2019-2020年高考理科数学备考与考纲解读:26 排列组合、二项式定理-含2018三年真题分类汇编与考点定位
高考数学 黄金考点精析精训 考点26 排列与组合、二项式定理 理

考点26 排列与组合、二项式定理【考点剖析】 1.最新考试说明:1.分类加法计数原理、分步乘法计数原理 (1)理解分类加法计数原理和分步乘法计数原理.(2)会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题. 2.排列与组合(1)理解排列、组合的概念.(2)能利用计数原理推导排列数公式、组合数公式. (3)能解决简单的实际问题. 3.二项式定理(1)能用计数原理证明二项式定理.(2)会用二项式定理解决与二项展开式有关的简单问题. 2.命题方向预测:以实际问题为背景考查排列、组合的应用,同时考查分类讨论的思想.以选择题或填空题的形式考查,或在解答题中和概率相结合进行考查. 二项展开式中的特定项、特定项的系数、二项式系数等是高考的热点.常以选择题、填空题的形式考查,近几年试题难度呈降低趋势. 3.名师二级结论: 一个区别排列与组合,排列与组合最根本的区别在于“有序”和“无序”.取出元素后交换顺序,如果与顺序有关是排列,如果与顺序无关即是组合. 两个公式(1)排列数公式n !A ()!mn n m =-(2)组合数公式n !C !()!m n m n m =-,利用这两个公式可计算排列问题中的排列数和组合问题中的组合数.①解决排列组合问题可遵循“先组合后排列”的原则,区分排列组合问题主要是判断“有序”和“无序”,更重要的是弄清怎样的算法有序,怎样的算法无序,关键是在计算中体现“有序”和“无序”.②要能够写出所有符合条件的排列或组合,尽可能使写出的排列或组合与计算的排列数相符,使复杂问题简单化,这样既可以加深对问题的理解,检验算法的正确与否,又可以对排列数或组合数较小的问题的解决起到事半功倍的效果. 四字口诀求解排列组合问题的思路:“排组分清,加乘明确;有序排列,无序组合;分类相加,分步相乘.” 一个防范运用二项式定理一定要牢记通项T r +1=C r n an -r b r,注意(a +b )n 与(b +a )n 虽然相同,但具体到它们展开式的某一项时是不同的,一定要注意顺序问题,另外二项展开式的二项式系数与该项的(字母)系数是两个不同的概念,前者只指C rn ,而后者是字母外的部分.前者只与n 和r 有关,恒为正,后者还与a ,b 有关,可正可负. 一个定理二项式定理可利用数学归纳法证明,也可根据次数,项数和系数利用排列组合的知识推导二项式定理.因此二项式定理是排列组合知识的发展和延续. 两种应用(1)通项的应用:利用二项展开式的通项可求指定的项或指定项的系数等.(2)展开式的应用:利用展开式①可证明与二项式系数有关的等式;②可证明不等式;③可证明整除问题;④可做近似计算等. 三条性质 (1)对称性; (2)增减性;(3)各项二项式系数的和;以上性质可通过观察杨辉三角进行归纳总结. 4.考点交汇展示: (1)与基本不等式相结合若26()b ax x+的展开式中3x 项的系数为20,则22b a +的最小值 . 【答案】2(2)与定积分相结合已知11(1a dx -=⎰,则61()2a x x π⎡⎤--⎢⎥⎣⎦展开式中的常数项为 。
排列组合二项式定理

排列组合与二项式定理一、排列与组合简介在概率论和组合数学中,排列和组合是两个重要的概念。
排列和组合通常被用来描述从给定的有限集合中选择若干元素的方式。
排列指的是从一组元素中选择若干不同的元素并按照一定的顺序排列的方式。
对于一个有n个元素的集合,从中选择r个元素进行排列的方式数目记作P(n, r)。
排列主要有两种情况:1.重复元素情况下的排列,即元素可重复使用。
此时,P(n, r) = n^r.2.不重复元素情况下的排列,即元素不可重复使用。
此时,P(n, r) = n(n-1)(n-2)…(n-r+1) = n!/(n-r)!.组合指的是从一组元素中选择若干不同的元素,而不考虑元素的顺序的方式。
对于一个有n个元素的集合,从中选择r个元素进行组合的方式数目记作C(n, r)。
组合的计算公式为:C(n, r) = n!/[(n-r)!*r!].二、二项式定理的概念与展开二项式定理是高中数学中非常重要的一个定理,也是排列组合理论的重要应用。
它用于展开一个二项式的幂。
二项式定理的公式为:(x+y)^n = C(n,0)x ny^0 + C(n,1)x(n-1)y^1 + C(n,2)x(n-2)y^2 + … + C(n,n-1)x1y^(n-1) +C(n,n)x^0y^n.其中,C(n,r)表示从n个元素中选择r个元素进行组合的方式数目。
