后面圆的其他内容理解奠定良好基础。

知识梳理讲解用时:15分钟垂径定理及其推论(1)垂径定理如果圆的一条直径垂直于一条弦,那么这条直径平分这条弦,并且平分这条弦所对的弧。

(2)相关推论①如果圆的直径平分弦(这条弦不是直径),那么这条直径垂直于这条弦,并且平分这条弦所对的弧;①如果圆的直径平分弧,那么这条直径就垂直平分这条弧所对的弦;①如果一条直线是弦的垂直平分线,那么这条直线经过圆心,并且平分这条弦所对的弧;①如果一条直线平分弦和弦所对的一条弧,那么这条直线经过圆心,并且垂直于这条弦;①如果一条直线垂直于弦,并且平分弦所对的一条弧,那么这条直线经过圆心,并且平分这条弦。

总结:在圆中,对于某一条直线“经过圆心”、“垂直于弦”、“平分弦”、“平分弦所对的弧”这四组关系中,如果有两组关系成立,那么其余两组关系也成立。

课堂精讲精练【例题1】下列判断中,正确的是()。

A.平分一条弦所对的弧的直线必垂直于这条弦B.不与直径垂直的弦不能被该直径平分C.互相平分的两条弦必定是圆的两条直径D.同圆中,相等的弦所对的弧也相等【答案】C【解析】本题考查了垂径定理及圆心角、弧、弦、弦心距之间关系的定理同时平分一条弦所对优弧、劣弧的直线必垂直于这条弦,故A错误;任意两条直径互相平分,故B错误;同圆中,相等的弦所对的优弧、劣弧分别相等,故D错误。

讲解用时:3分钟解题思路:根据垂径定理及圆心角、弧、弦、弦心距之间关系的定理逐项排除。

人教版九年级数学第二十四章《圆》单元知识点总结

人教版九年级数学第二十四章《圆》单元知识点总结

人教版九年级数学第二十四章《圆》单元知识点总结1.弦弦:连结圆上任意两点的线段叫做弦. 直径:经过圆心的弦叫做直径.弦心距:圆心到弦的距离叫做弦心距.2.弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.①半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;②优弧:大于半圆的弧叫做优弧;③劣弧:小于半圆的弧叫做劣弧.3.同心圆与等圆圆心相同,半径不等的两个圆叫做同心圆.圆心不同,半径相等的两个圆叫做等圆.同圆或等圆的半径相等.4.等弧在同圆或等圆中,能够完全重合的弧叫做等弧.5、弧、弦、圆心角的关系(1)圆心角定义如图所示,∠AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角.(2)定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.推论:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.6、圆周角(1)圆周角定义:像图中∠AEB、∠ADB、∠ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.(2).圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.(3).圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.7.圆内接四边形:(1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.(2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角).8.弦、弧、圆心角、弦心距的关系:在同圆或等圆中,弦,弧,圆心角,弦心距等几何量之间是相互关联的,即它们中间只要有一组量相等,(例如圆心角相等),那么其它各组量也分别相等(即相对应的弦、弦心距以及弦所对的弧也分别相等)。

