最新微积分(上)期末考试试题A卷(附答案)
微积分上考试题目及答案

微积分上考试题目及答案一、选择题(每题4分,共20分)1. 函数f(x)=x^3-3x+1的导数为:A. 3x^2-3B. x^2-3x+1C. 3x^2-3xD. 3x^2-3x+1答案:A2. 极限lim(x→0)(sin(x)/x)的值为:A. 0B. 1C. -1D. ∞答案:B3. 以下哪个函数是偶函数?A. f(x) = x^2 + xB. f(x) = x^3 - 2xC. f(x) = cos(x)D. f(x) = sin(x) + x答案:C4. 以下哪个积分是发散的?A. ∫(1/x)dx 从1到∞B. ∫(x^2)dx 从0到1C. ∫(e^(-x))dx 从0到∞D. ∫(sin(x))dx 从0到2π答案:A5. 以下哪个是复合函数的导数?A. (f(g(x)))' = f'(g(x))g'(x)B. (f(g(x)))' = f'(x)g'(x)C. (f(g(x)))' = f(g'(x))g'(x)D. (f(g(x)))' = f'(x)g(x)答案:A二、填空题(每题4分,共20分)6. 函数f(x)=x^2的二阶导数为________。
答案:27. 定积分∫(0到1) x dx的值为________。
答案:1/28. 函数y=ln(x)的反函数为________。
答案:e^y9. 函数f(x)=e^x的不定积分为________。
答案:e^x + C10. 函数f(x)=x^3-3x^2+2x的极值点为________。
答案:x=0, x=2三、计算题(每题10分,共30分)11. 计算极限lim(x→∞) (x^2 - 3x + 2) / (2x^2 + 5x - 3)。
答案:1/212. 计算定积分∫(0到1) (x^2 - 2x + 1) dx。
答案:1/313. 求函数f(x)=x^3-6x^2+11x-6的极值。
(完整word版)微积分期末试卷A及答案

共 4 页,第 1 页 学生答题注意:勿超黑线两端;注意字迹工整。
共 4页,第 2 页) ()f x 在x a =处可导; (B )()f x 在x a =处不连续; (C)。
lim ()x af x →不存在 ; (D ) ()f x 在x a =处没有定义。
、设lnsin y x =,则dy =( )(A) 1cos x ; (B ) 1cos dx x;(C) cot x dx -; (D) cot x dx 。
6. 若()f x 的一个原函数为2x ,则()f x dx '=⎰( ) (A)12x C + (B ) 2x C + (C) x C + (D ) 2C +7、 1dx =⎰( )(A ) 2; (B ) 2π-; (C ) 0; (D )。
8、对-p 级数∑∞=11n p n ,下列说法正确的是( )(A ) 收敛; (B ) 发散;(C ) 1≥p 时,级数收敛; (D) 级数的收敛与p 的取值范围有关。
9、二元函数在(,)xy f x y ye =点0(1,1)p 可微,则(,)xy f x y ye =在0p 的全微 )00)()limx x f x x→-- .cos x ,求它的微分共 4 页,第 5 页 学生答题注意:勿超黑线两端;注意字迹工整。
共 4页,第 6 页5、(10分)求微分方程()x xe y dx xdy +=在初始条件1|0x y ==下的特解;6、(12分)判断级数211ln(1)n n ∞=+∑的敛散性。
《微积分》课程期末考试试卷参考答案及评分标准(A 卷,考试)一、单项选择(在备选答案中选出一个正确答案,并将其号码填在题目后的括号内.每题3分,共30分)1、(C );2、(D );3、(B);4、(A );5、(D);6、(B);7、(A );8、(D );9、(A); 10、(D)。
二、填空(每题4分,共20分)1、 bx n e a b )ln (;2、 同阶无穷小;3、3- ;4、0;5、2。
北京理工大学微积分a期末试题及答案

北京理工大学微积分a期末试题及答案一、选择题(每题5分,共30分)1. 若函数f(x)=x^2-4x+c,且f(2)=0,则c的值为多少?A. 0B. 2C. 4D. 6答案:C2. 极限lim(x→0) (sin x/x)的值为:A. 0B. 1C. -1D. 2答案:B3. 设函数f(x)=3x^3-2x^2+5x-7,其导数f'(x)为:A. 9x^2-4x+5B. 3x^2-4x+5C. 9x^2-4xD. 3x^2+5x-7答案:A4. 曲线y=x^3在点(1,1)处的切线方程为:A. y=3x-2B. y=3xC. y=xD. y=3x+2答案:B5. 定积分∫(0到1) x^2 dx的值为:A. 1/3B. 1/2C. 2/3D. 1/4答案:B6. 微分方程dy/dx+y=0的通解为:A. y=e^(-x)B. y=e^xC. y=e^(-2x)D. y=e^(2x)答案:A二、填空题(每题5分,共20分)1. 若函数f(x)=x^3-3x,其在x=1处的导数为______。
