微积分考试题库(附答案)
大学微积分考试题及答案

大学微积分考试题及答案一、选择题(每题3分,共30分)1. 函数f(x) = x^2在区间(-1, 1)上是:A. 增函数B. 减函数C. 先减后增函数D. 先增后减函数答案:A2. 极限lim (x->0) [sin(x)/x]的值是:A. 0B. 1C. 2D. 无穷大答案:B3. 下列哪个函数是奇函数?A. f(x) = x^2B. f(x) = |x|C. f(x) = x^3D. f(x) = cos(x)答案:C4. 曲线y = x^3在点(1, 1)处的切线斜率是:A. 1B. 2C. 3D. 4答案:C5. 定积分∫[0, 1] x dx的值是:A. 0B. 1/2C. 1/3D. 1答案:C6. 微分方程dy/dx = x^2的通解是:A. y = x^3 + CB. y = e^x + CC. y = sin(x) + CD. y = ln(x) + C答案:A7. 函数f(x) = e^x在点x=0处的导数是:A. 0B. 1C. 2D. e答案:B8. 以下哪个级数是收敛的?A. ∑(-1)^n / nB. ∑n^2C. ∑(1/n)D. ∑(1/n^2)答案:D9. 曲线y = ln(x)的拐点是:A. x = 1B. x = eC. x = 0D. 没有拐点答案:D10. 以下哪个选项是正确的泰勒公式展开?A. e^x = ∑x^nB. sin(x) = ∑(-1)^n * x^(2n+1) / (2n+1)!C. ln(1+x) = ∑(-1)^n * x^n / nD. cos(x) = ∑x^(2n) / (2n)!答案:D二、填空题(每题4分,共20分)11. 函数f(x) = x^4 - 4x^3 + 4x^2的驻点是______。
答案:x = 0, x = 312. 极限lim (x->∞) (1 + 1/x)^x的值是______。
答案:e13. 定积分∫[1, e] e^x dx可以通过分部积分法计算,其结果是______。
微积分试题及答案

微积分试题及答案1. 求函数f(x) = 3x^2 - 2x + 1在x = 2处的导数。
解析:首先,我们需要求函数f(x)的导数。
对于一个二次函数 f(x) = ax^2 + bx + c,它的导数等于2ax + b。
因此,对于f(x) = 3x^2 - 2x + 1,其导数即为 f'(x) = 6x - 2。
接下来,我们需要求在 x = 2 处的导数。
将 x = 2 代入导数公式,得到 f'(2) = 6(2) - 2 = 10。
答案:函数f(x)在x = 2处的导数为10。
2. 求函数g(x) = sin(x) + cos(x)的定积分∫[0, π] g(x)dx。
解析:我们需要求函数 g(x) = sin(x) + cos(x) 在[0, π] 区间上的定积分。
首先,我们可以分别求 sin(x) 和 cos(x) 在[0, π] 区间上的定积分,然后将结果相加即可。
根据积分的基本性质,∫sin(x)dx = -cos(x) 和∫cos(x)dx = sin(x),所以:∫[0, π]sin(x)dx = [-cos(x)]|[0, π] = -cos(π) - (-cos(0)) = -(-1) - (-1) = 2∫[0, π]cos(x)dx = [sin(x)]|[0, π] = sin(π) - sin(0) = 0 - 0 = 0将上述结果相加,得到定积分的结果:∫[0, π]g(x)dx = ∫[0, π]sin(x)dx + ∫[0, π]cos(x)dx = 2 + 0 = 2答案:函数g(x) = sin(x) + cos(x)在[0, π]区间上的定积分为2。
3. 求曲线y = x^3在点(1, 1)处的切线方程。
解析:要求曲线 y = x^3 在点 (1, 1) 处的切线方程,我们需要确定切线的斜率和过切点的直线方程。
首先,我们求出这个曲线在点(1, 1)处的导数来获得切线的斜率。
微积分试卷(含答案)