三、二项式定理的解读与应用二项式定理可以用来求解(x+y)^n的展开式中的各项系数。
在展开式中,每一项的系数就是对应的组合数。
举例说明,当n=3时,展开式为:(x+y)^3 = C(3,0)x3y^0 + C(3,1)x2y^1 + C(3,2)x1y^2 + C(3,3)x0y^3.展开后,得到:(x+y)^3 = x^3 + 3x^2y + 3x y^2 + y^3.可以看出,展开式中的每一项系数正好是对应的组合数。
二项式定理在概率论、组合数学、代数等领域具有广泛的应用。
高中数学公式大全排列组合与二项式定理

高中数学公式大全排列组合与二项式定理高中数学公式大全:排列组合与二项式定理排列组合与二项式定理是高中数学中重要的概念和公式,它们在概率论、组合数学、代数等领域都有广泛应用。
本文将为您详细介绍排列组合与二项式定理的相关内容。
一、排列组合排列和组合是排列组合问题中最基础的概念。
排列表示从一组元素中选取若干元素按照一定顺序排列的方式,而组合则表示从一组元素中选取若干元素,顺序不考虑。
下面是排列组合中常见的公式:1. 排列公式:排列公式用于求解从 n 个元素中取出 m 个元素,按照一定顺序排列的方式。
排列的数量表示为 P(n,m),计算公式如下:P(n,m) = n! / (n-m)!其中,n! 表示 n 的阶乘。
2. 组合公式:组合公式用于求解从 n 个元素中取出 m 个元素,顺序不考虑的方式。
组合的数量表示为 C(n,m),计算公式如下:C(n,m) = n! / (m! * (n-m)!)二、二项式定理二项式定理是高中数学中另一个重要的公式,它表示了任意实数a、b 和正整数 n 的 n 次幂展开后,各项的系数。
二项式定理为:(a+b)^n = C(n,0)*a^n*b^0 + C(n,1)*a^(n-1)*b^1 + C(n,2)*a^(n-2)*b^2+ ... + C(n,n-1)*a^1*b^(n-1) + C(n,n)*a^0*b^n其中,C(n,m) 表示组合数,表示从 n 个元素中选取 m 个元素的方式数。
三、应用举例1. 排列组合的应用:在一群人中选出特定的几个人组成小组,或者在一串数字中找出满足某种条件的特定数字。
排列组合在组合数学、概率论等领域有广泛的应用。
2. 二项式定理的应用:在数学展开、概率计算、代数运算等方面常常用到二项式定理。
它在概率论中常用于计算二项分布的概率,也可以用于计算方程式的展开。
总结:排列组合与二项式定理是高中数学中重要的概念和公式。
它们在概率论、组合数学、代数等领域都有广泛应用。
高三数学排列,组合和二项式定理

精品学案:排列,组合和二项式定理高考大纲对排列,组合和二项式定理这一章的考试内容及考试要求为: 1.分类计数和分步计数原理; 2.排列组合公式3.组合组合数公式和组合数的两个性质 4.二项式定理和二项式展开式 考试要求掌握分类计数和分步计数原理,并能用他们解决一些简单的应用问题。
理解排列的意义,掌握排列的计数公式,并能用他解决一些简单的应用问题。
理解组合的意义,掌握组合的计数公式,并能用他解决一些简单的应用问题。
掌握二项式定理和他的展开式的性质,并能用他计算和证明一些简单的应用问题。
要点一计数原理1分类计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法那么完成这件事共有 12n N m m m =+++种不同的方法2.分步计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事有12n N m m m =⨯⨯⨯ 种不同的方法 要点二排列1.排列的概念:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一定的顺序.....排成一列,叫做从n 个不同元素中取出m 个元素的一个排列....2.排列数的定义:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中取出m 元素的排列数,用符号mn A 表示3.排列数公式:(1)(2)(1)mn A n n n n m =---+(,,m n N m n *∈≤)和m n A =!()!n n m -4阶乘:!n 表示正整数1到n 的连乘积,叫做n 的阶乘规定0!1=.要点三组合1组合的概念:一般地,从n 个不同元素中取出m ()m n ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合2.