同济大学2016-2017学年高等数学(B)上期末考试试卷

合集下载

(完整word版)大一高数同济版期末考试题(精) - 副本

(完整word版)大一高数同济版期末考试题(精) - 副本

高等数学上(1)一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值;(B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。

4.)()( , )(2)( )(10=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x (B )222x +(C )1x - (D )2x +.二、填空题(本大题有4小题,每小题4分,共16分) 5. =+→xx x sin 2)31(lim .6. ,)(cos 的一个原函数是已知x f xx=⋅⎰x xxx f d cos )(则.7.lim(cos cos cos )→∞-+++=22221n n nnnn ππππ .8. =-+⎰21212211arcsin -dx xx x .三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(177x x x x ⎰+-求11. . 求,, 设⎰--⎪⎩⎪⎨⎧≤<-≤=1 32)(1020)(dx x f x x x x xe x f x12. 设函数)(x f 连续,=⎰10()()g x f xt dt,且→=0()limx f x A x ,A 为常数. 求'()g x 并讨论'()g x 在=0x 处的连续性.13. 求微分方程2ln xy y x x '+=满足=-1(1)9y 的解.四、 解答题(本大题10分)14. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵坐标之和,求此曲线方程. 五、解答题(本大题10分)15. 过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D.(1) 求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所得旋转体的体积V .六、证明题(本大题有2小题,每小题4分,共8分)16. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,1()()≥⎰⎰qf x d x q f x dx.17. 设函数)(x f 在[]π,0上连续,且0)(0=⎰πx d x f ,0cos )(0=⎰πdx x x f .证明:在()π,0内至少存在两个不同的点21,ξξ,使.0)()(21==ξξf f (提示:设⎰=xdxx f x F 0)()()一、单项选择题(本大题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C二、填空题(本大题有4小题,每小题4分,共16分)5. 6e .6.cx x +2)cos (21 .7. 2π. 8.3π.三、解答题(本大题有5小题,每小题8分,共40分) 9. 解:方程两边求导(1)c o s ()()x ye y xy xy y +''+++= cos()()cos()x y x ye y xy y x e x xy +++'=-+0,0x y ==,(0)1y '=-10. 解:767u x x dx du == 1(1)112()7(1)71u du duu u u u -==-++⎰⎰原式 1(ln ||2ln |1|)7u u c =-++ 7712ln ||ln |1|77x x C =-++11. 解:10330()x f x dx xe dx ---=+⎰⎰⎰3()xxd e --=-+⎰⎰00232cos (1sin )x x xe e d x πθθθ----⎡⎤=--+-=⎣⎦⎰ 令3214e π=--12. 解:由(0)0f =,知(0)0g =。

同济大学2009-2010学年高等数学(B)下期末考试试卷(A)(2021年整理)

同济大学2009-2010学年高等数学(B)下期末考试试卷(A)(2021年整理)

同济大学2009-2010学年高等数学(B)下期末考试试卷(A)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(同济大学2009-2010学年高等数学(B)下期末考试试卷(A)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为同济大学2009-2010学年高等数学(B)下期末考试试卷(A)(word版可编辑修改)的全部内容。

本资料仅供参考复习练手之用,无论是重修只求及格,还是为了拿优保研,复习课本上的基础知识点和例题、课后习题才是重中之重,作为一个重修过高数的学长,望大家不要舍本求末,记住这样一句话,只有当你付出了,你才可能有收获。

2009—2010学年第二学期考核试卷(A 卷)《高等数学B 》 2010—7-3一. 填空题(每小题4分,满分32分)()._____624211____2,212132.1222-+=-=-=++z y x z y x 处的法线方程为-,在点曲面 ()()().______52251_____2,1212ln .22为的方向导数处沿方向,在点函数-=+=l y x z ()()()._______,sin ,cos _____,,,,.32010210102222222⎰⎰⎰⎰⎰⎰----πρρϕρϕρρρϕdz z f d d dz z y x f dy dx z y x f x y x x 坐标积分形式为柱面的则三次积分为连续函数,设 ()()()()()()._____12____,10.42222++=+++=⎰x x x f dy y x yf dx y xyf x f L 关,则在整个平面上与路径无若曲线积分具有一阶连续导数,且设函数 ().0,4_____32______4.5222≥≤++∑=+⎰⎰∑z z y x dS xz :其中曲面积分π()()()._____32____,ln .61,1,1222=++=gradu div z y x u 则设函数 ()()._____3,1____12-.710--=∑∑∞=∞=的收敛区间为处发散,则幂级数在点若幂级数n n n n n n x n a x x a()()().____21____5,01202],(2.8-=⎩⎨⎧≤<+≤<--=-πππππππ收敛到处的付里叶级数在点则上的表达式为为周期函数,它在是以设x x f x x x x x f x f二.解答题 (需写出具体解答过程)()()()()()()()()()()().00,0,0,01,lim ,)(.0,0,0,0,00,0,,8.92031623不连续,所以在点令证明:处不连续在点证明函数分≠≠+==⎪⎩⎪⎨⎧=≠+=→k f kk y x f kx y y x y x y x xy y x f x ()[][][].1sin 1cos cos cos sin sin sin sin .,sin 10.1010101010102-=-+-=-====⎰⎰⎰⎰⎰⎰⎰⎰ydy y y y dy y y y dx y y dy dxdy y y x y x y D dxdy yy y y DD 解:所围成的闭区域与曲线是由直线其中计算二重积分分()()()()().2451251255242424.1,2410.11102102=-=-==-+=-+=-+=++Ω-+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩΩΩΩΩΩΩdz z z dz z z zdv zdv zdv zdv zdvydv xdv dv z y x z y x dv z y x 由对称性得解:三坐标面围成的闭区域与是由平面其中计算三重积分分()()().2,2,1,,,..124,10.1212022221222222222222222ππϑπ-=-===+-=+-==+'=--=+=+-==++-⎰⎰⎰⎰'I I d y x ydx xdy y x ydx xdy I y x L P y x x y Q y x x Q y x y P y x L y x ydx xdy L L y x L :在曲线内部做圆所以积分与路径无关,则解:按顺时针方向绕行为椭圆其中计算曲线积分分()()()()()()().872647231631634.,4010.13402020222122222111ππππσρρρθπ=+-=+-=++-=++++-=-==∑≤≤+=∑++++=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰Ω∑+∑∑Ω∑∑zD zd dz d d zdv dxdy y x dv z y I z z y x z dxdy z y x dydz z y x I 上下侧,:取解:取上侧为曲面其中计算曲面积分分 ()()()()()()()()()()()()().3113121(1131112113111312111212111211231.123110.14011010122<<----=-----=-+--+=+-+=++=++=-++=∑∑∑∞=++∞=+∞=+x x x x x x x x x x x x x f x x x x f n n n n n n n n n n n n n 解:成立范围的幂级数,写出展开式展开成将函数分()()()()()()()().32!11242!11242!12!112!212!12)!1(112!12!!21.,,0lim ,!21!!21.!1!!21101502220201201002021220022e S n n e x x x n x x x n x n x n x n x n n x n x n n x n n x S R a a n n n n a n n x n n n x n n n n n n n n n n n n n nn n n n n nn n n n n n n ==+∴⎪⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-+-=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=+∞∞-+∞=⇒=+=+=++∑∑∑∑∑∑∑∑∑∑∑∑∞=∞=∞=∞=∞=∞=∞=∞=∞=∞=+∞→∞=∞=记收敛域为解:的和由此求级数的收敛域及和函数,并求幂级数分。