微积分试题一、 填空题(每题2分⨯10=20分)1、函数()f x =的定义域是2、 设()2f x x =- ,则[(2)]f f =3、 22929lim 1n n n n →∞--=- . 4、 0sin 5limsin x x x→= 5、 1lim(1)x x x →∞+= 6、 '(arcsin )x =7、 函数2y x =,则=dy 8、 函数3x y e =的导数为 . 9、 02sin lim x x x→= . 10、数学思维从思维活动的总体规律的角度来考察,可分为形象思维、 、和直觉思维。
二 选择题(每题2分⨯5=10分)1、 若),1()(+=x x x f 则=-)(x f ( ).A x(x-1)B (x-1)(x-2)C x(x+1)D (x+1)(x+2)2、1sin(1)lim 1x x x →-=-( ). A 1 B 0 C 2 D 21 3、 函数)(x f 在0x x =处有定义是)(x f 在0x x =处连续的( ).A 必要条件B 充分条件C 充要条件D 无关条件4、设)(x f y -=,则='y ( ).A )('x fB )('x f -C '()f x --D )('x f -5、 设函数(),()u x v x 在x 可导,则( )A []uv u v '''=B []uv u v '''=-C []u v u v '''⨯=+D []uv u v uv '''=+三、计算题(每小题6分,共24分)1、已知2(tan )6sec f x x =-,求)(x f 2、求极限333lim 22x x x x→∞- 3、求极限0tan sin lim x x x x→- 4、求极限10lim(14)xx x →+四、计算题(每小题8分,共24分)1、求4x y x e =的导数2、设)(x y y =由隐函数5y e xy =+确定,求y '。
微积分试卷及标准答案6套

微积分试题 (A 卷)一. 填空题 (每空2分,共20分)1. 已知,)(lim 1A x f x =+→则对于0>∀ε,总存在δ>0,使得当时,恒有│ƒ(x )─A│< ε。
2. 已知2235lim2=-++∞→n bn an n ,则a = ,b = 。
3. 若当0x x →时,α与β 是等价无穷小量,则=-→ββα0limx x 。
4. 若f (x )在点x = a 处连续,则=→)(lim x f ax 。
5. )ln(arcsin )(x x f =的连续区间是 。
6. 设函数y =ƒ(x )在x 0点可导,则=-+→hx f h x f h )()3(lim000______________。
7. 曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为 。
8. ='⎰))((dx x f x d 。
9. 设总收益函数和总成本函数分别为2224Q Q R -=,52+=Q C ,则当利润最大时产量Q 是 。
二. 单项选择题 (每小题2分,共18分)1. 若数列{x n }在a 的ε 邻域(a -ε,a +ε)内有无穷多个点,则( )。
(A) 数列{x n }必有极限,但不一定等于a (B) 数列{x n }极限存在,且一定等于a(C) 数列{x n }的极限不一定存在 (D) 数列{x n }的极限一定不存在 2. 设11)(-=x arctgx f 则1=x 为函数)(x f 的( )。
(A) 可去间断点 (B) 跳跃间断点 (C) 无穷型间断点(D) 连续点 3. =+-∞→13)11(lim x x x( )。
(A) 1 (B) ∞ (C)2e (D) 3e4. 对需求函数5p eQ -=,需求价格弹性5pE d -=。
当价格=p ( )时,需求量减少的幅度小于价格提高的幅度。
(A) 3 (B) 5 (C) 6 (D) 105. 假设)(),(0)(lim ,0)(lim 0x g x f x g x f x x x x ''==→→;在点0x 的某邻域内(0x 可以除外)存在,又a 是常数,则下列结论正确的是( )。
微积分试卷(附答案)