组合数的概念:从n 个不同元素中取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数....用符号mn C 表示. 3.组合数公式:(1)(2)(1)!m m n nm m A n n n n m C A m ---+==或)!(!!m n m n C mn -=,,(n m N m n ≤∈*且4组合数的性质1:m n n m n C C -=.规定:10=n C ;2:m n C 1+=m n C +1-m n C要点四二项式定理1.正确理解二项式展开式中的第r +1项,第r +1项的二项式系数,第r +1项的系数之间的差别.2.二项系数的性质问题求二项式系数最大的项,可直接根据二项式系数的增减性与最大值性质,当为n 奇数时,中间两项的二项式系数最大;当n 为偶数时,中间一项的二项式系数最大,若求系数最大的项,则要根据各项系数的正、负变化情况并采用列不等式组、比较系数法求解.3.二项式的某项系数问题该问题解法多样,既可化归为二项式问题求解,又可从组合角度求解,一般地,三项式(a +b+c)n的展开式中,a p b q c r的系数为4.赋值法在二项展开式中的运用赋值法的模式是:对任意的x∈A,某式子恒成立,那么对A中的特殊值,该式子一定成立.特殊值如何选取?视具体问题而定,没有一成不变的规律,它的灵活性较强,一般x0=0, 1,-1取较多.一般地,多项式f(x)的各项系数和为f(1),奇次项系数和为1[(1)(1)]2f f--,偶次项系数和为1[(1)(1)]2f f+-.如二项式系数性质。
2019-2020年高三数学一轮总复习 专题十三 排列、组合与二项式定理(含解析)

2019-2020年高三数学一轮总复习专题十三排列、组合与二项式定理(含解析)抓住2个高考重点重点1 排列与组合1.两个原理的应用如果完成一件事情有类办法,这类办法彼此之间是相互独立的,无论哪一类办法中的哪一种方法都能完成这件事情,求完成这件事情的方法种数就用分类加法计数原理;如果完成一件事情要分成个步骤,各个步骤都是不可或缺的,依次完成所有的步骤才能完成这件事情,而完成每一个步骤各有若干种不同的方法,求完成这件事情的方法种数就用分步乘法计数原理.从思想方法的角度看,分类加法计数原理的运用是将问题进行“分类”思考,分步乘法计数原理是将问题进行“分步”思考,这两种思想方法贯穿于解决这类应用问题的始终.(1)在处理具体的应用问题时,首先必须弄清楚是“分类”还是“分步”,其次要搞清楚“分类”和“分步’’的具体标准分别是什么.选择合理、简洁的标准处理问题,可以避免计数的重复或遗漏.(2)对于一些比较复杂的问题,既要运用分类加法计数原理,又要运用分步乘法计数原理时,我们可以恰当地画出示意图或列出表格,使问题的分析更直观、清晰.2.排列组合应用题(1)排列问题常见的限制条件及对策①对于有特殊元素或特殊位置的排列,一般采用直接法,即先排特殊元素或特殊位置.②相邻排列问题,通常采用“捆绑”法,即可以把相邻元素看作一个整体参与其他元素排列.③对于元素不相邻的排列,通常采用“插空”的方法.④对于元素有顺序限制的排列,可以先不考虑顺序限制进行排列,然后再根据规定顺序的实情求结果.求解有约束条件的排列问题,通常有正向思考和逆向思考两种思路.正向思考时,通过分步、分类设法将问题分解;逆向思考时,用集合的观点看,就是先从问题涉及的集合在全集中的补集入手,使问题简化.(2)组合问题常见的问题及对策①在解组合应用题时,常会遇到“至少”、“最多”等词,要仔细审题,理解其含义.②有关几何图形的组合问题,一定要注意图形自身对其构成元素的限制,解决这类问题常用间接法(或排除法).③分组、分配问题二者是有区别的,前者组与组之间只要元素个数相同,是不可区分的,而后者即使两组元素个数相同,但因元素不同,仍然是可区分的.(3)解排列、组合的应用题,要注意四点①仔细审题,判断是组合问题还是排列问题.要按元素的性质分类,按事件发生的过程进行分步..②深入分析,严密周详.注意分清是乘还是加,既不少也不多,辩证思维,多角度分析,全面考虑,积极运用逻辑推理能力,同时尽可能地避免出错.③对于附有条件的比较复杂的排列、组合应用题,要周密分析,设计出合理的方案,把复杂问题分解成若干简单的基本问题后应用加法原理或乘法原理来解决.④由于排列、组合问题的结果一般数目较大,不易直接验证,因此在检查结果时,应着重检查所设计的解决问题的方案是否完备,有无重复或遗漏,也可采用多种不同的方案求解,看结果是否相同,在对排列、组合问题分类时,分类标准应统一,否则易出现遗漏或重复.[高考常考角度]角度1 用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有______个.(用数字作答)解析:本题主要考查分步乘法计数原理的应用.因为四位数的每个数位上都有两种可能性,其中四个数字全是2或3的情况不合题意,所以符合题意的四位数有个(间接法)点评:如果用直接法,分类会很复杂。