人教版初中数学垂径定理知识点总结

人教版初中数学垂径定理知识点总结

人教版初中数学垂径定理知识点总结一、垂径定理的定义垂径定理是关于直径和过该直径的直线(或圆)交于圆内两点之间的线段长度和关系的重要定理。

如果一个直径和一条过该直径的直线交于圆内两点,那么这条直径平分过这两点的线段,并且这条直径垂直于过这两点的直线。

二、垂径定理的表述1.平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

2.垂直于弦的直径平分弦(不是直径),并且平分弦所对的两条弧。

3.垂直于弦的直径平分过弦的两条直线,并且平分弦所对的两条弧。

三、垂径定理的应用垂径定理在几何学中有着广泛的应用,特别是在解决与圆和直径相关的问题时。

例如,可以利用垂径定理来证明圆的性质,如圆的对称性、圆的周长和面积等。

此外,垂径定理还可以用于解决与圆和直线相关的问题,如求圆的半径、确定圆的中心等。

四、垂径定理的推论1.从圆心到弦的垂线是弦的中垂线。

2.圆内一条弦的两端到圆心的距离相等。

3.圆内一条过圆心的弦最短,其长度为圆的直径。

4.圆内一条不过圆心的弦最短,其长度等于从圆心到弦中点的线段长。

五、垂径定理的证明垂径定理可以通过以下两种方法证明:1.直接证明法:通过作图和推理,直接证明垂径定理。

这种方法比较直观和简洁,但需要一定的几何知识和推理能力。

2.代数法:利用圆的性质和代数运算,证明垂径定理。

这种方法比较抽象,但具有普适性,可以用于证明其他类似的定理。

六、注意事项1.在使用垂径定理时,要注意区分直径和其他弦的区别,避免混淆。

2.在作图时,要确保所作的线段是垂直于弦的直径,否则将无法使用垂径定理。

3.在解决实际问题时,要根据具体情况选择合适的方法来应用垂径定理。

七、垂径定理的应用场景1.确定圆的形状和大小:垂径定理可以用于确定圆的形状和大小。

例如,通过测量圆的直径或半径,可以确定圆的大小;通过观察垂径定理的各种表现,可以判断圆的状态和形状。

2.计算圆的周长和面积:垂径定理可以用于计算圆的周长和面积。

例如,通过已知的直径或半径,可以计算出圆的周长和面积。

人教版初三数学上册圆的概念和性质

人教版初三数学上册圆的概念和性质

2013—2014学年九年级数学(上)周末辅导资料(10)理想文化教育培训中心 学生姓名:_______ 得分: _____一、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

如图,在⊙O 中,直径C D 垂直弦AB 于E 点,则有 AE =_____,AD=________,C A=_________。

垂径定理小结:⑴ 垂直弦;⑵平分弦;⑶平分弧;只要有一个结论成立,其他两个都成立。

例1:(1)如图(1),AB 是⊙O 的直径,弦CD ⊥AB,垂足为E,如果AB=20,CD=16, 那么线段OE 的长为( ) A 、10 B 、8 C 、6 D 、4(2)如图(2),已知⊙O 的半径为5,弦AB =6,M 是AB 上任意一点,则线段OM 的长可能是( ) A .2.5 B .3.5 C .4.5 D .5.5(3)高速公路的隧道和桥梁最多.图3是一个隧道的横截面,若它的形状是以O 为圆心的圆的一部分,路面AB =10米,净高CD =7米,则此圆的半径OA =( ) A .5 B .7 C .375 D .377(4)(2013•广安)如图4,已知半径OD 与弦AB 互相垂直,垂足为点C ,若AB=8cm ,CD=3cm ,则圆O 的半径为( )(5)如图,已知⊙O 的半径为2,弦BC 的长为A 为弦BC 所对优弧上任意一点(B ,C 两点除外)。

⑴求∠BAC 的度数; ⑵求△ABC 面积的最大值.二、圆心角、弧、弦、弦心距的关系:定理:在同圆等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对弦的弦心距也相等.图(2)图3推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。

例2:(1)(2013•常州)如图1,△ABC 内接于⊙O ,∠BAC=120°,AB=AC ,BD 为⊙O 的直径,AD=6,则DC= .(2)(2013•内江)如图2,半圆O 的直径AB=10cm ,弦AC=6cm ,AD 平分∠BAC ,则AD 的长为( ) . cm cm cm(3) (2013•宜昌)如图,DC 是⊙O 直径,弦AB ⊥CD 于F ,连接BC ,DB ,则下列结论错误的是( ) .图1 图2 图3 图4 (4)(2013•苏州)如图4,AB 是半圆的直径,点D 是AC 的中点,∠ABC=50°,则∠DAB 等于( )三、圆周角定理圆周角定理: 一条弧所对的周角等于它所对圆心角的一半。