微积分试卷一、填空题(每题3分,共30分) 1、函数)1ln(3-+-=x x y 的定义域是____________.2、设xx f -=11)(则=))(1(x f f ________________. 3、已知654lim25=-+-→x kx x x ,则k =________________. 4、=+-∞→xx x x )11(lim ____________. 5、设函数⎪⎩⎪⎨⎧=≠=0,0,1sin )(x a x xx x f 为),(+∞-∞上的连续函数,则a =____________ . 6、设)(x f 在0=x 处可导,且0)0(=f ,则=→xx f x )(lim 0. 7、已知xxx f +=1)1(,求)(ln x f '= . 8、曲线)1ln(2x y +=的在区间__________________单调减少。
9、若xe-是)(x f 的原函数,则=⎰dx x f x )(ln 2_____________.10、⎰=xdx x ln _____________. 二、单选题(每题3分,共15分)1、下列极限计算正确的是( )A . 111lim 0=⎪⎭⎫ ⎝⎛++→x x x B. e x xx =⎪⎭⎫⎝⎛++→11lim 0C . 1sin lim=∞→x x x D. 11sin lim 0=→xx x2、函数11arctan )(-=x x f 在x =1处是( ).A. 连续B. 可去间断点C. 跳跃间断点D. 第二类间断点3、函数3)(x x f =在区间]1,0[上满足拉格朗日中值定理,则其ξ=( ).A . 3 B.3- C.33-D. 33 4、当0→x 时,与2x 等价的无穷小是( )。
A. 12-xeB. )21ln(x+ C. )cos 1(2x - D.x arctan5、设)()(x f x F =',则下列正确的表达式是( ) A .⎰+=C x f x dF )()( B. C x F dx x f +=⎰)()(C.⎰+=C x f dx x F dx d)()( D. ⎰+='C x f dx x F )()( 三、计算题(每题8分,共32分)1、求极限xx xx x 3220sin sin lim -→2、求曲线x yy x arctan ln22=+所确定的函数)(x f y =在)0,1(处的切线方程。
微积分练习100题及其解答

2
1
x2
.
1
解: lim x e
x 0
2
1
lim
x2
et . t t
17.求极限: lim sin x ln x .
x 0
解: lim sin x ln x lim
x 0 x 0
1 ln x tan x sin x x lim lim 0. x 0 csc x x 0 csc x cot x x 1 x 2 1 x . 1 x2 lim x 1 1 x tan 2 1 x x
cos 2x 1 2 sin 2x lim 2 x 0 sin x 2 x sin 2 x x cos 2 x 2 sin 2x 6x cos 2x 2x2 sin 2x ; 2 sin 2x 1 2 x lim x 0 2 sin 2x 3 4 cos 2 x x sin 2 x 2x lim
2.求极限: lim
e x e sin x . x 0 x sin x
( x 0) ,∴ lim
解:∵ e x 1 ~ x
e x e sin x e x sin x 1 lim e sin x 1. x 0 x sin x x0 x sin x
x 0
2
13.求极限: lim
x1
1 1 . 1 x ln x
1 1 1 1 ln x 1 x x lim lim lim x 1 1 x x 1 x 1 1 x ln x (1 x) ln x ln x ; 解: x 1 x 1 1 lim lim x 1 1 x x ln x x 1 1 ln x 1 2
微积分考试试题及答案

微积分考试试题及答案一、选择题1. 下列哪个是微积分的基本定理?A. 韦达定理B. 牛顿-莱布尼兹公式C. 洛必达法则D. 极限定义答案:B. 牛顿-莱布尼兹公式2. 对于函数$f(x) = 3x^2 - 2x + 5$,求其导数$f'(x)$。
A. $3x^2 - 2x$B. $6x - 2$C. $6x - 2x$D. $6x - 2$答案:D. $6x - 2$3. 已知函数$y = 2x^3 + 4x - 1$,求其在点$(1, 5)$处的切线斜率。