2019-2020学年度高三理科数学二轮复习:专题六第一讲 排列、组合与二项式定理-含解析

——教学资料参考参考范本——2019-2020学年度高三理科数学二轮复习:专题六第一讲排列、组合与二项式定理-含解析______年______月______日____________________部门20xx最新高三理科数学二轮复习:专题六第一讲排列、组合与二项式定理-含解析第一讲排列、组合与二项式定理高考导航1.考查排列、组合的实际应用.2.考查二项式系数、常数项、二项式指定项的求解.1.(20xx·全国卷Ⅱ)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )A.24 B.18C.12 D.9[解析] 由题意可知E→F共有6种走法,F→G共有3种走法,由乘法计数原理知,共有6×3=18种走法,故选B.[答案] B2.(20xx·全国卷Ⅰ)(1+x)6展开式中x2的系数为( )A.15 B.20C.30 D.35[解析] 对于(1+x)6,若要得到x2项,可以在中选取1,此时(1+x)6中要选取含x2的项,则系数为C;当在中选取时,(1+x)6中要选取含x4的项,即系数为C,所以,展开式中x2项的系数为C+C=30,故选C.[答案] C3.(20xx·湖北卷)已知(1+x)n的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( )A.212 B.211C.210 D.29[解析] ∵(1+x)n的展开式中第4项与第8项的二项式系数分别为C,C,∴C=C,得n=10.对(1+x)10,令x=1,得(1+1)10=C+C+C+C+…+C=210,①令x=-1,得(1-1)10=C-C+C-…+C=0,②利用①+②可得2×(C+C+…+C)=210,∴奇数项的二项式系数和为C+C+…+C=29.[答案] D4.(20xx·全国卷Ⅰ)(x2+x+y)5的展开式中,x5y2的系数为( )A.10 B.20C.30 D.60[解析] (x2+x+y)5=[(x2+x)+y]5的展开式中只有C(x2+x)3y2中含x5y2,易知x5y2的系数为CC=30,故选C.[答案] C5.(20xx·天津卷)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有________个.(用数字作答)[解析] 分两类:①有一个数字是偶数的四位数有CCA=960个.②没有偶数的四位数有A=120个.故这样的四位数一共有960+120=1080个.[答案] 1080考点一两个计数原理分类加法计数原理和分步乘法计数原理如果每种方法都能将规定的事件完成,则要用分类加法计数原理将方法种数相加;如果需要通过若干步才能将规定的事件完成,则要用分步乘法计数原理将各步的方法种数相乘.[对点训练]1.已知I={1,2,3},A,B是集合I的两个非空子集,且A中所有元素的和大于B中所有元素的和,则集合A,B共有( )B.15对A.12对D.20对C.18对[解析] 依题意,当A,B均有一个元素时,有3对;当B有一个元素,A有两个元素时,有C+C+2=8对;当B有一个元素,A有三个元素时,有3对;当B有两个元素,A有三个元素时,有3对;当A,B均有两个元素时,有3对.所以共有3+8+3+3+3=20对,选D.[答案] D2.(20xx·全国卷Ⅱ)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )B.18种A.12种D.36种C.24种[解析] 第一步:将4项工作分成3组,共有C种分法.第二步:将3组工作分配给3名志愿者,共有A种分配方法,故共有C·A=36种安排方式,故选D.[答案] D 3.如果一个三位正整数“a1a2a3”满足a1<a2且a3<a2,则称这样的三位数为凸数(如120,343,275),那么所有凸数的个数为( )B.204A.240D.920C.729 [解析] 分8类,当中间数为2时,有1×2=2个;当中间数为3时,有2×3=6个;当中间数为4时,有3×4=12个;当中间数为5时,有4×5=20个;当中间数为6时,有5×6=30个;当中间数为7时,有6×7=42个;当中间数为8时,有7×8=56个;当中间数为9时,有8×9=72个.