人教版九年级数学第二十四章《圆》单元知识点总结

人教版九年级数学第二十四章《圆》单元知识点总结

人教版九年级数学第二十四章《圆》单元知识点总结1.弦弦:连结圆上任意两点的线段叫做弦. 直径:经过圆心的弦叫做直径.弦心距:圆心到弦的距离叫做弦心距.2.弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.①半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;②优弧:大于半圆的弧叫做优弧;③劣弧:小于半圆的弧叫做劣弧.3.同心圆与等圆圆心相同,半径不等的两个圆叫做同心圆.圆心不同,半径相等的两个圆叫做等圆.同圆或等圆的半径相等.4.等弧在同圆或等圆中,能够完全重合的弧叫做等弧.5、弧、弦、圆心角的关系(1)圆心角定义如图所示,∠AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角.(2)定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.推论:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.6、圆周角(1)圆周角定义:像图中∠AEB、∠ADB、∠ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.(2).圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.(3).圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.7.圆内接四边形:(1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.(2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角).8.弦、弧、圆心角、弦心距的关系:在同圆或等圆中,弦,弧,圆心角,弦心距等几何量之间是相互关联的,即它们中间只要有一组量相等,(例如圆心角相等),那么其它各组量也分别相等(即相对应的弦、弦心距以及弦所对的弧也分别相等)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

垂径定理、圆心角、弧、弦、弦心距间的关系一. 本周教学内容:垂径定理、圆心角、弧、弦、弦心距间的关系[学习目标]1. 理解由圆的轴对称性推出垂径定理,概括理解垂径定理及推论为“知二推三”。

(1)过圆心,(2)垂直于弦,(3)平分弦,(4)平分劣弧,(5)平分优弧。

已知其中两项,可推出其余三项。

注意:当知(1)(3)推(2)(4)(5)时,即“平分弦的直径不能推出垂直于弦,平分两弧。

”而应强调附加“平分弦(非直径)的直径,垂直于弦且平分弦所对的两弧”。

2. 深入理解垂径定理及推论,为五点共线,即圆心O,垂足M,弦中点M,劣弧中点D,优弧中点C,五点共线。

(M点是两点重合的一点,代表两层意义)COA BMD3. 应用以上定理主要是解直角三角形△AOM,在Rt△AOM中,AO为圆半径,OM为弦AB的弦心距,AM为弦AB的一半,三者把解直角形的知识,借用过来解决了圆中半径、弦、弦心距等问题。

无该Rt△AOM时,注意巧添弦心距,或半径,构建直角三角形。

4. 弓形的高:弧的中点到弦的距离,明确由定义知只要是弓形的高,就具备了前述的(4)(2)或(5)(2)可推(1)(3)(5)或(1)(3)(4),实际可用垂径定理及推论解决弓形高的有关问题。

5. 圆心角、弧、弦、弦心距四者关系定理,理解为:(1)圆心角相等,(2)所对弧相等,(3)所对弦相等,(4)所对弦的弦心距相等。

四项“知一推三”,一项相等,其余三项皆相等。

源于圆的旋转不变性。

即:圆绕其圆心旋转任意角度,所得图形与原图象完全重合。

()()()()1234⇔⇔⇔O B'M'A' BMA6. 应用关系定理及推论,证角等,线段等,弧等,等等,注意构造圆心角或弦心距作为辅助线。

7. 圆心角的度数与弧的度数等,而不是角等于弧。

二. 重点、难点:垂径定理及其推论,圆心角,弧,弦,弦心距关系定理及推论的应用。

【典型例题】例1. 已知:在⊙O 中,弦AB =12cm ,O 点到AB 的距离等于AB 的一半,求:∠AOB 的度数和圆的半径。

点悟:本例的关键在于正确理解什么是O 点到AB 的距离。

解:作OE ⊥AB ,垂足为E ,则OE 的长为O 点到AB 的距离,如图所示:∴==⨯=OE AB cm 1212126() 由垂径定理知:AE BE cm ==6∴△AOE 、△BOE 为等腰直角三角形 ∴∠AOB =90°由△AOE 是等腰直角三角形 ∴==OA AE 626, 即⊙O 的半径为62cm点拨:作出弦(AB )的弦心距(OE ),构成垂径定理的基本图形是解决本题的关键。