同济大学高数B期末考试题

同济大学高数B期末考试题

同济大学2009-2010学年第一学期高等数学B(上)期终试卷一. 填空题(4'416'⨯=)1. 设函数()f x 具有二阶导数, 且1'0,'dx y dy y ≠=, 则223"'d x y dyy =-.2. 设函数()f u 为可导函数, 且'(0)0f ≠, 由参数方程3(sin 2)(1)tx f t y f e π=-⎧⎨=-⎩所确定的函数的 导数32t dydx ==.3. 极限111lim()ln 212n n n n n→∞+++=+++L .4. 微分方程22"5'6sin xy y y xex -++=+的特解形式为(不需确定系数)2()cos2sin 2x x Ax B e C x D x E-++++.二. 选择题(4'416'⨯=) 5. 设函数sin ()bx xf x a e=+在(,)-∞+∞内连续, 且lim ()0x f x →-∞=, 则常数,a b 满足: [D ]. ()0,0A a b <>; ()0,0B a b ><; ()0,0C a b ≤>; ()0,0D a b ≥<6. 曲线1ln(1)x y e x-=++, [D ] ()A 没有水平渐近线但有铅直渐近线; ()B 没有铅直渐近线但有水平渐近线; ()C 没有水平和铅直渐近线; ()D 有水平和铅直渐近线 7. 将0x +→时的无穷小量2sin ,,(1)xx t tdt tdt e dt αβγ===-⎰⎰排列起来, 使得后面的是前一个的高阶无穷小, 则正确的排列顺序是: [C ] (),,A αβγ; (),,B αγβ; (),,C βαγ; (),,D γβα 8. 设函数()f x 在点0x =的某个邻域内有定义, 且20()(0)0,lim2x f x f x→==-, 则在该点处 ()f x : [C ] ()A 不可导; ()B 可导且'(0)0f ≠; ()C 取得极大值; ()D 取得极小值.三. 解答题(7'428'⨯=) 9. 求极限30sin sin(sin )limx x x x →-, [30sin 1lim 6t t t t →-==]10. 计算定积分24tan sec x x xdx π⎰[224400111(tan )(sec 1)28242xd x x dx ππππ==--=-⎰⎰]11. 计算反常积分221arctan (1)xdx x x +∞+⎰[2212210111113()arctan arctan ()[arctan ]ln 2124232xdx xd x x x x ππ+∞+∞+∞=-=--=+++⎰⎰] 12. 试求微分方程221(1)dy y x y dx x+=-的通解[221111()'()1(ln )2x x x x c y x y y -=-⇒=-+]四. (8')求曲线ln y x =上的点, 使此曲线在该点的曲率半径为最小.[312222221(1)(1)(21)1(0)'(ln 2)22x x x R x R K x x ++-==>⇒=⇒-] 五. (8')设不定积分n n I =,(1)计算01,I I ; (2)利用变换sin x t =, 建立(2,3,4,)n I n =L 的递推公式[(1)01arcsin ,I x c I =+=[(2)211n n n n I I x c n n---=-] 六. (8')设函数(),()f x g x 在[,]a b 上连续, 且在[,]a b 上()0g x >, 证明至少存在一点[,]a b ξ∈, 使()()()()babaf xg x dxf g x dxξ=⎰⎰. [minmax ()()()babaf xg x dxf fg x dx≤≤⎰⎰]七. (8')过坐标原点作曲线21(0)y x x =+≥的切线, 记该切线与此曲线及y 轴所围成的平 面图形为D , 试求:(1)平面图形D 的面积; (2)平面图形D 绕直线1x =旋转一周所成的旋转体的体积, [12,,32y x S V π===] 八. (8')已知22123,,x x x x x x xy xe e y xe e y xe e e --=+=+=+-是某个二阶常系数线性非齐次微分方程的三个解, 试写出该微分方程的通解并建立此微分方程. [212,"'2(12)xx x x y c ec e xe y y y x e -=++--=-]同济大学2010-2011学年第一学期高等数学B(上)期终试卷一. 填空题(4'416'⨯=)1. 已知极限lim ()x e f x →存在, 且函数()f x 满足: ln 1()lim ()()ex e x e x x f x f x x e e-→-=+-, 则 2lim ()1x ee f x e →=-.2. 设函数2()ln(23)f x x x =+-, 则()11(2)(1)(1)!(1)5n n nf n -=--+.3. 不定积分1tan 1(tan ln tan )sin 22x dx x x C x +=++⎰.4. 定积分sin 2sin cos 03334x xx dx ππ=+⎰.二. 选择题(4'416'⨯=)5. 曲线32331(1)31t x t t t y t ⎧=⎪⎪+≠-⎨⎪=⎪+⎩的斜渐近线方程为 [A ] :1A y x =--; :1B y x =-; :1C y x =-+; :1D y x =+. 6. 曲线22162y x x =-上点(2,0)P 处曲率K = [B ] :0A ; :16B ; 1:16C ; :4D . 7. 设()f x 为(,)-∞+∞内连续的偶函数, '()()F x f x =, 则原函数()F x [C ] :A 均为奇函数; :B 均为偶函数;:C 中只一个奇函数; :D 既非奇函数也非偶函数.8. 设1s 为曲线sin y x =上相应于02x π≤≤的一段弧长, 2s 为椭圆2222x y +=的周长, 则 [D ] 12:A s s π-=; 12:B s s >; 12:C s s <; 12:D s s =. 三. 解答题(4'728'⨯=)9. 求极限302cos ()13lim x x x x→+-. [2cos ln 333001(cos 1)1lim lim 36xx x x e x x x x +→→--===-]10. 设()f x 是(,)-∞+∞内的连续的奇函数, 且0()lim 2x f x x +→=, 证明()f x 在0x =处可导,并求'(0)f . [00()(0)()(0)(0)0,lim lim 2'(0)00x x f x f f x f f f x x +-→→--====--] 11. 求定积分21[]max{1,}x x e dx --⎰, 其中[]x 表示不超过x 的最大整数.[0121102x I e dx dx dx e --=-++=-⎰⎰⎰]12. 判定反常积分2ln 1e x dx x +∞-⎰的收敛性, 如果收敛, 求出其值.[21ln 111(ln 1)()[]e e x I x d x x x e+∞+∞-=--=--=⎰] 四. (8')设()f x 是(,)-∞+∞内的连续函数, 且(0)0f ≠, 试求极限00()lim()xxx tf x t dt xf x t dt→--⎰⎰.[0()()()()1limlimlim[()()]2()()()x xxxx x x x x f u du uf u duf u duxf x f x f x f u duxf x f u duξξ→→→∞-====++⎰⎰⎰⎰⎰]五. (8')设可积函数()f x 在(,)-∞+∞内满足关系式: ()()sin f x f x x π=-+, 且当 [0,)x π∈时()f x x =, 试求3()f x dx ππ⎰.[2322(sin )(2)2I x x dx x dx πππππππ=-++-=-⎰⎰]六. (8')设n 为正整数, 函数2lim,0()100nx n x x f x e x x -→∞⎧≠⎪=--⎨⎪=⎩, 求曲线()y f x =与直线2xy =-所围平面图形绕x 轴旋转一周所成的旋转体的体积. [122202001()[()()]()1283,01x x x f x V dx x x x x πππ<⎧⎪=⇒=---=-⎨+-≥⎪+⎩⎰] 七. (8')求微分方程223(1)20dyx y xy dx-+=的通解. [22231111()'()()x x x C y y y y +=⇒=-]八. (8')令sin x t =, 化简微分方程22arcsin 2(1)x d y dyx xy e dx dx ---=, 并求其通解. [22222311sin ,cos cos cos dy dy d y d y dy t dx dt t dx dt t dt t ==+2arcsin arcsin arcsin 122arcsin 2t x xx d y x y e y C e C e e dt -⇒-=⇒=++]同济大学2011-2012学年第一学期高等数学B(上)期终试卷一. 填空选择题(3'824'⨯=) 1. 极限31lim()2xx x e x →∞+=-.2. 若极限000(2)()lim3h f x h f x h→--=, 则03'()2f x =-.3.积分22216(3x x dx -+=⎰.4. 积分2cos 2cos 1sin 2xx xedx e C =-+⎰.5. 微分方程4"4'0y y y -+=的通解为1212()x y c x c e=+.6. 记41sin I xdx ππ-=⎰, 22sin I xdx ππ-=⎰, 23I x dx ππ-=⎰, 21sin I x xdx ππ-=⎰. 则这4项积分的大小关系为 [ B ] ()A 2134I I I I >>>;()B 3214I I I I >>>;()C 4132I I I I >>>;()D 1243I I I I >>>.7. 下列反常积分中收敛的反常积分是 [ A ] 211()2A dx x +∞+⎰;()e B +∞⎰; ()sin C xdx +∞-∞⎰; 101()1D dx x -⎰ 8. 若函数23ln(1)ln 2,1()11x x f x x a x ⎧+-≠⎪=-⎨⎪=⎩在1x =连续, 则常数 [ D ] ()A 23a =; ()B 23a =-; ()C 13a =-; ()D 13a =.二. 解答题(6'530'⨯=) 1.计算由曲线y =340x y -+=所围平面图形的面积.[21141)336A x dx -=-=⎰] 2. 若函数()u x 与()v x 具有n 阶导数, 试写出()()u x v x ⋅计算n 阶导数的莱布尼茨公式, 计算2xx e ⋅的10阶导数. [()()()2(10)1020[()()];()2(5)nn k k n k x x n k u x v x C u v xe e x -===+∑]3. 求函数2()(5)xf x x x e =+-的单调区间以及函数的极大与极小值.[4max min '(4)(1)(,4],[1,);[4,1];(4)7;(1)3x f x x e f e f e -=+-⇒-∞-+∞--==-Z ]]4. 计算反常积分221ln(1)x dx x +∞+⎰. [ln 22I π=+] 5. 求微分方程2"2'31,(0),'(0)73y y y y y +-===-的解. [331211233xx x x y c e c e e e --=+-=--]三. (8')在长度单位为米的坐标中, 由方程21x y =-与直线220x y --=围成的薄片铅直 的浸入水中, 其中x 轴平行于水面且在水下1米深处, 试求该薄片的一侧所受的水压力. [121(1)(221)4P g y y y dy g ρρ-=-+-+=⎰]四. (10')求积分1)x dx +⎰, [28ln 2393I π=+-]五. (10')1. 试求常数,a b , 使得函数在=201,12x x y x ax b ≤≤⎧=⎨<≤+⎩在区间[0,2]上可导; 2. 若由该曲线段绕y 轴旋转形成一个容器, 如果每单位时间以常量0v 向容器均匀 的注水, 试求该容器在水溢出前水深为h 时水面的上升速度.[2,1a b ==-;0220002,01()()'()''4,13(1)h v h h V h x y dy v V x h h h v h h ππππ⎧≤≤⎪⎪=⇒==⇒=⎨⎪<≤+⎪⎩⎰]六. (10')要建一个容积为14, 侧面为圆柱形, 顶部接着一个半球形的仓库(不含底部), 已知顶部每平方单位的造价是其侧面圆柱部分单位造价的3倍, 试求该仓库的底圆半径, 使得该仓库的造价最省.[2223f rh r ππ=+,2322281414(),'()033r h r f r r f r r r πππ+=⇒=+=⇒=L ] 七. (8')函数()f x 在0[,)x +∞上具有二阶导数, 并且"()0f x <, 对于任意0x x >, 由拉格 朗日中值定理, 存在0x x ξ<<, 使得00()()'()()f x f x f x x ξ-=-. 证明ξ定义了 0(,)x +∞上的一个单调增加函数.['()f x 递减()x ξξ=唯一确定(函数); 又可证00()()f x f x x x --], 可得()x ξ递增]同济大学2012-2013学年第一学期高等数学B(上)期终试卷一. 填空选择题(3'8⨯)1. 函数()xf x xe -=的四阶带佩亚诺余项的麦克劳林公式为234411()()26f x x x x x o x =-+-+2. 2(1)x y ex -=+在1x =所对应点的曲率1025K =3. 极限lim(1ln )x aa x a a x a a a x→-=--4. 由方程222y y x x ++=所确定的函数()y y x =在(1,0)点的导数(1,0)32dydx =5. 函数()f x 在[0,)+∞上连续, 则数列极限lim ()n f n →∞存在是函数极限lim ()x f x →+∞存在的什么条件? [ B ] ()A 充分条件; ()B 必要条件; ()C 充分必要条件; ()D 无关条件. 6. 在区间[,]a b 上, 函数()f x 连续的充分条件是: [ B ] ()()baA f x dx ⎰存在; ()()B f x 可导; ()()C f x 具有原函数; ()()D f x 有界.7. 如果作换元2sin x t =, 则定积分222(4)f x dx -⎰等于 [ C ]40()(2cos )2cos A f t tdt π⋅⎰; 24()(2cos )2cos B f t tdt ππ⋅⎰;42()(2cos )2cos C f t tdt ππ⋅⎰; 04()(2cos )D f t dt π⎰.8. 可导函数()f x 在区间[0,1]上单调增加的充分条件是在该区间上 [ D ] 2()()(1)()x A f x e x o x ∆=-∆+∆; 1()()0B f x dx >⎰;()"()0C f x >; 4()()[1()]()D f x f x x o x ∆=+∆+∆. 二. (4'3⨯)1. 如图是函数()y f x =的图像, 试在下列空格中填入恰当的符 号: 0<; 0=或0>.44()0f x dx -<⎰;44'()0f x dx -=⎰;44"()0f x dx ->⎰;44"'()0f x dx -<⎰.2. 求极限12001lim (12)x t x t dt x →+⎰ [1220lim 2(14)2xx x e →=+=]3. 计算不定积分(1)ln(1)x x dx ++⎰[2211(1)ln(1)(1)24x x x c ++-++] 三. (6'3⨯) 1. 求曲线21x x y e-=的凹凸区间与拐点的坐标. [22'(32),"4(2):(,2];:[2,)xx y ex y e x --=-=-⇒⋂-∞⋃+∞; 拐点:4(2,)e -]2. 计算反常积分21(2ln ln )edx x x x +∞+⎰. [1ln 1ln ln 322ln 2e x x +∞==+]3. 一个由曲线段24(01)y x x =≤≤绕y 轴旋转形成的容器内装满了比重为γ的均匀液体, 如果要将该容器内的液体全部排空至少需要做多少功. [48(4)43y W y dy πγπγ=-=⎰] 四. (8')试用适当的换元法求微分方程22222()2()1dy x y x dx y x -=-+的通解. [2222222arctan 21du xu y x u x u u x c dx u -=⇒+=⇒-=-+⇒+L ] 五. (8')试说明闭区间上连续函数的像集是闭区间, 并举例说明在闭区间上, 像集是闭区间的函数未必连续. [最值定理; 介值定理; 反例略]六. (10')计算由曲线2xy e =, 该曲线经过坐标原点的切线以及y 轴所围成图形的面积, 并 求该图形绕x 轴旋转所得旋转体的体积.[切线:2y ex =;切点:12x =; 1122222220023(2);[()(2)]412x x x e e A e ex dx V e ex dx ππ--=-==-=⎰⎰] 七. (10')试求微分方程22"cos y y x x +=+的通解.[221231;*cos 2sin 2;cos sin cos 226i y Ax Bx C D x E x y C x C x x x λ=±=++++=++--] 八. (10')()f x 是以T 为周期的连续函数, 若()Tf t dt A =⎰, 求极限01lim()xx f t dt x →+∞⎰.[0(0)(0)(0)1()()()()()()limlimlimTnTnT TnTn n n T T T f t dt f t dtf t dt f t dtn f t dt f t dtA n nT nT T T nθθθθθθθθθ+→∞→∞→∞≤<≤<≤<+++====+++⎰⎰⎰⎰⎰⎰]同济大学2013-2014学年第一学期高等数学B(上)期终试卷一. 