答案:02. 设函数f(x)=x^2+3x+2,其在x=-1处的定积分值为______。
答案:13. 函数y=ln(x)的导数为______。
答案:1/x4. 微分方程dy/dx-2y=0的通解为______。
答案:y=e^(2x)三、计算题(每题10分,共40分)1. 求函数f(x)=x^3-6x^2+11x-6的极值点。
答案:首先求导数f'(x)=3x^2-12x+11,令f'(x)=0,解得x=1或x=11/3。
通过二阶导数测试或分析f'(x)的符号变化,可得x=1为极大值点,x=11/3为极小值点。
2. 计算定积分∫(1到2) (x^3-2x+1) dx。
答案:首先求出被积函数的原函数F(x)=1/4x^4-x^2+x,然后计算F(2)-F(1)=5/4-2+2-1/4+1=1。
《微积分》课程期末考试试卷(A)及参考答案

3、若函数
f (x, y)
x y ,则
x y
f
(
1 x
,
y)
(
)
A、 x y
x y
B、 1 xy
1 xy
C、 1 xy
1 xy
4、设 D 由 y x, y 2x, y 1围成,则 dxdy ( )
D
A、 1
2
B、 1
4
C、1
5、( )是一阶微分方程
3x 2
3y2
(6
分)。
2、
z y
xy
ln
x (3
分);
2z y 2
xy
ln 2
x
(6
分)。
3、
f
1 x
(
x,
y)
1
x x2
y2
(5
分);
f
1 x
(3,4)
2 (6
5
分)。
4、
z x
y
1 y
,
z y
x
x y2
(4
分);
dz
(y
1 )dx y
(x
x y2
六、求方程 yy' x 的通解。(6 分)
七、判别级数 n1
2n n3n
的敛散性。(6
分)
《微积分》课程期末考试试卷(A)参考答案
一、 填空题(每题 3 分,共 36 分)。
1、
x3 y3
2x
xy y
3xy
2、 1
微积分A第一学期期末试卷A及答案

《微积分A 》期末试卷(A 卷)班级 学号 姓名 成绩一、求解下列各题(每小题7分,共35分) 1设,1arctan 122---=x x x x y 求.y '2 求不定积分.)ln cos 1sin (2dx x x xx⎰++ 3求极限.)(tanlim ln 110x x x ++→ 4 计算定积分,)(202322⎰-=a x a dxI 其中.0>a 5 求微分方程.142+='-''x y y 的通解. 二、完成下列各题(每小题7分,共28分)1 设当0→x 时,c bx ax e x---2是比2x 高阶的无穷小,求c b a ,,的值. 2求函数)4()(3-=x x x f 在),(+∞-∞内的单调区间和极值.3 设)(x y y =是由方程组⎪⎩⎪⎨⎧=--+=⎰01cos sin )cos(20t t y du t u x t所确定的隐函数,求.dx dy 4 求证:.sin sin42222⎰⎰ππππ=dx xxdx xx.三、(8分)设)(x y 在),0[+∞内单调递增且可导,又知对任意的,0>x 曲线)(x y y =,上点)1,0(到点),(y x 之间的弧长为,12-=y s 试导出函数)(x y y =所满足的微分方程及初始条件,并求)(x y 的表达式. 四、(8分)过点)0,1(-作曲线x y =的切线,记此切线与曲线x y =、x 轴所围成的图形为D ,(1) 求图形D 的面积;(2) 求D 绕x 轴旋转一周所得旋转体的体积.五、(7分)求证:方程010cos 042=++⎰⎰-xt xdt e dt t 有并且只有一个实根.六、(8分)一圆柱形桶内有500升含盐溶液,其浓度为每升溶液中含盐10克。
现用浓度为每升含盐20克的盐溶液以每分钟5升的速率由A 管注入桶内(假设瞬间即可均匀混合),同时桶内的混合溶液也以每分钟5升的速率从B 管流出。
微积分试卷及标准答案6套

微积分试题 (A 卷)一. 填空题 (每空2分,共20分)1.已知则对于,总存在δ>0,使得当,)(lim 1A x f x =+→0>∀ε时,恒有│ƒ(x )─A│< ε。
2.已知,则a = ,b =2235lim 2=-++∞→n bn an n 。
3.若当时,α与β 是等价无穷小量,则 。
0x x →=-→ββα0limx x 4.若f (x )在点x = a 处连续,则 。