A. 6B. 8C. 10D. 12答案:B. 8二、填空题1. 函数$y = \sin x$在$x = \pi/2$处的导数是\_\_\_\_\_\_。
答案:$1$2. 函数$y = e^x$的导数是\_\_\_\_\_\_。
答案:$e^x$3. 函数$y = \ln x$的导数是\_\_\_\_\_\_。
答案:$\frac{1}{x}$三、简答题1. 请解释一下微积分中的基本概念:导数和积分的关系。
答:导数和积分是微积分的两个基本概念,导数表示函数在某一点上的变化率,而积分表示函数在某一区间上的累积效果。
导数和积分互为逆运算,导数可以用来求解函数的斜率和最值,积分可以用来求解函数的面积和定积分。
2. 为什么微积分在物理学和工程学中如此重要?答:微积分在物理学和工程学中具有重要作用,因为微积分提供了一种精确的方法来描述和分析连续变化的过程。
通过微积分,可以求解物体在运动过程中的速度、加速度、轨迹等物理量,以及工程中涉及到的曲线、曲面、体积等问题。
微积分为物理学和工程学提供了丰富的数学工具,可以更准确地描述和解决实际问题。
四、计算题1. 计算定积分$\int_{0}^{1} x^2 dx$。
答:$\frac{1}{3}$2. 求函数$f(x) = 3x^2 - 2x + 5$在区间$[1, 2]$上的定积分。
答:$\frac{19}{3}$以上就是微积分考试的试题及答案,希望对你的复习有所帮助。
微积分复习试题及答案10套(大学期末复习资料)

微积分复习试题及答案10套(大学期末复习资料)习题一(A) 1、求下列函数的定义域:ln(4),x2(1) (2) (3) y,y,logarcsinxyx,,4a||2x,113y,,log(2x,3)(4) (5) yx,,,1arctanax,2x2、求下列函数的反函数及其定义域xx,32(1) (2) (3) yy,,yx,,,1ln(2)x2,1x,3x,,(4)yx,,,2sin,[,] 3223、将下列复合函分解成若干个基本初等函数2x(1) (2) (3) yx,lnlnlnyx,,(32ln)ye,,arcsin123(4) y,logcosxa4、求下列函数的解析式:112,求. (1)设fxx(),,,fx()2xx2(2)设,求 fgxgfx[()],[()]fxxgxx()1,()cos,,,5、用数列极限定义证明下列极限:1232n,1,,(1)lim(3)3 (2) lim, (3) ,lim0nn,,n,,n,,3353n,n6、用函数极限定义证明下列极限:x,31x,32lim(8)1x,,lim1,lim,(1) (2) (3) 23x,x,,x,,3xx,967、求下列数列极限22nn,,211020100nn,,3100n,limlimlim(1) (2) (3)32n,,n,,n,,54n,n,144nn,,,12n111,,,,?,lim,,lim,,,(4)? (5) ,,222,,x,,x,,1223n(n1),,,nnn,,,,1111,,k,0(6) (7)() lim,,,?lim,,2x,,x,,n,31541,,nknnkn,,,111,,,,?12n222lim(1)nnn,,(8) (9) limx,,x,,111,,,,?12n5558、用极限的定义说明下列极限不存在:1x,3limcosx(1) (2) (3) limsinlimx,,x,0x,3x|3|x,9、求下列函数极限:22xx,,56xx,,562(1) (2) (3) limlimlim(21)xx,,x,x,13x,3x,3x,2222256x,xx,,44()xx,,,(4) (5) (6) limlimlim2x,x,,,220xx,,21x,2,nx,1x,9x,1(7) (8) (9) limlimlimm3,1xx,9x,1x,1x,3x,1 2nnxxx,,,,?13x,,12(10), (11)lim() (12)limlim33x,1,x1x,1xx,,111,xx,110、求下列函数极限:22xx,,56xx,,56 (2) (1)limlim2x,,x,,x,3x,3nn,1axaxaxa,,,,?011nn,lim(11)xx,,,(3) (4)lim,(,0)ab,00mm,1x,,x,,bxbxbxb,,,,?011mm,lim(11)xxx,,,(5) x,,11、求下列极限式中的参变量的值:2axbx,,6lim3,(1)设,求的值; ab,x,,23x,2xaxb,,lim5,,(2)设,求的值; ab,x,11x,22axbxc,,lim1,(3)设,求的值; abc,,x,,31x,12x,0arcsin~xxtan~xx1cos~,xx12、证明:当时,有:(1),(2) ,(3); 213、利用等价无穷小的性质,求下列极限:sin2xsin2xsecxlimlimlim(1) (2) (3) 2x,0x,0x,0,tan5x3x2x3sinx21111sin,,x,limlim()(4) (5)lim (6)x,0x,0x,0xxx,tansinxxtansin1cos,x14、利用重要极限的性质,求下列极限:sin2xsinsinxa,xxsin(1) (2) (3) limlimlimx,0xa,x,0,sin3xxa,1cos2x xsinxx,tan3sin2xx,4,,(4) (5) (6) limlimlim1,,,x,0x,0,,xsinxx,3xx,, xxx,3xk,21,,,,,,(7) (8) (9) limlim1,,lim1,,,,,,,,,,xxx,,xxxk,,,,,,, 1/x(10)lim12,x ,,,,x15、讨论下列函数的连续性:,,,xx1,,2fxxx()11,,,,(1) ,,211xx,,,x,x,0,sinx,x,0(2)若,在处连续,则为何值. fxax()0,,a,,1,1sin1,,xxx,x,e(0,x,1)(3) 为何值时函数f(x),在[0,2]上连续 a,a,x(1,x,2),53xx,,,52016、证明方程在区间上至少有一个根. (0,1)32x,0x,317、证明曲线在与之间至少与轴有一交点. xyxxx,,,,252(B)arccoslg(3,x)y,1、函数的定义域为 ( ) 228,3x,x(A) ,,,,,7,3 (B) (-7, 3) (C) ,7,2.9 (D) (-7, 2.9),1 2、若与互为反函数,则关系式( )成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C、 ;D、
5、广义积分 收敛,则____
A、 ;B、 ;C、 ;D、
三、计算题
1、求下列极限
(1) (2)
2、求下列导数或微分
(1) ,求 (2) ,求
(3)设 ,求
(4)求由方程 所确定的函数 的导数
(5) ,求
3、求下列积分
(1) (2)
(3) (4)
4、在抛物线 上找一点M,使得过该点的切线与抛物线及两坐标
3、方程 =1在平面解析几何中表示,在空间解析几何中表示
4、 个零点。
5、曲线
二、选择
1、设 在 处可导,则
A、 B、 C、0D、
2、若
A、 有水平渐近线 B、 有铅直渐近线
C、 D、 为有界函数
3、已知 当 时, 。
A、 B、 C、 D、1
4、已知
A、 B、 C、 D、
5、设
A、 B、 C、 D、
考试试卷(一)
一、填空
1.设 为单位向量,且满足 ,则 =
2. =, =, =
3.设 ,且当 时, ,则
4.设 ,则 =
5. 在 =0处可导,则 ,
二、选择
1.曲线 绕 轴旋转一周所得曲面方程为()。
(A) ;(B) ;
(C) ;(D)
2. =()。
(A)1(B) (C)0(D)
3.设函数 具有连续的导数,则 ()
(A) ;(B) ;
(C) ;(D)
4.设 在 上连续,则在 上至少有一点 ,使得()
(A) (B)
(C) (D)
5.设函数 在 = 处取得极值,则 ()
(A)0(B)1(C)2(D)3
三、计算题
1.求与两条直线 及 都平行且过点(3,-2,1)的平面方程。
2.求下列极限
(1) ;(2)
3.计算下列积分
高等数学(上册)考试试卷(六)
一、填空
1、抛物线 在其顶点处的曲率为_______________
2、 =______________________
3、 =____________________
4、已知 ,则 _______________
5、若 ,则 ________;若 ,则 __________
4、 存在的充分必要条件是 和