选择与填空题(3'824'⨯=) 1. 极限262lim()1nn n e n -→∞-=+2. 利用定积分的几何意义,积分4-=⎰92π3. 微分方程"'120y y y +-=的通解为4312x xy C e C e -=+4. 已知敌方的导弹阵地位于坐标原点处,发射的导弹飞行轨迹为光滑曲线()y f x =,我方 拦截导弹的阵地位于x 轴正向2000公里处,发射的拦截导弹飞行速度是敌方导弹速度的 两倍,如果由计算机控制,在敌方导弹发射时我方的拦截导弹同时发射,并且我方导弹的 运行轨迹是直线,如果两导弹的相撞点为00(,)x y ,则该点满足的方程为2x =⎰5. 0{}x 是有界数列, 则该数列单调是数列极限存在的什么条件 【A 】 ()A 充分条件; ()B 必要条件; ()C 充分必要条件; ()D 无关条件.6. ()f x 是连续函数, 曲线段()()xaf t dt a x b ≤≤⎰的弧长s 的计算公式为 【C 】()a A s =⎰; ()a B s =⎰;()aC s =⎰; ()aD s =⎰无关条件.7. 函数()f x 具有三阶连续导数,如果"()0,[,]f x x a b >∈,则下列四项积分中,积分值 确定为正数的积分为 【A 】 ()['()'()]ba A I fb f x dx =-⎰; ()'()baB I f x dx =⎰;()[()()]baC I f x f a dx =-⎰; ()'"()baD I f x dx =⎰.8. 利用换元ln(1)x t =+, 积分2()x f e dx ⎰等于 【D 】20(1)()1f t A dt t ++⎰; 210()(1)e B f t dt -+⎰; 20(1)()1e f t C dt t ++⎰; 210(1)()1e f t D dt t -++⎰. 二. 计算下列各题(6'636'⨯=)1. 试计算由23ln 3x x y y +++=所确定的曲线在(1,1)点的切线方程.[22213'3470(31)4x y x y y x +=-=-⇒+-=+]2. 求由参数方程t tx e y e t-⎧=⎨=+⎩所确定函数()y y x =的导数22;dy d ydx dx . [22322();22t t t t dy d y e e e e dx dx =-+=+] 3. 求不定积分⎰[322(1)3x x c +-+] 4. 曲线段3:()L y x a x a =-≤≤的弧长为s , n D 是xoy 平面上与L 距离不超过n 的点集,即222{(,)(')('),(',')}n D x y x x y y n x y L =-+-≤∈,n D 的面积为n A ,求极限2lim nn A n →∞.[222()lim n n n A n A n s nπππ→∞≤≤+⇒=]三. (8')计算反常积分31arctan x dx x +∞⎰. [121arctan 11[arctan ]22x x x x +∞=-++=]四. (8')()f x 具有二阶导数, 如果极限201()(2)lim1x f x xf x x→++=-, 求(0),'(0),"(0)f f f . [(01,'(0)1,"(0)6f f f =-==-] 五. (8')可导函数()f x 满足方程40()2()1xf x tf t dt x -=--++⎰, 求函数()f x .[232(0)1,'()2()4()2(1)3x f f x xf x x f x x e -==-+⇒=-+] 六. (10')求函数231xx y xe ++=的单调区间与极值, 并求出该函数在区间[2,2]-上的最值.[23111'(21)(1)(,1],[1,],[,);22x x y x x e ++=++⇒-∞-↑--↓-+∞↑极小1()2y -=,极大1(1)y e -=-; 11min max 2(2),(2)2y y e e-=-=] 七. (10')计算由曲线21xy e=-, 直线41y e =-以及y 轴所围图形的面积; 并求出由该图形绕y 轴旋转所得旋转体的体积. [224244240031[(1(1)];2()(51)222x x A e e dx e V x e e dx πππ=---=+=-=-⎰⎰] 八. (8')计算极限12ln(1)0(12)limtxx x t dt t +→-⎰.[11222ln(1)(12)(12)1(ln(1)),ln(1)2txx t dt x x x x x L t eξξξξξ+--=-++<<⇒⇒=⎰:]同济大学2014-2015学年第一学期高等数学B(上)期终试卷一. 填空选择题(3'824'⨯=)1. 极限23232lim()1nn n n e n -→∞-+=+2. xy xe =在1x =对应点的曲率k =3223(14)e e +3.反常积分1111dx xα-+⎰⎰收敛, 则常数α的取值区间是3(,2)2α∈4.1'(32)(32)2x x x e f e dx f e c -=--+⎰5. ()f x 在[,]a b (其中1b a =+)上具有二阶导数,且"()0f x <,下列不等式正确的是 【B 】 ()'()'()()()A f b f a f b f a <<-; ()'()()()'()B f b f b f a f a <-<; ()()()'()'()C f b f a f b f a -<<; ()'()()()'()D f a f b f a f b <-<.6. ()f x 是连续函数, 极限121lim()nn k k n f n n→∞=-⋅∑等于下面的定积分 【D 】 11()(21)A f x dx --⎰; 2()(21)B f x dx -⎰; 11()2()C f x dx -⎰; 1()(21)D f x dx -⎰.7. 如果数列{}n x 在任意区间[,]a b 上只含有有限项, 则下面判断中正确的判断是 【D 】 (){}n A x 是收敛数列; (){}n B x 是有界数列但不收敛;(){}n C x 是无界数列但是当n →∞时不是无穷大量; ()D 极限lim n n x →∞=∞.8. 223()(1)(2)(3)4f x x x x x =---+, 则'()0f x =在区间(1,1)-内有几个实根 【C 】 ()0A 个; ()1B 个; ()2C 个; ()D 至少3个.二. 计算下列各题(6'424'⨯=) 1. 求函数21232x x y e-++=的单调区间与凹凸区间.[2211232322'(2),"(1)(3)x x x x y x e y x x e-++-++=-=--]2. 求曲线2132y x ey -+=在(1,1)点的切线方程. [230x y +-=]3. 计算反常积分311arctan xdx x +∞⎰ [12] 4. 求微分方程"3'441y y y x --=+的通解. [41212x xy C e C e x -=+-+]三. (8')分析曲线1(1)ln()(0)y x e x x=++>是否有铅直、水平与斜渐近线, 如果有则求出 相应的渐近线. [铅直渐近线0x =; 斜渐近线11y x e=++]四. (8')已知(),()f x g x 都是非负的连续函数, 曲线()y f x =与()y g x =关于直线y c =对 称,由曲线(),()y f x y g x ==以及直线,()x a x b a b ==<所围成的平面图形的面积为A . (1)证明该图形绕x 轴旋转所得旋转体的体积为2V cA π=; [22()()()2()bb baaaV f g dx f g f g dx c f g dx πππ=-=+-=-⎰⎰⎰](2)计算椭圆2214x y +≤绕直线2y =旋转所得旋转体的体积. [28V π=] 五. (8')设()f x 是可导函数, 并且满足方程220()()12xt f x tf dt x =++⎰, 求函数()f x .[2231(0)1,'()4()2()22x f f x xf x x f x e ==+⇒=-]六. (8')(1)写出ln(1)x +的带有佩亚诺余项的n 阶迈克劳林公式;(2)计算极限2lim 1(1)xx x e x→+∞+.[(1)12311(1)()23n n n x x x x o x n ---++++L;(2)221ln(1)lim lim 1(1)x x x xx x x e e x-+→+∞→+∞==+七. (10')由方程22,4y x y ==所确定的抛物型薄片铅直地浸入水中, 顶端与水面持平(长度 单位为米). (1)试求薄片一侧所受到的水压力; (2)如果此后水面以每分钟0.5米的速度开 始上涨, 试计算薄片一侧所受到的水压力的变化率.[(1)4(4P g y g ρ=-⎰; (2)40(,dP P g h y g dt ρ=-=⎰]八. (10')设222(0)nn n xy a a +=>所围图形在第一象限部分的面积为n A . (1)利用定积分写出n A 的计算公式(无需计算n A 的值); (2)证明极限lim n n A →∞存在; (3)计算极限lim n n A →∞.[(1)0an A =⎰;(2)1122220(1)n n a t dt A a a -≤=≤⎰⎰;(3)2lim n n A a →∞=]同济大学2015-2016学年第一学期高等数学B(上)期终试卷一. 填空选择题(3'824'⨯=)1. 极限1202lim()23h h h e h-→-=+.2. 积分(12sin )cos '(12sin )2f x x f x dx C--⋅-=+⎰.3. 函数220()sin(1)x F x t dt =+⎰的导函数4'()2sin(1)F x x x =+.4. 曲线322(1)1(12)3y x x =++-≤≤的弧长143s =.5. 极限0lim ()x x f x -→=+∞的定义是 【D 】()0,0A εδ∀>∃>, 当00x x δ<-<时, 有()f x A ε-<; ()0,0B εδ∀>∃>, 当x δ>时, 有()f x ε>; ()0,0C M X ∀>∃>, 当x X >时, 有()f x M >; ()0,0D M δ∀>∃>, 当00x x x δ-≤<时, 有()f x M >.6. 若123(),(),()y x y x y x 是二阶微分方程"()'()()y a x y b x y c x =++的三个线性无关的解, 则该方程的通解为 【D 】 112233()()()()A C y x C y x C y x ++, 其中123,,C C C 是任意常数; 11223()()()()B C y x C y x y x ++, 其中12,C C 是任意常数; 11223()()[()()]C C y x C y x y x ++, 其中12,C C 是任意常数; 112233()()()()D C y x C y x C y x ++, 其中任意常数1231C C C ++=.7. 若()f x 是连续函数, 则极限121lim()2nn k n k f n n→∞=+∑等于 【A 】 3212()()A f x dx ⎰; 2()()B f x dx ⎰; ()C 12()f x dx ⎰; 10()()2xD f dx ⎰.8. 若对于积分0(2)af a x dx -⎰作换元2a x u -=, 则该定积分化为 【C 】()()aaA f u du -⎰; 0()2()a B f u du ⎰; ()C 1()2aa f u du -⎰; 0()()a D f u du ⎰.二. 计算下列各题(6'424'⨯=)1. 试求曲线2sin y x y x ++=在点(1,0)处的切线方程. [21x y +=] 2. 求不定积分2ln(1)x dx +⎰. [2ln(1)22arctan x x x x c +-++]3. 求微分方程3'xy x y =-的通解. [411()4y x c x =+] 4. 求微分方程"2'15153y y y x --=-的通解. [531213x xy C e C e x -=+-+]三. (8')计算由22y x x =+与直线2y x =+所围图形的面积. [1229(2)2x x dx ---=⎰]四. (8')计算反常积分31arctan x dx x +∞⎰. [211111arctan arctan 2222I x x x x +∞=---=]五. (8')已知'()y f x =的函数图像如图,(1)求函数()y f x =的单调区间、极大值与极小值; (2)求曲线()y f x =的凹凸区间与拐点.[35353(,],[,);[,];()x x x x f x -∞+∞]Z 极大,5()f x 极小124124[,],[,);(,],[,];x x x x x x +∞⋃-∞⋂拐点112244(,()),(,()),(,())x f x x f x x f x ] 六. (10')在半径为R 的半球内内接一圆锥体, 使得该锥体的锥顶位于半球的球心上, 锥体的 底面平行于半球的底面, 求这样的内接圆锥体体积的最大值.[322max 1(3),()3393V R h h V π=-=]七. (10')一椭球形容器由长半轴为2m , 短半轴为1m 的半支椭圆曲线绕其短半轴旋转而成,若容器内盛满了水, 试求要把该容器内的水全部吸出需作的功.[2221(10),4(1)(),4x y y dW y dy g y W g πρπ+=-≤≤=--=] 八. (8')已知()f x 具有二阶导数, 且221"()12x f x x +≥+, 判断lim ()x f x →∞的情况, 并给出判断的理由. [21"(),()(0)'(0)"()22f x f x f f x f x ξ≥=++→+∞]同济大学2016-2017学年第一学期高等数学B(上)期终试卷一. 选择填空题(3'824'⨯=)1. ()y f x =具有二阶导数, 且'()0f x ≠. 若曲线()y f x =在00(,)x y 的曲率为0k ≠, 其 反函数1()x fy -=所表示的曲线在对应点的曲率为'k , 则有 【A 】()'A k k =; 1()'B k k=; ()C 'k k >; ()'D k k <. 2. 已知函数()y f x =满足(0)1f =, 如果在任意点x 处, 当x ∆充分小时都有 2()1xy x o x x ∆=∆+∆+, 则有 【C 】 2221()()(1)x A f x x -=+; 2()()11xB f x x=++; ()C ()1f x =; ()D 题中所给的条件无法得到确定的函数()f x . 3. 下面的极限式中哪项等于连续函数()f x 的定积分2()f x dx ⎰. 【D 】12()lim()nn k k A f n n →∞=∑; 121()lim ()n n k k B f n n →∞=∑; 11()lim ()n n k k C f n n →∞=∑; 11()lim 2()nn k k D f n n →∞=∑.4.要使反常积分+∞⎰收敛, 则实数p 的取值范围是 【C 】 ()1A p >; ()1B p <; ()2C p >; ()2D p <.5. 如果作换元sin x t =,则积分30(sin )f x dx π=⎰.6. 微分方程231x y dye dx -+=的通解2113ln()32x y e C +=+.7. 已知2()x f x dx eC =+⎰, 则222(21)1(21)4x xf x dx e C --=+⎰.8.定积分3421[ln(1)2R Rx x dx R π-++=⎰.二. 计算题(8'324'⨯=) 1.求极坐标所表示的曲线4θρ=在04πθ=所对应点处的切线方程. [532x y e π-=]2.计算定积分211π+⎰. [2π]3. 可导函数()f x 满足等式20()()22xttf dt f x =-⎰, 求函数()f x . [22()2x f x e =]三. (10')已知函数()()f x x R ∈在点1x =左连续, 同时该点是函数()f x 的跳跃间断点, 如 果该函数只有1x =一个间断点, 试分析函数32(39)f x x x C +-+间断点的个数. [266C -<<三个; 6C =两个; 26C ≤-或6C >一个]四. (10')求微分方程00"2'31414,'93x x y y y x y y ==+-=+⎧⎪⎨==⎪⎩的解. [315239x xy e e x -=---] 五. (10')曲线21(0)y x x =+≥. (1)求该曲线在点(2,5)处的切线方程L ; (2)求该曲线与切线L 以及y 轴所围图形的面积;(3)求题(2)所叙述的图形绕y 轴旋转所得旋转体的体积. [8843;;33y x A V π=-==] 六. (10')一只容器由2(02)y x x =≤≤绕y 轴旋转而成. (1)如果容器内的水量是容器容量的14, 求容器内水面的高度; (2)如果要将题(1)中这部分水吸尽, 求外力需要作的功. [162;3h W g ρπ==]七. (12')(1)如果周期函数()()f x x R ∈有最小正周期0T , 证明对于()f x 的任意一个周期 T , 都有0T nT =, 其中n 是正整数; [记周期00[0,)T nT T -∈] (2)如果()()f x x R ∈以1T π=以及21T =为周期,证明存在一列{}n T (若i j ≠,则i j T T ≠) 使得n T 都是函数()f x 的周期, 并且数列{}n T 有极限; [1T 2T 非最小正周期, 存在321,n n T T T T -<⋅⋅⋅<为更小正周期] (3)如果满足题(2)条件的函数()f x 在点0x =连续, 证明()f x 是常数.[0,0εδ∀>∃>,当x δ<时,()(0)f x f ε-<;10,,0n n T T T x nT δδ--→∃<<-<]。