例2. 如图所示,在两个同心圆中,大圆的弦AB ,交小圆于C 、D 两点,设大圆和小圆的半径分别为a ,b 。

求证:AD BD a b ·=-22证明:作OE ⊥AB ,垂足为E ,连OA 、OC 则OA a OC b ==,在Rt AOE ∆中,AE OA OE 222=-在Rt COE ∆中,CE OC OE 222=-()()∴-=---AE CE OA OE OC OE 222222=-=-OA OC a b2222即()()AE CE AE CE a b +-=-22由垂径定理,得: OF OC CF cm =-=-=222213125()∴+=OE OF cm 17()∴AB 、CD 之间的距离为17cm ,故应填17cm 。

点拨:本题应用垂径定理,构造直角三角形,再由勾股定理解题,很巧妙。

例3. ⊙O 的直径为12cm ,弦AB 垂直平分半径OC ,那么弦AB 的长为( ) A. 33cmB. 6cmC. 63cmD. 123cm(2001年辽宁)解:圆的半径为6cm ,半径OC 的一半为3cm ,故弦的长度为 ()2632321632222-=-=()cm故选C 。

例4. 如图所示,以O 为圆心,∠AOB =120°,弓形高ND =4cm ,矩形EFGH 的两顶点E 、F 在弦AB 上,H 、G 在AB ⋂上,且EF =4HE ,求HE 的长。

DO解:连结AD 、OG ∠=∠=⨯︒=︒AOD AOB 121212060 OA =OD∴△AOD 为等边三角形 ∵OD ⊥AN∵OD =OG =8cm设HE x =,则()MG x MO x cm ==+24, 在Rt OMG ∆中,由MG OM OG 222+=得: ()()x x ++=42822解得:x x 121254==-,(舍去) ∴HE 的长为125cm点拨:借助几何图形的性质,找出等量关系,列出方程求解,这是解决几何计算题的常用方法。

例5. 已知,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,且AB cm OC cm ==85,,则DC 的长为( ) A. 3cmB. 2.5cmC. 2cmD. 1cm(2001年北京东城区)解:OD =-=54322∴=-=DC cm 532()故选C 。

常见错误:将DC 错算为OD ,即算出OD 就不再计算DC 了,从而错选A 。

这种错误十分常见,一定要注意慎重的计算完全。

例6. 在⊙O 中,AB AC ⋂=⋂2,那么( )A. AB AC =B. AB AC =2C. AB AC >2D. AB AC <2 解:如图所示,连结BC 。

CAB AC ⋂=⋂2 ∴⋂=⋂AC BC∴=AC BC在△ABC 中,AB <AC +BC ∴AB <2AC点拨:本题考察弦、弧、圆心角之间的关系,要正确理解三者之间的关系定理。

例7. 已知⊙O 的半径是10cm ,AB ⋂是120°,那么弦AB 的弦心距是( )A. 5cmB. 53cmC. 103cmD.523cmA BOC解:如图所示,OA cm =10,∠AOB =120° ∴∠=∠=︒AOC AOB 1260 在Rt △ACO 中,CO AO AOC cm =∠=⨯=·cos ()10125 故选A 。

点拨:本题考察弧、弦、弦心距、圆心角之间的关系,要正确构造三角形,灵活运用。

例8. 等腰△ABC 的顶角A =120°,腰AB =AC =10,△ABC 的外接圆半径等于( ) A. 20 B. 15 C. 10 D. 5 解:如图所示,连结OA 、OB∵AB =AC =10∴⋂=⋂AB AC由垂径定理的推论,得OA 垂直平分BC ,垂足为D 又∵∠BAC =120°∴∠ABC =∠ACB =30° ∴∠BAO =60° 又∵OA =OB∴△AOB 是等边三角形 ∴半径OA =OB =AB =10点拨:垂径定理及其推论是很重要的性质,主要解题思路是构造特殊的三角形,然后应用定理解题。