=→)(lim x f ax 5.的连续区间是 。
)ln(arcsin )(x x f =6.设函数y =ƒ(x )在x 0点可导,则______________。
=-+→hx f h x f h )()3(lim0007.曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为 。
8. 。
='⎰))((dx x f x d 9.设总收益函数和总成本函数分别为,,则当利润最大时产2224Q Q R -=52+=Q C 量是。
Q 二. 单项选择题 (每小题2分,共18分)1.若数列{x n }在a 的ε 邻域(a -ε,a +ε)内有无穷多个点,则()。
(A) 数列{x n }必有极限,但不一定等于a (B) 数列{x n }极限存在,且一定等于a(C) 数列{x n }的极限不一定存在 (D) 数列{x n }的极限一定不存在2.设则为函数的( )。
11)(-=x arctg x f 1=x )(x f(A) 可去间断点(B) 跳跃间断点 (C) 无穷型间断点(D) 连续点3.( )。
=+-∞→13)11(lim x x x(A) 1 (B) ∞(C)(D) 2e 3e4.对需求函数,需求价格弹性。
当价格( )时,5p eQ -=5pE d -==p 需求量减少的幅度小于价格提高的幅度。
(A) 3 (B) 5 (C) 6(D) 105.假设在点的某邻域内(可以除外)存)(),(0)(lim ,0)(lim 0x g x f x g x f x x x x ''==→→得0x 0x 在,又a 是常数,则下列结论正确的是( )。
微积分上期末试题及答案

微积分上期末试题及答案试题一:1.求函数f(x) = x^3 + 2x^2 - 5x的导数f'(x)。
答案:f'(x) = 3x^2 + 4x - 5。
2.计算极限lim(x->3)[(x^2 - 9)/(x - 3)]。
答案:由分式的定义可知,当x ≠ 3时,(x^2 - 9)/(x - 3) = x + 3,故lim(x->3)[(x^2 - 9)/(x - 3)] = 3 + 3 = 6。
3.已知y = 2x^3 - x^2 + 4x + 7,求dy/dx。
答案:dy/dx = 6x^2 - 2x + 4。
4.求函数f(x) = sin(x)的不定积分∫f(x)dx。
答案:∫f(x)dx = -cos(x) + C(C为常数)。
5.已知直线L的斜率为2,并且过点P(3, 4),求直线L的方程。
答案:直线L的方程为y - 4 = 2(x - 3)。
试题二:1.求曲线y = x^2的切线方程,且该切线通过点P(2, 3)。
答案:曲线y = x^2的导数为2x,斜率为m = 2(2) = 4。
切线方程为y - 3 = 4(x - 2)。
2.计算定积分∫(2x + 1)dx在区间[0, 2]上的值。
答案:∫(2x + 1)dx = x^2 + x + C。
在区间[0, 2]上的定积分值为[(2)^2 + 2 + C] - [(0)^2 + 0 + C] = 6。
3.已知函数f(x) = e^x,求f'(x)。
答案:f'(x) = e^x。
4.求函数f(x) = ln(x)的不定积分∫f(x)dx。
答案:∫f(x)dx = xln(x) - x + C(C为常数)。
5.已知曲线C的方程为y = x^3 - 3x^2 + 2,求曲线C的切线方程在点Q(-1, -2)处的斜率。
答案:曲线C的导数为3x^2 - 6x,点Q(-1, -2)在曲线C上,代入x = -1得到斜率m = 3((-1)^2) - 6(-1) = 3 - 6 = -3。
2021微积分A期末试题及答案

2021⭌᮶㢔⫕➶᮷ᱤAᱥᱤ㔋ᱥ⒴㋜ㄯⶌ㗎㗎㝘(2022年1⽉3⽇,⽤时120分钟)专业班级学号姓名题号⼀⼆三四总分分数㮥ᮢ㫍㵗㝘(ょ㝘4➶ᱨ⤎16➶)阅卷⼈得分1.下列说法正确的是(D)A.有界数列⼀定收敛;B.有限区间上的连续函数⼀定⼀致连续;C.函数f在R上处处可导,它的导函数f1⼀定是连续的;D.有界数集⼀定存在上确界。
2.下列哪个极限不存在(B)A.limxÑ0x sin1xB.limxÑ0D(x),其中D(x)是Dirichlet函数C.limxÑ0|sgn(x)|D.limnÑ+8(1+122+¨¨¨+1n2)3.当xÑ0时,下⾯哪个函数不是与y=x等阶的⽆穷⼩(D)A.sin xB.arcsin xC.ln(1+x)D.1´cos x4.函数f(x)定义在R上,在x0处可导⽽且f(x0)ą0。
下列说法错误的是(A)A.函数f(x)在x0处的微分是f1(x0);B.函数f(x)在x0处连续;C.存在x0的⼀个邻域U(x0),使得在该邻域内f(x)ą0;D.当xÑx0时,f(x)=f(x0)+o(1)。