同济大学高数B期末考试题

同济大学高数B期末考试题

同济大学2009-2010学年第一学期高等数学B(上)期终试卷一. 填空题(4'416'⨯=)1. 设函数()f x 具有二阶导数, 且1'0,'dx y dy y ≠=, 则223"'d x y dyy =-.2. 设函数()f u 为可导函数, 且'(0)0f ≠, 由参数方程3(sin 2)(1)tx f t y f e π=-⎧⎨=-⎩所确定的函数的 导数32t dydx ==.3. 极限111lim()ln 212n n n n n→∞+++=+++L .4. 微分方程22"5'6sin xy y y xex -++=+的特解形式为(不需确定系数)2()cos2sin 2x x Ax B e C x D x E-++++.二. 选择题(4'416'⨯=) 5. 设函数sin ()bx xf x a e=+在(,)-∞+∞内连续, 且lim ()0x f x →-∞=, 则常数,a b 满足: [D ]. ()0,0A a b <>; ()0,0B a b ><; ()0,0C a b ≤>; ()0,0D a b ≥<6. 曲线1ln(1)x y e x-=++, [D ] ()A 没有水平渐近线但有铅直渐近线; ()B 没有铅直渐近线但有水平渐近线; ()C 没有水平和铅直渐近线; ()D 有水平和铅直渐近线 7. 将0x +→时的无穷小量2sin ,,(1)xx t tdt tdt e dt αβγ===-⎰⎰排列起来, 使得后面的是前一个的高阶无穷小, 则正确的排列顺序是: [C ] (),,A αβγ; (),,B αγβ; (),,C βαγ; (),,D γβα 8. 设函数()f x 在点0x =的某个邻域内有定义, 且20()(0)0,lim2x f x f x→==-, 则在该点处 ()f x : [C ] ()A 不可导; ()B 可导且'(0)0f ≠; ()C 取得极大值; ()D 取得极小值.三. 解答题(7'428'⨯=) 9. 求极限30sin sin(sin )limx x x x →-, [30sin 1lim 6t t t t →-==]10. 计算定积分24tan sec x x xdx π⎰[224400111(tan )(sec 1)28242xd x x dx ππππ==--=-⎰⎰]11. 计算反常积分221arctan (1)xdx x x +∞+⎰[2212210111113()arctan arctan ()[arctan ]ln 2124232xdx xd x x x x ππ+∞+∞+∞=-=--=+++⎰⎰] 12. 试求微分方程221(1)dy y x y dx x+=-的通解[221111()'()1(ln )2x x x x c y x y y -=-⇒=-+]四. (8')求曲线ln y x =上的点, 使此曲线在该点的曲率半径为最小.[312222221(1)(1)(21)1(0)'(ln 2)22x x x R x R K x x ++-==>⇒=⇒-] 五. (8')设不定积分n n I =,(1)计算01,I I ; (2)利用变换sin x t =, 建立(2,3,4,)n I n =L 的递推公式[(1)01arcsin ,I x c I =+=[(2)211n n n n I I x c n n---=-] 六. (8')设函数(),()f x g x 在[,]a b 上连续, 且在[,]a b 上()0g x >, 证明至少存在一点[,]a b ξ∈, 使()()()()babaf xg x dxf g x dxξ=⎰⎰. [minmax ()()()babaf xg x dxf fg x dx≤≤⎰⎰]七. (8')过坐标原点作曲线21(0)y x x =+≥的切线, 记该切线与此曲线及y 轴所围成的平 面图形为D , 试求:(1)平面图形D 的面积; (2)平面图形D 绕直线1x =旋转一周所成的旋转体的体积, [12,,32y x S V π===] 八. (8')已知22123,,x x x x x x xy xe e y xe e y xe e e --=+=+=+-是某个二阶常系数线性非齐次微分方程的三个解, 试写出该微分方程的通解并建立此微分方程. [212,"'2(12)xx x x y c ec e xe y y y x e -=++--=-]同济大学2010-2011学年第一学期高等数学B(上)期终试卷一. 填空题(4'416'⨯=)1. 已知极限lim ()x e f x →存在, 且函数()f x 满足: ln 1()lim ()()ex e x e x x f x f x x e e-→-=+-, 则 2lim ()1x ee f x e →=-.2. 设函数2()ln(23)f x x x =+-, 则()11(2)(1)(1)!(1)5n n nf n -=--+.3. 不定积分1tan 1(tan ln tan )sin 22x dx x x C x +=++⎰.4. 定积分sin 2sin cos 03334x xx dx ππ=+⎰.二. 选择题(4'416'⨯=)5. 曲线32331(1)31t x t t t y t ⎧=⎪⎪+≠-⎨⎪=⎪+⎩的斜渐近线方程为 [A ] :1A y x =--; :1B y x =-; :1C y x =-+; :1D y x =+. 6. 曲线22162y x x =-上点(2,0)P 处曲率K = [B ] :0A ; :16B ; 1:16C ; :4D . 7. 设()f x 为(,)-∞+∞内连续的偶函数, '()()F x f x =, 则原函数()F x [C ] :A 均为奇函数; :B 均为偶函数;:C 中只一个奇函数; :D 既非奇函数也非偶函数.8. 设1s 为曲线sin y x =上相应于02x π≤≤的一段弧长, 2s 为椭圆2222x y +=的周长, 则 [D ] 12:A s s π-=; 12:B s s >; 12:C s s <; 12:D s s =. 三. 解答题(4'728'⨯=)9. 求极限302cos ()13lim x x x x→+-. [2cos ln 333001(cos 1)1lim lim 36xx x x e x x x x +→→--===-]10. 设()f x 是(,)-∞+∞内的连续的奇函数, 且0()lim 2x f x x +→=, 证明()f x 在0x =处可导,并求'(0)f . [00()(0)()(0)(0)0,lim lim 2'(0)00x x f x f f x f f f x x +-→→--====--] 11. 求定积分21[]max{1,}x x e dx --⎰, 其中[]x 表示不超过x 的最大整数.[0121102x I e dx dx dx e --=-++=-⎰⎰⎰]12. 判定反常积分2ln 1e x dx x +∞-⎰的收敛性, 如果收敛, 求出其值.[21ln 111(ln 1)()[]e e x I x d x x x e+∞+∞-=--=--=⎰] 四. (8')设()f x 是(,)-∞+∞内的连续函数, 且(0)0f ≠, 试求极限00()lim()xxx tf x t dt xf x t dt→--⎰⎰.[0()()()()1limlimlim[()()]2()()()x xxxx x x x x f u du uf u duf u duxf x f x f x f u duxf x f u duξξ→→→∞-====++⎰⎰⎰⎰⎰]五. (8')设可积函数()f x 在(,)-∞+∞内满足关系式: ()()sin f x f x x π=-+, 且当 [0,)x π∈时()f x x =, 试求3()f x dx ππ⎰.[2322(sin )(2)2I x x dx x dx πππππππ=-++-=-⎰⎰]六. (8')设n 为正整数, 函数2lim,0()100nx n x x f x e x x -→∞⎧≠⎪=--⎨⎪=⎩, 求曲线()y f x =与直线2xy =-所围平面图形绕x 轴旋转一周所成的旋转体的体积. [122202001()[()()]()1283,01x x x f x V dx x x x x πππ<⎧⎪=⇒=---=-⎨+-≥⎪+⎩⎰] 七. (8')求微分方程223(1)20dyx y xy dx-+=的通解. [22231111()'()()x x x C y y y y +=⇒=-]八. (8')令sin x t =, 化简微分方程22arcsin 2(1)x d y dyx xy e dx dx ---=, 并求其通解. [22222311sin ,cos cos cos dy dy d y d y dy t dx dt t dx dt t dt t ==+2arcsin arcsin arcsin 122arcsin 2t x xx d y x y e y C e C e e dt -⇒-=⇒=++]同济大学2011-2012学年第一学期高等数学B(上)期终试卷一. 填空选择题(3'824'⨯=) 1. 极限31lim()2xx x e x →∞+=-.2. 若极限000(2)()lim3h f x h f x h→--=, 则03'()2f x =-.3.积分22216(3x x dx -+=⎰.4. 积分2cos 2cos 1sin 2xx xedx e C =-+⎰.5. 微分方程4"4'0y y y -+=的通解为1212()x y c x c e=+.6. 记41sin I xdx ππ-=⎰, 22sin I xdx ππ-=⎰, 23I x dx ππ-=⎰, 21sin I x xdx ππ-=⎰. 则这4项积分的大小关系为 [ B ] ()A 2134I I I I >>>;()B 3214I I I I >>>;()C 4132I I I I >>>;()D 1243I I I I >>>.7. 下列反常积分中收敛的反常积分是 [ A ] 211()2A dx x +∞+⎰;()e B +∞⎰; ()sin C xdx +∞-∞⎰; 101()1D dx x -⎰ 8. 若函数23ln(1)ln 2,1()11x x f x x a x ⎧+-≠⎪=-⎨⎪=⎩在1x =连续, 则常数 [ D ] ()A 23a =; ()B 23a =-; ()C 13a =-; ()D 13a =.二. 解答题(6'530'⨯=) 1.计算由曲线y =340x y -+=所围平面图形的面积.[21141)336A x dx -=-=⎰] 2. 若函数()u x 与()v x 具有n 阶导数, 试写出()()u x v x ⋅计算n 阶导数的莱布尼茨公式, 计算2xx e ⋅的10阶导数. [()()()2(10)1020[()()];()2(5)nn k k n k x x n k u x v x C u v xe e x -===+∑]3. 求函数2()(5)xf x x x e =+-的单调区间以及函数的极大与极小值.[4max min '(4)(1)(,4],[1,);[4,1];(4)7;(1)3x f x x e f e f e -=+-⇒-∞-+∞--==-Z ]]4. 计算反常积分221ln(1)x dx x +∞+⎰. [ln 22I π=+] 5. 求微分方程2"2'31,(0),'(0)73y y y y y +-===-的解. [331211233xx x x y c e c e e e --=+-=--]三. (8')在长度单位为米的坐标中, 由方程21x y =-与直线220x y --=围成的薄片铅直 的浸入水中, 其中x 轴平行于水面且在水下1米深处, 试求该薄片的一侧所受的水压力. [121(1)(221)4P g y y y dy g ρρ-=-+-+=⎰]四. (10')求积分1)x dx +⎰, [28ln 2393I π=+-]五. (10')1. 