例9. 点P 为半径是5的⊙O 内一点,且OP =3,在过点P 的所有弦中,长度为整数的弦一共有( ) A. 2条 B. 3条 C. 4条 D. 5条(2002年山东)解:选C 。

点拨:圆是中心对称图形,故与P 点对称的点,关于中点对称有一个,关于轴对称有2个。

因此,长度为整数弦一共有4条。

例10. 如图所示,M 、N 分别是⊙O 的弦AB 、CD 的中点,AB =CD 。

求证:∠AMN =∠CNMD点悟:由弦AB =CD ,想到利用弧,圆心角、弦、弦心距之间的关系定理,又M 、N 分别为AB 、CD 的中点,如连结OM 、ON ,则有OM =ON ,OM ⊥AB ,ON ⊥CD ,故易得结论。

证明:连结OM 、ON∵O 为圆心,M 、N 分别为弦AB 、CD 的中点 ∴OM ⊥AB ,ON ⊥CD ∵AB =CD ∴OM =ON∴∠OMN =∠ONM∵∠AMN =90°-∠OMN ∠CNM =90°-∠ONM ∴∠AMN =∠CNM点拨:有弦中点,常用弦心距利用垂径定理及圆心角、弧、弦、弦心距之间关系定理来证题。

例11. 在⊙O 1与⊙O 2中,分别有40°的MN ⌒和M N 11⌒,那么:(1)MN ⌒与M N 11⌒相等吗?(2)∠MO N 1与∠M O N 121相等吗?错解:(1)因为MN ⌒与M N 11⌒都是40°的弧所以MN ⌒=M N 11⌒(2)MN ⌒与M N 11⌒相等,所以∠∠M O N M O N 11121=常见错误:(1)误以为弧的度数相等弧亦相等,两弧相等必须是在同圆或等圆的前提下,看它们是否“重合”;(2)应该知道圆心角是角,它的大小是可以用度数来衡量的,度数相同的角就相等。

可见它不受所对的弧相等与否来制约。

正解:(1)不一定相等。

(2)相等。

【模拟试题】一. 选择题。

1. 下列命题中,正确的命题是( )A. 平分一条弦的直径,垂直平分这条弧所对的弦B. 平分弦的直径垂直于弦,并平分弦所对的弧C. 在⊙O 中,AB 、CD 是弦,若AC BD ⌒⌒=,则AB ∥CD D. 圆是轴对称图形,对称轴是圆的每一条直径2. 已知P 为⊙O 内一点,且OP =3cm ,如果⊙O 的半径是4cm ,那么过P 点的最短弦等于( ) A. 2cmB. 3cmC. 7cmD. 27cm3. 弓形弦长24,弓形高为8,则弓形所在圆的直径是( ) A. 10 B. 26 C. 13D. 54. 在直径是10cm 的⊙O 中,AB ⋂为60°,则弦AB 的弦心距是( )A. 103cmB.1523cmC. 53cmD.523cm 5. AB 、CD 分别为大小不同圆的弦,共AB =CD ,那么AB CD ⋂⋂、的关系是( )A. AB CD ⋂=⋂B. AB CD ⋂>⋂C. AB CD ⋂<⋂D. 不确定二. 填空题。

6. 已知AB 为⊙O 直径,AC 为弦,OD ∥BC 交AC 于D ,AC =6cm ,则DC =____________。

7. 直角三角形外接圆的圆心在___________,它的半径为___________一半。

8. 若一个圆经梯形ABCD 四个顶点,则这个梯形是___________梯形。

9. 弦AB 把⊙O 分3:7,则∠AOB =___________。

10. 若⊙O 半径是4,P 在⊙O 内,PO =2,则过P 点的最短的弦所对劣弧是___________度。

11. ⊙O 中,弦AB 垂直直径CD 于点P ,半径OA =4cm ,OP =2cm ,则∠AOB =__________,∠ADC =__________,BD ⋂度数为__________,△ADC 周长为__________ cm 。

三. 解答题。

12. 如图,⊙O 的两弦AB ,CD 互相垂直于H ,AH =4,BH =6,CH =3,DH =8,求⊙O 半径。

相关文档
最新文档