✠ᮢ㝤ⶥ㝘(ょ㝘4➶ᱨ⤎20➶)阅卷⼈得分5.集合A=t(1+1n)n|n P N,ną0u,那么inf A=2,sup A=e。
6.函数φ(t),ψ(t)在R上⼆阶可导,⽽且φ1(t)‰0。
由参数⽅程x=φ(t),y=ψ(t)确定了函数关系y=y(x)。
那么d yd x =ψ1(t)/φ1(t),d2yd x2=ψ2(t)φ1(t)´ψ1(t)φ2(t)φ13(t)。
7.函数y=2x3+3x2´12x+18在区间[´3,3]上的最⼤值是63,最⼩值是11。
8.函数y=x4+8x3+1图像的垂直渐近线是x=´1,斜渐近线是y=x。
9.函数f(x)在R上的连续,F(x)=şxf(x+t)dt,那么F1(x)=2f(2x)´f(x)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、 选择题 (选出每小题的正确选项,每小题2分,共计10分)1.1lim 2xx -→=_________。
(A ) -∞ (B ) +∞ (C ) 0 (D ) 不存在 2.当0x →时,()x xf x x+=的极限为 _________。
(A ) 0 (B ) 1 (C )2 (D ) 不存在 3. 下列极限存在,则成立的是_________。
0()()()lim ()x f a x f a A f a x -∆→+∆-'=∆0()(0)()lim (0)x f tx f B tf x→-'= 0000()()()lim 2()t f x t f x t C f x t →+--'= 0()()()lim ()x f x f a D f a a x →-'=-4. 设f (x )有二阶连续导数,且()0()(0)0,lim1,0()_______x f x f f f x x→'''==则是的。
(A ) 极小值 (B )极大值( C )拐点 (D ) 不是极值点也不是拐点 5.若()(),f x g x ''=则下列各式 成立。
()()()0A f x x φ-=()()()B f x x C φ-=()()()C d f x d x φ=⎰⎰()()()d dD f x dx x dx dx dxφ=⎰⎰ 二、 填空题(每小题3分,共18分)1. 设0(2)()0(0)0,lim1sin x f x f x x f x→===-在处可导,且,那么曲线()y f x =在原点处的切线方程是__________。
2.函数()f x =[0,3]上满足罗尔定理,则定理中的ξ= 。
3.设1(),()ln f x f x dx x'=⎰的一个原函数是那么 。
4.设(),xf x xe -=那么2阶导函数 ()___f x x ''=在点取得极_____值。
5.设某商品的需求量Q是价格P的函数5Q =-,那么在P=4的水平上,若价格 下降1%,需求量将 。
6.若,11),(+-==x x u u f y 且,1)('u u f =dydx = 。
三、计算题(每小题6分,共42分):1、 求11ln (ln )lim xx ex -→2、1[(1)]lim xx x ex →∞+-3、设211~,21x ax x c bx→∞-++时,无穷小量求常数a 、b 、c. 4、5、ln(2)x xe dx e +⎰ 6、3cos sin x x dx x ⎰7、设函数f(x)具有二阶导数,且f (0)=0, 又(0)0()()0f x g x f x x x'=⎧⎪=⎨≠⎪⎩ ,求()g x '。
四、(8分)假设某种商品的需求量Q 是单价P (单位元)的函数:Q=1200-8P ;商品的总成本C 是需求量Q 的函数:C=2500+5Q 。
(1) 求边际收益函数和边际成本函数; (2) 求使销售利润最大的商品单价。
五、(12分)作函数221(1)x y x -=-的图形 六、证明题(每题5分,共计10分)1、 设函数)(x f 在[,]a b 上连续,且()f x '在(,)a b 内是常数,证明)(x f 在[,]a b 上的表达式为 (),f x Ax B A B =+其中、为常数。
2、设函数)(x f 在[0,)+∞上可导,且()0,(0)0.f x k f '>><证明)(x f 在(0,)+∞内仅有一个零点。