试求常数,a b , 使得函数在=201,12x x y x ax b ≤≤⎧=⎨<≤+⎩在区间[0,2]上可导; 2. 若由该曲线段绕y 轴旋转形成一个容器, 如果每单位时间以常量0v 向容器均匀 的注水, 试求该容器在水溢出前水深为h 时水面的上升速度.[2,1a b ==-;0220002,01()()'()''4,13(1)h v h h V h x y dy v V x h h h v h h ππππ⎧≤≤⎪⎪=⇒==⇒=⎨⎪<≤+⎪⎩⎰]六. (10')要建一个容积为14, 侧面为圆柱形, 顶部接着一个半球形的仓库(不含底部), 已知顶部每平方单位的造价是其侧面圆柱部分单位造价的3倍, 试求该仓库的底圆半径, 使得该仓库的造价最省.[2223f rh r ππ=+,2322281414(),'()033r h r f r r f r r r πππ+=⇒=+=⇒=L ] 七. (8')函数()f x 在0[,)x +∞上具有二阶导数, 并且"()0f x <, 对于任意0x x >, 由拉格 朗日中值定理, 存在0x x ξ<<, 使得00()()'()()f x f x f x x ξ-=-. 证明ξ定义了 0(,)x +∞上的一个单调增加函数.['()f x 递减()x ξξ=唯一确定(函数); 又可证00()()f x f x x x --], 可得()x ξ递增]同济大学2012-2013学年第一学期高等数学B(上)期终试卷一. 填空选择题(3'8⨯)1. 函数()xf x xe -=的四阶带佩亚诺余项的麦克劳林公式为234411()()26f x x x x x o x =-+-+2. 2(1)x y ex -=+在1x =所对应点的曲率1025K =3. 极限lim(1ln )x aa x a a x a a a x→-=--4. 由方程222y y x x ++=所确定的函数()y y x =在(1,0)点的导数(1,0)32dydx =5. 函数()f x 在[0,)+∞上连续, 则数列极限lim ()n f n →∞存在是函数极限lim ()x f x →+∞存在的什么条件? [ B ] ()A 充分条件; ()B 必要条件; ()C 充分必要条件; ()D 无关条件. 6. 在区间[,]a b 上, 函数()f x 连续的充分条件是: [ B ] ()()baA f x dx ⎰存在; ()()B f x 可导; ()()C f x 具有原函数; ()()D f x 有界.7. 如果作换元2sin x t =, 则定积分222(4)f x dx -⎰等于 [ C ]40()(2cos )2cos A f t tdt π⋅⎰; 24()(2cos )2cos B f t tdt ππ⋅⎰;42()(2cos )2cos C f t tdt ππ⋅⎰; 04()(2cos )D f t dt π⎰.8. 可导函数()f x 在区间[0,1]上单调增加的充分条件是在该区间上 [ D ] 2()()(1)()x A f x e x o x ∆=-∆+∆; 1()()0B f x dx >⎰;()"()0C f x >; 4()()[1()]()D f x f x x o x ∆=+∆+∆. 二. (4'3⨯)1. 如图是函数()y f x =的图像, 试在下列空格中填入恰当的符 号: 0<; 0=或0>.44()0f x dx -<⎰;44'()0f x dx -=⎰;44"()0f x dx ->⎰;44"'()0f x dx -<⎰.2. 求极限12001lim (12)x t x t dt x →+⎰ [1220lim 2(14)2xx x e →=+=]3. 计算不定积分(1)ln(1)x x dx ++⎰[2211(1)ln(1)(1)24x x x c ++-++] 三. (6'3⨯) 1. 求曲线21x x y e-=的凹凸区间与拐点的坐标. [22'(32),"4(2):(,2];:[2,)xx y ex y e x --=-=-⇒⋂-∞⋃+∞; 拐点:4(2,)e -]2. 计算反常积分21(2ln ln )edx x x x +∞+⎰. [1ln 1ln ln 322ln 2e x x +∞==+]3. 一个由曲线段24(01)y x x =≤≤绕y 轴旋转形成的容器内装满了比重为γ的均匀液体, 如果要将该容器内的液体全部排空至少需要做多少功. [48(4)43y W y dy πγπγ=-=⎰] 四. (8')试用适当的换元法求微分方程22222()2()1dy x y x dx y x -=-+的通解. [2222222arctan 21du xu y x u x u u x c dx u -=⇒+=⇒-=-+⇒+L ] 五. (8')试说明闭区间上连续函数的像集是闭区间, 并举例说明在闭区间上, 像集是闭区间的函数未必连续. [最值定理; 介值定理; 反例略]六. (10')计算由曲线2xy e =, 该曲线经过坐标原点的切线以及y 轴所围成图形的面积, 并 求该图形绕x 轴旋转所得旋转体的体积.[切线:2y ex =;切点:12x =; 1122222220023(2);[()(2)]412x x x e e A e ex dx V e ex dx ππ--=-==-=⎰⎰] 七. (10')试求微分方程22"cos y y x x +=+的通解.[221231;*cos 2sin 2;cos sin cos 226i y Ax Bx C D x E x y C x C x x x λ=±=++++=++--] 八. (10')()f x 是以T 为周期的连续函数, 若()Tf t dt A =⎰, 求极限01lim()xx f t dt x →+∞⎰.[0(0)(0)(0)1()()()()()()limlimlimTnTnT TnTn n n T T T f t dt f t dtf t dt f t dtn f t dt f t dtA n nT nT T T nθθθθθθθθθ+→∞→∞→∞≤<≤<≤<+++====+++⎰⎰⎰⎰⎰⎰]同济大学2013-2014学年第一学期高等数学B(上)期终试卷一. 选择与填空题(3'824'⨯=) 1. 极限262lim()1nn n e n -→∞-=+2. 利用定积分的几何意义,积分4-=⎰92π3. 微分方程"'120y y y +-=的通解为4312x xy C e C e -=+4. 已知敌方的导弹阵地位于坐标原点处,发射的导弹飞行轨迹为光滑曲线()y f x =,我方 拦截导弹的阵地位于x 轴正向2000公里处,发射的拦截导弹飞行速度是敌方导弹速度的 两倍,如果由计算机控制,在敌方导弹发射时我方的拦截导弹同时发射,并且我方导弹的 运行轨迹是直线,如果两导弹的相撞点为00(,)x y ,则该点满足的方程为2x =⎰5. 0{}x 是有界数列, 则该数列单调是数列极限存在的什么条件 【A 】 ()A 充分条件; ()B 必要条件; ()C 充分必要条件; ()D 无关条件.6. ()f x 是连续函数, 曲线段()()xaf t dt a x b ≤≤⎰的弧长s 的计算公式为 【C 】()a A s =⎰; ()a B s =⎰;()aC s =⎰; ()aD s =⎰无关条件.7. 函数()f x 具有三阶连续导数,如果"()0,[,]f x x a b >∈,则下列四项积分中,积分值 确定为正数的积分为 【A 】 ()['()'()]ba A I fb f x dx =-⎰; ()'()baB I f x dx =⎰;()[()()]baC I f x f a dx =-⎰; ()'"()baD I f x dx =⎰.8. 利用换元ln(1)x t =+, 积分2()x f e dx ⎰等于 【D 】20(1)()1f t A dt t ++⎰; 210()(1)e B f t dt -+⎰; 20(1)()1e f t C dt t ++⎰; 210(1)()1e f t D dt t -++⎰. 二. 计算下列各题(6'636'⨯=)1. 试计算由23ln 3x x y y +++=所确定的曲线在(1,1)点的切线方程.[22213'3470(31)4x y x y y x +=-=-⇒+-=+]2. 求由参数方程t tx e y e t-⎧=⎨=+⎩所确定函数()y y x =的导数22;dy d ydx dx . [22322();22t t t t dy d y e e e e dx dx =-+=+] 3. 求不定积分⎰[322(1)3x x c +-+] 4. 曲线段3:()L y x a x a =-≤≤的弧长为s , n D 是xoy 平面上与L 距离不超过n 的点集,即222{(,)(')('),(',')}n D x y x x y y n x y L =-+-≤∈,n D 的面积为n A ,求极限2lim nn A n →∞.[222()lim n n n A n A n s nπππ→∞≤≤+⇒=]三. (8')计算反常积分31arctan x dx x +∞⎰. [121arctan 11[arctan ]22x x x x +∞=-++=]四. (8')()f x 具有二阶导数, 如果极限201()(2)lim1x f x xf x x→++=-, 求(0),'(0),"(0)f f f . [(01,'(0)1,"(0)6f f f =-==-] 五. (8')可导函数()f x 满足方程40()2()1xf x tf t dt x -=--++⎰, 求函数()f x .[232(0)1,'()2()4()2(1)3x f f x xf x x f x x e -==-+⇒=-+] 六. (10')求函数231xx y xe ++=的单调区间与极值, 并求出该函数在区间[2,2]-上的最值.[23111'(21)(1)(,1],[1,],[,);22x x y x x e ++=++⇒-∞-↑--↓-+∞↑极小1()2y -=,极大1(1)y e -=-; 11min max 2(2),(2)2y y e e-=-=] 七. (10')计算由曲线21xy e=-, 直线41y e =-以及y 轴所围图形的面积; 并求出由该图形绕y 轴旋转所得旋转体的体积. [224244240031[(1(1)];2()(51)222x x A e e dx e V x e e dx πππ=---=+=-=-⎰⎰] 八. (8')计算极限12ln(1)0(12)limtxx x t dt t +→-⎰.[11222ln(1)(12)(12)1(ln(1)),ln(1)2txx t dt x x x x x L t eξξξξξ+--=-++<<⇒⇒=⎰:]同济大学2014-2015学年第一学期高等数学B(上)期终试卷一. 填空选择题(3'824'⨯=)1. 极限23232lim()1nn n n e n -→∞-+=+2. xy xe =在1x =对应点的曲率k =3223(14)e e +3.反常积分1111dx xα-+⎰⎰收敛, 则常数α的取值区间是3(,2)2α∈4.1'(32)(32)2x x x e f e dx f e c -=--+⎰5. ()f x 在[,]a b (其中1b a =+)上具有二阶导数,且"()0f x <,下列不等式正确的是 【B 】 ()'()'()()()A f b f a f b f a <<-; ()'()()()'()B f b f b f a f a <-<; ()()()'()'()C f b f a f b f a -<<; ()'()()()'()D f a f b f a f b <-<.6. ()f x 是连续函数, 极限121lim()nn k k n f n n→∞=-⋅∑等于下面的定积分 【D 】 11()(21)A f x dx --⎰; 2()(21)B f x dx -⎰; 11()2()C f x dx -⎰; 1()(21)D f x dx -⎰.7. 