5、若两平面 与 互相垂直,则 =
二、选择
1、点M(2,-3,-1)关于 坐标面的对称点M1的坐标为
A、(-2,3,-1)B、(-2,-3,-1)C、(2,3,-1)(D)、(-2,-3,1)
2、下列命题不正确的是
A、非零常数与无穷大之积是无穷大。B、0与无穷大之积是无穷小。
三、计算题
1.求下列导数或微分
(1)设 ,其中 在 处连续,求
(3)已知
(4)设
2.计算下列极限
(1) (2)
3.计算下列积分
(1) (2)
(3) (4)
4.求函数 在[0,3]上的最大、最小值。
四、若 在[0,1]上有二阶导数,且 ,
证明:在(0,1)内至少存在一点 ,使得
高等数学(上册)考试试卷(四)
3、若 ,则
A、 =2, =4 B、 =4, =-5 C、 =1, =-2 D、 =-4, =5
4、已知
A、 B、 C、 D、
5、设 则 =
A、- B、 C、 D、
三、计算题
(1)
(2)求抛物线 (0、-3),(3,0)处的切线所围图形的面积。
(3)设 , 存在且不为0,求
(4)设 ,求 的单调区间,凸区间,极值及拐点。
(1) ;(2)
(3) ;(4)
4.求下列导数或微分
(1)设 ,求 。
(2) ,求 。
(3) ,求 。
(4)设 ,求隐函数 的二阶导数 。
四、设 ,且 ,证明:
(1)存在 ,使
(2)对任意实数 ,必存在 ,使
高等数学(上册)考试试卷(二)
一、填空
1、已知 ,则
2、设 ,则 =
3、设 的一个原函数为 ,则
三、计算题
1、求下列极限
(1) (2)
2、求下列导数或微分
(1)
(2)设函数 由方程 确定,求
3、计算下列积分
(1) (2)
4、设 ,讨论 在 处的连续明题
1、证明:当
2、设 在[0,1]上连续,在(0,1)上可导,且 ,求证在(0,1)内至少有一点 ,使
一、填空
1、 =是函数 的第类间断点,且为间断点。
2、
3、若 与 垂直且 ,
4、设 则 =
5、曲线 的拐点为,下凸区间为
二、选择
1、设 处可导,则必有
A、 2 B、 =2, C、 =1, =2 D、 =3, =2
2、已知三点A(1,0,-1),B(1,-2,0),C(-1,2,-1),则
A、 B、 C、 D、
(3)已知
(4)设
3、计算下列积分
(1) (2)
(3) (4)
4、求曲线 所围图形绕轴旋转一周所成立体的体积。
三、证明:当
高等数学(上册)考试试卷(三)
一、填空
1.设 =, =, =。
2.设 。
3.过两点(4,0,-2)和(5,1,7)且平行于 轴的平面方程为。
4.设 。
5.由曲线 以及直线 所围图形的面积由积分可表示为
(5)
(6)
(7)A、B为何值时,平面 : 垂直于直线L: ?
(8)设 ,(i) 为何值时, 在 =2处的极限存在?(ii) 为何
值时, 在 =2处连续?
(9)设 ,求
四、设 在 内可微, ,且 。
证明:存在常数 ,使
高等数学(上册)考试试卷(五)
一、填空
1、 __________
2、设 的一个原函数是 ,则
轴所围图形的面积最小。
二、选择
1、若 ,则必有_____
A、 在 点连续;B、 在 点有定义;
C、 在 的某去心邻域内有定义;D、
2、设有直线 与 ,则 与 的夹角为____
A、 ;B、 ;C、 ;D、
3、 在 处____
A、不连续;B、连续但不可导;
C、可导,但导数在该点不连续;D、导函数在该点连续
4、已知 ,则 ____
。
二、选择
1.若 则必有。
(A) (B)
(C) (D)
2.设函数 处连续,若 的极值点,则必有。
(A) (B)
(C) 不存在(D) 不存在
3.设 。
(A)1(B) (C)2(D)3
4.若 ,则。
(A) (B)
(C) (D)
5.函数 的单调增加区间为。
(A)(0, )(B)(1, )(C)( , )(D)(0, )
C、无界函数是无穷大。D、无穷大的倒数是无穷小。
3、设
A、 B、 C、 D、
4、 ,则 在 =0处
A、 存在, 不存在B、 存在, 不存在
C、 , 均存在但不相等D、 , 存在且相等
5、
A、0 B、1 C、2 D、4
二、计算题
1、求下列极限
(1) (2)
2、求下列导数或微分
(1)设 =
(2)求由椭圆方程 所确定的函数y的二阶导数。