《微积分》(上)期末考试试卷答案(A)一、 选择题 (选出每小题的正确选项,每小题2分,共计10分)1.C ; 2. D ; 3.B C; 4.A; 5.B C.二、 填空题(每小题3分,共18分)1. 12y x =-2. 2 3.21ln C x x-+ 4.X=2,极小值 5.上升2% 6.221dy dx x =- 三、计算题(每小题6分,共42分): 1、求11ln (ln )lim xx ex -→解:令11ln (ln )xy x -=,则1ln ln(ln )______21ln y x x=-分00011ln limln lim ln(ln lim 11ln x x x x x y x x x →→→==--)=-1-----3分 10lim x y e -→=-----1分3、1[(1)]lim xx x ex →∞+-解:原式= 11[(1)1]2lim x x x e x →∞+------分11111lim(1)241lim xx x x x e e x e x→∞→∞-+==+=-----分 3、设211~,21x ax x c bx→∞-++时,无穷小量求常数a 、b 、c.解:由2211ax x cbx -+=+ 3分 得a=0,b=-2,c 取任意实数。
3分 4解:12==分1arc 2C = 3分5、解ln(2)1ln(2)ln(2)2x x x x xxx e dx e de e e dx e e --+=-+=-+++⎰⎰⎰ 2分 12ln(2)22x x xxx e e e e dx e -+-=-+++⎰ 2分11ln(2)ln(2)2211()ln(2)22x x x x x e e x e C e e x C--=-++-++=-++++ 2分6、解:32cos 11sin 2sin x x dx xd x x=-⎰⎰ 2分221[csc ]2sin xxdx x=--⎰ 2分2112sin 2x ctgx C x =--+ 2分 7、设函数f(x)具有二阶连续导数,且f (0)=0, 又(0)0()()0f x g x f x x x'=⎧⎪=⎨≠⎪⎩ ,求()g x '解:2()()0()xf x f x x x x '-'≠=当时,g ,这时()g x '连续 2分200()(0)()(0)10(0)lim lim (0)22x x f x xf f x f x f x x →→'''--'''====当时,g 3分 所以2()(),0,()1(0),0.2xf x f x x x g x f x '-⎧≠⎪⎪'=⎨⎪''=⎪⎩ 1分四、(8分)假设某种商品的需求量Q 是单价P (单位元)的函数:Q=1200-8P ;商品的总成本C 是需求量Q 的函数:C=2500+5Q 。
(3) 求边际收益函数MR 和边际成本函数MC ; (4) 求使销售利润最大的商品单价。
解:(1)212008,5;MR PQ P P MC ==-= 3分 (2)利润函数2()812408500,L P PQ C P P =-=-+- 1分155()1612400,2L P P '=-+=令得P=()160,L p ''=-<唯一驻点,又 2分P=155/2时利润最大。
2分五、(12分)作函数221(1)x y x -=-的图形 答案: (1)定义域是()()1,,11,=+∞⋃∞-x 是间断点 1分 (2)渐近线因,0)1(122lim =--∞→x x x 故y=0为水平渐近线 因,)1(1221lim ∞=--→x x x 故x=1为垂直渐近线 2分(3)单调性、极值、凹凸及拐点 ,)1(23'--=x x y 令,0'=y 得x=0 ,)1(244''-+=x x y 令,0''=y 得21-=x再列表'y ''y1)0(-=f 是极小值;拐点是)89,21(--. 6分(4)选点当21=x 时,y=0;当23=x 时,y=8;当x=2时,y=3;当x=3时,45=y 1分(5)描点作图 略 2分六、证明题(每题5分,共计10分)1、设函数)(x f 在[,]a b 上连续,且()f x '在(,)a b 内是常数,证明)(x f 在[,]a b 上的表达式为 (),f x Ax B A B =+其中、为常数。
证明:设(),f x k '=在(a ,b )内任取一点x ,在区间[a ,x]上由拉格朗日中值定理有:()()()()()f x f a f a x k a x a x ξξ'-=-=-<< 2分则()()(,())f x kx ka f a Ax B A k B ka f a =-++=+=-=+其中 2分当x=a 时,上式也成立。
1分2、设函数)(x f 在[0,)+∞上可导,且()0,(0)0.f x k f '>><证明)(x f 在(0,)+∞内仅有一个零点。
证明:在0,)+∞(内任取一点x ,则()[0]f x x 在,上满足拉格朗日中值定理条件, 1()(0)(),f x f f x kx ξ'-=>()(0),f x kx f >+即 3分令11(0)0,()0f x f x k=->>且,由f (x )的单调性和零值定理知原命题成立。
2分。