如果数列{}n x 在任意区间[,]a b 上只含有有限项, 则下面判断中正确的判断是 【D 】 (){}n A x 是收敛数列; (){}n B x 是有界数列但不收敛;(){}n C x 是无界数列但是当n →∞时不是无穷大量; ()D 极限lim n n x →∞=∞.8. 223()(1)(2)(3)4f x x x x x =---+, 则'()0f x =在区间(1,1)-内有几个实根 【C 】 ()0A 个; ()1B 个; ()2C 个; ()D 至少3个.二. 计算下列各题(6'424'⨯=) 1. 求函数21232x x y e-++=的单调区间与凹凸区间.[2211232322'(2),"(1)(3)x x x x y x e y x x e-++-++=-=--]2. 求曲线2132y x ey -+=在(1,1)点的切线方程. [230x y +-=]3. 计算反常积分311arctan xdx x +∞⎰ [12] 4. 求微分方程"3'441y y y x --=+的通解. [41212x xy C e C e x -=+-+]三. (8')分析曲线1(1)ln()(0)y x e x x=++>是否有铅直、水平与斜渐近线, 如果有则求出 相应的渐近线. [铅直渐近线0x =; 斜渐近线11y x e=++]四. (8')已知(),()f x g x 都是非负的连续函数, 曲线()y f x =与()y g x =关于直线y c =对 称,由曲线(),()y f x y g x ==以及直线,()x a x b a b ==<所围成的平面图形的面积为A . (1)证明该图形绕x 轴旋转所得旋转体的体积为2V cA π=; [22()()()2()bb baaaV f g dx f g f g dx c f g dx πππ=-=+-=-⎰⎰⎰](2)计算椭圆2214x y +≤绕直线2y =旋转所得旋转体的体积. [28V π=] 五. (8')设()f x 是可导函数, 并且满足方程220()()12xt f x tf dt x =++⎰, 求函数()f x .[2231(0)1,'()4()2()22x f f x xf x x f x e ==+⇒=-]六. (8')(1)写出ln(1)x +的带有佩亚诺余项的n 阶迈克劳林公式;(2)计算极限2lim 1(1)xx x e x→+∞+.[(1)12311(1)()23n n n x x x x o x n ---++++L;(2)221ln(1)lim lim 1(1)x x x xx x x e e x-+→+∞→+∞==+七. (10')由方程22,4y x y ==所确定的抛物型薄片铅直地浸入水中, 顶端与水面持平(长度 单位为米). (1)试求薄片一侧所受到的水压力; (2)如果此后水面以每分钟0.5米的速度开 始上涨, 试计算薄片一侧所受到的水压力的变化率.[(1)4(4P g y g ρ=-⎰; (2)40(,dP P g h y g dt ρ=-=⎰]八. (10')设222(0)nn n xy a a +=>所围图形在第一象限部分的面积为n A . (1)利用定积分写出n A 的计算公式(无需计算n A 的值); (2)证明极限lim n n A →∞存在; (3)计算极限lim n n A →∞.[(1)0an A =⎰;(2)1122220(1)n n a t dt A a a -≤=≤⎰⎰;(3)2lim n n A a →∞=]同济大学2015-2016学年第一学期高等数学B(上)期终试卷一. 填空选择题(3'824'⨯=)1. 极限1202lim()23h h h e h-→-=+.2. 积分(12sin )cos '(12sin )2f x x f x dx C--⋅-=+⎰.3. 函数220()sin(1)x F x t dt =+⎰的导函数4'()2sin(1)F x x x =+.4. 曲线322(1)1(12)3y x x =++-≤≤的弧长143s =.5. 极限0lim ()x x f x -→=+∞的定义是 【D 】()0,0A εδ∀>∃>, 当00x x δ<-<时, 有()f x A ε-<; ()0,0B εδ∀>∃>, 当x δ>时, 有()f x ε>; ()0,0C M X ∀>∃>, 当x X >时, 有()f x M >; ()0,0D M δ∀>∃>, 当00x x x δ-≤<时, 有()f x M >.6. 若123(),(),()y x y x y x 是二阶微分方程"()'()()y a x y b x y c x =++的三个线性无关的解, 则该方程的通解为 【D 】 112233()()()()A C y x C y x C y x ++, 其中123,,C C C 是任意常数; 11223()()()()B C y x C y x y x ++, 其中12,C C 是任意常数; 11223()()[()()]C C y x C y x y x ++, 其中12,C C 是任意常数; 112233()()()()D C y x C y x C y x ++, 其中任意常数1231C C C ++=.7. 若()f x 是连续函数, 则极限121lim()2nn k n k f n n→∞=+∑等于 【A 】 3212()()A f x dx ⎰; 2()()B f x dx ⎰; ()C 12()f x dx ⎰; 10()()2xD f dx ⎰.8. 若对于积分0(2)af a x dx -⎰作换元2a x u -=, 则该定积分化为 【C 】()()aaA f u du -⎰; 0()2()a B f u du ⎰; ()C 1()2aa f u du -⎰; 0()()a D f u du ⎰.二. 计算下列各题(6'424'⨯=)1. 试求曲线2sin y x y x ++=在点(1,0)处的切线方程. [21x y +=] 2. 求不定积分2ln(1)x dx +⎰. [2ln(1)22arctan x x x x c +-++]3. 求微分方程3'xy x y =-的通解. [411()4y x c x =+] 4. 求微分方程"2'15153y y y x --=-的通解. [531213x xy C e C e x -=+-+]三. (8')计算由22y x x =+与直线2y x =+所围图形的面积. [1229(2)2x x dx ---=⎰]四. (8')计算反常积分31arctan x dx x +∞⎰. [211111arctan arctan 2222I x x x x +∞=---=]五. (8')已知'()y f x =的函数图像如图,(1)求函数()y f x =的单调区间、极大值与极小值; (2)求曲线()y f x =的凹凸区间与拐点.[35353(,],[,);[,];()x x x x f x -∞+∞]Z 极大,5()f x 极小124124[,],[,);(,],[,];x x x x x x +∞⋃-∞⋂拐点112244(,()),(,()),(,())x f x x f x x f x ] 六. (10')在半径为R 的半球内内接一圆锥体, 使得该锥体的锥顶位于半球的球心上, 锥体的 底面平行于半球的底面, 求这样的内接圆锥体体积的最大值.[322max 1(3),()3393V R h h V π=-=]七. (10')一椭球形容器由长半轴为2m , 短半轴为1m 的半支椭圆曲线绕其短半轴旋转而成,若容器内盛满了水, 试求要把该容器内的水全部吸出需作的功.[2221(10),4(1)(),4x y y dW y dy g y W g πρπ+=-≤≤=--=] 八. (8')已知()f x 具有二阶导数, 且221"()12x f x x +≥+, 判断lim ()x f x →∞的情况, 并给出判断的理由. [21"(),()(0)'(0)"()22f x f x f f x f x ξ≥=++→+∞]同济大学2016-2017学年第一学期高等数学B(上)期终试卷一. 选择填空题(3'824'⨯=)1. ()y f x =具有二阶导数, 且'()0f x ≠. 若曲线()y f x =在00(,)x y 的曲率为0k ≠, 其 反函数1()x fy -=所表示的曲线在对应点的曲率为'k , 则有 【A 】()'A k k =; 1()'B k k=; ()C 'k k >; ()'D k k <. 2. 已知函数()y f x =满足(0)1f =, 如果在任意点x 处, 当x ∆充分小时都有 2()1xy x o x x ∆=∆+∆+, 则有 【C 】 2221()()(1)x A f x x -=+; 2()()11xB f x x=++; ()C ()1f x =; ()D 题中所给的条件无法得到确定的函数()f x . 3. 下面的极限式中哪项等于连续函数()f x 的定积分2()f x dx ⎰. 【D 】12()lim()nn k k A f n n →∞=∑; 121()lim ()n n k k B f n n →∞=∑; 11()lim ()n n k k C f n n →∞=∑; 11()lim 2()nn k k D f n n →∞=∑.4.要使反常积分+∞⎰收敛, 则实数p 的取值范围是 【C 】 ()1A p >; ()1B p <; ()2C p >; ()2D p <.5. 如果作换元sin x t =,则积分30(sin )f x dx π=⎰.6. 微分方程231x y dye dx -+=的通解2113ln()32x y e C +=+.7. 已知2()x f x dx eC =+⎰, 则222(21)1(21)4x xf x dx e C --=+⎰.8.定积分3421[ln(1)2R Rx x dx R π-++=⎰.二. 计算题(8'324'⨯=) 1.求极坐标所表示的曲线4θρ=在04πθ=所对应点处的切线方程. [532x y e π-=]2.计算定积分211π+⎰. [2π]3. 可导函数()f x 满足等式20()()22xttf dt f x =-⎰, 求函数()f x . [22()2x f x e =]三. (10')已知函数()()f x x R ∈在点1x =左连续, 同时该点是函数()f x 的跳跃间断点, 如 果该函数只有1x =一个间断点, 试分析函数32(39)f x x x C +-+间断点的个数. [266C -<<三个; 6C =两个; 26C ≤-或6C >一个]四. (10')求微分方程00"2'31414,'93x x y y y x y y ==+-=+⎧⎪⎨==⎪⎩的解. [315239x xy e e x -=---] 五. (10')曲线21(0)y x x =+≥. (1)求该曲线在点(2,5)处的切线方程L ; (2)求该曲线与切线L 以及y 轴所围图形的面积;(3)求题(2)所叙述的图形绕y 轴旋转所得旋转体的体积. [8843;;33y x A V π=-==] 六. (10')一只容器由2(02)y x x =≤≤绕y 轴旋转而成. (1)如果容器内的水量是容器容量的14, 求容器内水面的高度; (2)如果要将题(1)中这部分水吸尽, 求外力需要作的功. [162;3h W g ρπ==]七. (12')(1)如果周期函数()()f x x R ∈有最小正周期0T , 证明对于()f x 的任意一个周期 T , 都有0T nT =, 其中n 是正整数; [记周期00[0,)T nT T -∈] (2)如果()()f x x R ∈以1T π=以及21T =为周期,证明存在一列{}n T (若i j ≠,则i j T T ≠) 使得n T 都是函数()f x 的周期, 并且数列{}n T 有极限; [1T 2T 非最小正周期, 存在321,n n T T T T -<⋅⋅⋅<为更小正周期] (3)如果满足题(2)条件的函数()f x 在点0x =连续, 证明()f x 是常数.[0,0εδ∀>∃>,当x δ<时,()(0)f x f ε-<;10,,0n n T T T x nT δδ--→∃<<-<]。

同济大学大一公共课高等数学期末试卷及答案2套

同济大学大一公共课高等数学期末试卷及答案2套

(2)该曲线在哪点处的曲率半径为 2 ?
∫⎧
2.设
ϕ
(x)
=
⎪ ⎨

2x et2 d t
x
,
x
⎩ a,
x ≠ 0, 求 a 的值,使得ϕ(x)在 x = 0 处连续,并用导数定义求ϕ ′(0) .
x = 0,
三、
∫ 1.求定积分 I = π x2 1− sin 2 x d x . 0
2.若
f
(x)
2 0

x2 sin x + 2x cos x − 2 sin x
π π
2
= π 2 + 2π − 4 . 2
2.当 x < 0 时, 当 x ≥ 0 时,
∫ F(x) =
x −∞
1 1+ t2
dt
= arctan x +
π 2

∫ ∫ F(x) = 0 1 d t + x
−∞ 1+ t2
0
1 d t = π + [2 arctan t (1+ t) 2
4 + y2 d y −1000g
h(t )
y
4+ y2 d y ,
−1
−1
−1
上式两边对 t 求导,得
∫ d F = 1000g h(t) 4 + y2 d y d h ,
dt
−1
dt
由于 d h = −0.01,因此,当水面下降至平板的中位线(即 x 轴)时,平板一侧所受到的水压力的下 dt
降速率为
t
]
x 0
=
2 arctan
x+π . 2

同济大学2016-2017学年高等数学(B)上期末考试试卷

同济大学2016-2017学年高等数学(B)上期末考试试卷

本资料仅供参考复习练手之用,无论是重修只求及格,还是为了拿优保研,复习课本上的基础知识点和例题、课后习题才是重中之重,作为一个重修过高数的学长,望大家不要舍本求末,记住这样一句话,只有当你付出了,你才可能有收获。

同济大学2016-2017学年第一学期高等数学B(上)期终试卷一. 选择填空题(3'824'⨯=)1. ()y f x =具有二阶导数, 且'()0f x ≠. 若曲线()y f x =在00(,)x y 的曲率为0k ≠, 其 反函数1()x fy -=所表示的曲线在对应点的曲率为'k , 则有 【A 】()'A k k =; 1()'B k k=; ()C 'k k >; ()'D k k <. 2. 已知函数()y f x =满足(0)1f =, 如果在任意点x 处, 当x ∆充分小时都有 2()1xy x o x x∆=∆+∆+, 则有 【C 】 2221()()(1)x A f x x -=+; 2()()11xB f x x =++;()C ()1f x =; ()D 题中所给的条件无法得到确定的函数()f x . 3. 下面的极限式中哪项等于连续函数()f x 的定积分2()f x dx ⎰. 【D 】12()lim()nn k k A f n n →∞=∑; 121()lim ()n n k k B f n n →∞=∑; 11()lim ()n n k k C f n n →∞=∑; 11()lim 2()nn k k D f n n →∞=∑.4.要使反常积分+∞⎰收敛, 则实数p 的取值范围是 【C 】 ()1A p >; ()1B p <; ()2C p >; ()2D p <.5. 如果作换元sin x t =,则积分30(sin )f x dx π=⎰.6. 微分方程231x y dye dx -+=的通解2113ln()32x y e C +=+.7. 已知2()x f x dx eC =+⎰, 则222(21)1(21)4x xf x dx e C --=+⎰.8.定积分3421[ln(1)2R Rx x dx R π-++=⎰.二. 计算题(8'324'⨯=) 1.求极坐标所表示的曲线4θρ=在04πθ=所对应点处的切线方程. [532x y e π-=]2.计算定积分211π+⎰. [2π]3. 可导函数()f x 满足等式20()()22xttf dt f x =-⎰, 求函数()f x . [22()2x f x e =]三. (10')已知函数()()f x x R ∈在点1x =左连续, 同时该点是函数()f x 的跳跃间断点, 如 果该函数只有1x =一个间断点, 试分析函数32(39)f x x x C +-+间断点的个数. [266C -<<三个; 6C =两个; 26C ≤-或6C >一个]四. (10')求微分方程00"2'31414,'93x x y y y x y y ==+-=+⎧⎪⎨==⎪⎩的解. [315239x xy e e x -=---] 五. (10')曲线21(0)y x x =+≥. (1)求该曲线在点(2,5)处的切线方程L ; (2)求该曲线与切线L 以及y 轴所围图形的面积;(3)求题(2)所叙述的图形绕y 轴旋转所得旋转体的体积. [8843;;33y x A V π=-==] 六. (10')一只容器由2(02)y x x =≤≤绕y 轴旋转而成. (1)如果容器内的水量是容器容量的14, 求容器内水面的高度; (2)如果要将题(1)中这部分水吸尽, 求外力需要作的功. [162;3h W g ρπ==] 七. (12')(1)如果周期函数()()f x x R ∈有最小正周期0T , 证明对于()f x 的任意一个周期 T , 都有0T nT =, 其中n 是正整数; [记周期00[0,)T nT T -∈](2)如果()()f x x R ∈以1T π=以及21T =为周期,证明存在一列{}n T (若i j ≠,则i j T T ≠) 使得n T 都是函数()f x 的周期, 并且数列{}n T 有极限; [1T 2T 非最小正周期, 存在321,n n T T T T -<⋅⋅⋅<为更小正周期] (3)如果满足题(2)条件的函数()f x 在点0x =连续, 证明()f x 是常数.[0,0εδ∀>∃>,当x δ<时,()(0)f x f ε-<;10,,0n n T T T x nT δδ--→∃<<-<]。

2017高数B期末考试题及答案

2017高数B期末考试题及答案

2017高数B期末考试题及答案一、选择题(每题5分,共30分)1. 已知函数f(x)=x^2+3x-4,求f(-4)的值。

A. 0B. 1C. -1D. -3答案:B2. 计算定积分∫(0,1) x^2 dx的结果。

A. 1/3B. 1/2C. 1D. 2答案:B3. 求解微分方程dy/dx = 2x的通解。

A. y = x^2 + CB. y = 2x + CC. y = x^2 + 2x + CD. y = 2x^2 + C答案:A4. 判断函数f(x)=|x|在x=0处的连续性。

A. 连续B. 间断C. 可导D. 不可导5. 计算二重积分∬(D) x*y dA,其中D是由x^2 + y^2 ≤ 1定义的圆盘。

A. π/4B. π/2C. πD. 2π答案:C6. 判断级数∑(n=1 to ∞) (-1)^n/n的收敛性。

A. 收敛B. 发散C. 条件收敛D. 绝对收敛答案:A二、填空题(每题4分,共20分)7. 函数f(x)=sin(x)的导数为______。

答案:cos(x)8. 曲线y=x^3在点(1,1)处的切线斜率为______。

答案:39. 函数y=ln(x)的不定积分为______。

答案:x*ln(x) - x + C10. 计算极限lim(x→0) (1/x - 1/tan(x))的值为______。

答案:1/211. 计算定积分∫(0,π/2) sin(x) dx的值为______。

三、解答题(每题10分,共50分)12. 求函数f(x)=x^3-3x^2+2在区间[0,2]上的极值点。

解:首先求导数f'(x)=3x^2-6x,令f'(x)=0,解得x=0或x=2。

由于f''(x)=6x-6,当x=0时,f''(0)<0,为极大值点;当x=2时,f''(2)>0,为极小值点。

计算得极大值为f(0)=2,极小值为f(2)=-2。

《高等数学》期末试卷1(同济六版上)及参考答案[2]

《高等数学》期末试卷1(同济六版上)及参考答案[2]

《高等数学》期末试卷1(同济六版上)及参考答案[2]一、选择题(本题共5小题;每小题3分;共15分)1、若函数xx x f =)(;则=→)(lim 0x f x ( ).A 、0B 、1-C 、1D 、不存在 2、下列变量中;是无穷小量的为( ). A 、1ln(0)x x +→ B 、ln (1)x x → C 、cos (0)x x → D 、22(2)4x x x -→- 3、满足方程0)(='x f 的x 是函数)(x f y =的( ).A 、极大值点B 、极小值点C 、驻点D 、间断点 4、函数)(x f 在0x x =处连续是)(x f 在0x x =处可导的( ).A 、必要但非充分条件B 、充分但非必要条件C 、充分必要条件D 、既非充分又非必要条件5、下列无穷积分收敛的是( ). A 、⎰+∞sin xdx B 、dx ex⎰+∞-02 C 、dx x ⎰+∞1D 、dx x⎰+∞01二、填空题(本题共5小题;每小题3分;共15分)6、当k= 时;2,0(),x e x f x x k x ⎧≤⎪=⎨+>⎪⎩在0=x 处连续.7、设x x y ln +=,则_______________dxdy=. 8、曲线x e y x-=在点(0;1)处的切线方程是 .9、若⎰+=C x dx x f 2sin )(;C 为常数;则()____________f x =10、定积分dx x xx ⎰-+554231sin =____________.三、计算题(本题共6小题;每小题6分;共36分)11、求极限 xx x 2sin 24lim 0-+→.12、求极限 2cos 12limxt x e dtx-→⎰.13、设)1ln(25x x e y +++=;求dy .14、设函数)(x f y =由参数方程⎩⎨⎧=+=t y t x arctan )1ln(2所确定;求dy dx 和22dx yd .15、求不定积分212sin 3dx x x ⎛⎫+ ⎪⎝⎭⎰.16、设,0()1,01x e x f x x x ⎧<⎪=⎨≥⎪+⎩;求20(1)f x dx -⎰.四、证明题(本题共2小题;每小题8分;共16分)17、证明:dx x x n m )1(1-⎰=dx x x m n )1(1-⎰ (N n m ∈,).18、利用拉格朗日中值定理证明不等式:当0a b <<时;ln b a b b ab a a--<<.五、应用题(本题共2小题,第19小题8分;第20小题10分,共18分)19、要造一圆柱形油罐;体积为V ;问底半径r 和高h 各等于多少时;才能使表面积最小?20、设曲线2x y =与2y x =所围成的平面图形为A ;求 (1)平面图形A 的面积;(2)平面图形A 绕y 轴旋转所产生的旋转体的体积.《高等数学》试卷(同济六版上)答案一.选择题(每小题3分;本题共15分) 1-5 DBCAB 二.填空题(每小题3分;本题共15分)6、17、1xx+ 8、1y = 9、2cos2x 10、0 三、计算题(本题共6小题;每小题6分;共36分)11、解:x x x 2sin 24lim-+→x →= 3分01128x →== 6分12、解:2cos 12limxdt e x tx ⎰-→2cos0sin lim 2xx xe x-→-= 3分12e=-6分 13、解:)111(1122xxx y ++++=' 4分211x +=6分14、解:t t t t dx dy 21121122=++= 3分222232112()241d y t d dydxt dtt dt dxdx t t -+===-+ 6分15、解:212122sin(3)sin(3)(3)23dx d x x x +=-++⎰⎰ 3分 12cos(3)2C x=++ 6分 16、解:⎰⎰⎰⎰--+==-011112d )(d )(d )(d )1(x x f x x f x x f x x f 0110d 1xxe dx x -=++⎰⎰ 3分1010|ln(1)x e x -=++11ln 2e -=-+ 6分四、证明题(本题共2小题;每小题8分;共16分) 17、证明:11(1)(1)m n m n x x dx t t dt -=--⎰⎰ 4分11(1)(1)m nm nt t dt x x dx=-=-⎰⎰ 8分18、、证明:设f (x )=ln x , [,]x a b ∈;0a b <<显然f (x )在区间[,]a b 上满足拉格朗日中值定理的条件, 根据定理, 有()()'()(),.f b f a f b a a b ξξ-=-<< 4分由于1()f x x'=, 因此上式即为 l n l n b a b a ξ--=.又由.a b ξ<< b a b a b ab aξ---∴<< 当0a b <<时;ln b a b b a b a a--<< 8分五、应用题(本题共2小题,第19小题8分;第20小题10分,共18分) 19、解:2V r h π=∴表面积2222222222V V S r rh r rr r rππππππ=+=+=+ 4分令22'40VS r r π=-= 得r =2h =答:底半径r =2h = 8分 20、解:曲线2x y =与2y x =的交点为(1;1); 2分于是曲线2x y =与2y x =所围成图形的面积A 为31]3132[)(10210232=-=-=⎰x x dx x x A 6分A 绕y 轴旋转所产生的旋转体的体积为:()πππ10352)(10521042=⎥⎦⎤⎢⎣⎡-=-=⎰y y dy y y V 10分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本资料仅供参考复习练手之用,无论是重修只求及格,还是为了拿优保研,复习课本上的基础知识点和例题、课后习题才是重中之重,作为一个重修过高数的学长,望大家不要舍本求末,记住这样一句话,只有当你付出了,你才可能有收获。

同济大学2016-2017学年第一学期高等数学B(上)期终试卷
一. 选择填空题(3'824'⨯=)
1. ()y f x =具有二阶导数, 且'()0f x ≠. 若曲线()y f x =在00(,)x y 的曲率为0k ≠, 其 反函数1
()x f
y -=所表示的曲线在对应点的曲率为'k , 则有 【A 】
()'A k k =; 1
()'B k k
=
; ()C 'k k >; ()'D k k <. 2. 已知函数()y f x =满足(0)1f =, 如果在任意点x 处, 当x ∆充分小时都有 2
()1x
y x o x x
∆=
∆+∆+, 则有 【C 】 2221()()(1)x A f x x -=+; 2
()()11x
B f x x =++;
()
C ()1f x =; ()
D 题中所给的条件无法得到确定的函数()f x . 3. 下面的极限式中哪项等于连续函数()f x 的定积分2
()f x dx ⎰
. 【D 】
1
2()lim
()n
n k k A f n n →∞
=∑
; 121()lim ()n n k k B f n n →∞=∑; 11()lim ()n n k k C f n n →∞=∑; 1
1()lim 2()n
n k k D f n n →∞=∑.
4.
要使反常积分
+∞

收敛, 则实数p 的取值范围是 【C 】 ()1A p >; ()1B p <; ()2C p >; ()2D p <.
5. 如果作换元sin x t =,
则积分30
(sin )f x dx π
=

.
6. 微分方程231x y dy
e dx -+=的通解21
13ln()32
x y e C +=+.
7. 已知
2
()x f x dx e
C =+⎰, 则22
2
(21)1(21)4x xf x dx e C --=
+⎰.
8.
定积分
3421[ln(1)2
R R
x x dx R π-++=

.
二. 计算题(8'324'⨯=) 1.
求极坐标所表示的曲线4θρ=在04
πθ=
所对应点处的切线方程. [532x y e π
-=]
2.
计算定积分
21
1
π+⎰
. [2π]
3. 可导函数()f x 满足等式20
()()22
x
t
tf dt f x =-⎰
, 求函数()f x . [22()2x f x e =]
三. (10')已知函数()()f x x R ∈在点1x =左连续, 同时该点是函数()f x 的跳跃间断点, 如 果该函数只有1x =一个间断点, 试分析函数3
2
(39)f x x x C +-+间断点的个数. [266C -<<三个; 6C =两个; 26C ≤-或6C >一个]
四. (10')求微分方程00
"2'31
414
,'9
3x x y y y x y y ==+-=+⎧⎪⎨==⎪⎩的解. [315239x x
y e e x -=---] 五. (10')曲线2
1(0)y x x =+≥. (1)求该曲线在点(2,5)处的切线方程L ; (2)求该曲线与切线L 以及y 轴所围图形的面积;
(3)求题(2)所叙述的图形绕y 轴旋转所得旋转体的体积. [88
43;;33
y x A V π=-=
=] 六. (10')一只容器由2
(02)y x x =≤≤绕y 轴旋转而成. (1)如果容器内的水量是容器容量

1
4
, 求容器内水面的高度; (2)如果要将题(1)中这部分水吸尽, 求外力需要作的功. [16
2;3
h W g ρπ==] 七. (12')(1)如果周期函数()()f x x R ∈有最小正周期0T , 证明对于()f x 的任意一个周期 T , 都有0T nT =, 其中n 是正整数; [记周期00[0,)T nT T -∈]
(2)如果()()f x x R ∈以1T π=以及21T =为周期,证明存在一列{}n T (若i j ≠,则i j T T ≠) 使得n T 都是函数()f x 的周期, 并且数列{}n T 有极限; [1T 2T 非最小正周期, 存在321,n n T T T T -<⋅⋅⋅<为更小正周期] (3)如果满足题(2)条件的函数()f x 在点0x =连续, 证明()f x 是常数.
[0,0εδ∀>∃>,当x δ<时,()(0)f x f ε-<;10,,0n n T T T x nT δδ--→∃<<-<]。

相关文档
最新文档