故共有2+6+12+20+30+42+56+72=240个凸数.[答案] A两个计数原理的应用技巧(1)在应用分类计数原理和分步计数原理时,一般先分类再分步,每一步当中又可能用到分类计数原理.(2)对于复杂的两个原理综合使用的问题,可恰当列出示意图或表格,使问题形象化、直观化.考点二排列与组合名称排列组合相同点都是从n个不同元素中取m(m≤n)个元素,元素无重复不同点①排列与顺序有关;②两个排列相同,当且仅当这两个排列的元素及其排列顺序完全相同①组合与顺序无关;②两个组合相同,当且仅当这两个组合的元素完全相同[对点训练]1.(20xx·山西四校联考)某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A.72B.120C.144D.168[解析] 依题意,先仅考虑3个歌舞类节目互不相邻的排法种数为AA=144,其中3个歌舞类节目互不相邻但2个小品类节目相邻的排法种数为AAA=24,因此满足题意的排法种数为144-24=120,选B.[答案] B [探究追问] (1)若第1题中改为“同类节目必须相邻”,则有多少种不同的排法?(2)若第1题中改为“相声类节目不排第一个,小品类节目不排最后一个,则有多少种不同的排法?”[解析] (1)(捆绑法)将歌舞类节目,2个小品类节目分别各自作一个节目与相声类节目排列,共有A种不同排法.又歌舞类节目有A 种排法,小品类节目有A种排法,所以共有A×A×A=72(种)不同排法.(2)分两类:第一类,若第一个节目排歌舞类,由于最后一个不排小品类节目,有A·AA=216(种)排法;第二类,若第一个节目排小品类节目,则有A·A·A=192(种)排法.故共有216+192=408(种)不同的排法.[答案] (1)72种(2)408种2.(20xx·浙江卷)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有________种不同的选法.(用数字作答) [解析] 从8人中选出4人,且至少有1名女学生的选法种数为C-C=55.从4人中选出队长1人,副队长1人,普通队员2人的选法为A=12种.故总共有55×12=660种选法.[答案] 660 3.(20xx·北京西城一模)某种产品的加工需要A,B,C,D,E五道工艺,其中A必须在D的前面完成(不一定相邻),其他工艺的顺序可以改变,但不能同时进行,为了节省加工时间,B与C必须相邻,那么完成加工该产品的不同工艺的排列顺序有________种.(用数字作答)[解析] B与C必须相邻,看作一个元素,与剩下三个元素全排列共有A种排法,而B与C的顺序有A种排法,又A必须在D的前面完成,所以完成加工该产品的不同工艺的排列顺序有=24(种).[答案] 24解排列组合综合应用题的解题流程考点三二项式定理1.通项与二项式系数Tk+1=Can-kbk(k=0,1,2,…,n),其中C叫做二项式系数.2.二项式系数的性质(1)C=C,C=C,…,C=C;(2)C+C+C+…+C=2n;(3)C+C+C+…=C+C+C+…=2n-1.[对点训练]1.(20xx·全国卷Ⅲ)(x+y)(2x-y)5的展开式中x3y3的系数为( )B.-40A.-80D.80C.40 [解析] (2x-y)5的展开式的通项为Tr+1=C·(2x)5-r·(-y)r=(-1)r·25-rC·x5-ryr.其中x2y3项的系数为(-1)3·22·C =-40,x3y2项的系数为(-1)2·23·C=80.于是(x+y)(2x-y)5的展开式中x3y3的系数为-40+80=40.[答案] C 2.(20xx·大连质监)(2x-1)5的展开式中各项系数的和为2,则该展开式中常数项为( )A .-20B .-10C .10D .20[解析] 令x =1,可得a +1=2,所以a =1,所以(2x -1)5=(2x -1)5,则展开式中常数项为2C(-1)4=10.[答案] C3.(20xx·广东肇庆三模)(x +2y)7的展开式中,系数最大的项是( )A .68y7B .112x3y4C .672x2y5D .1344x2y5[解析] 设第r +1项的系数最大,则有⎩⎪⎨⎪⎧Cr 7·2r≥C r -17·2r-1,Cr 7·2r≥C r +17·2r+1,即错误!即解得⎩⎪⎨⎪⎧r≤163,r≥133.又∵r∈Z,∴r=5.∴系数最大的项为T6=Cx2·25y5=672x2y5.故选C.[答案] C4.(20xx·江西抚州一模)在(1-x)(1+x)4的展开式中,含x2项的系数是 b.若(2-bx)7=a0+a1x +…+a7x7,则a1+a2+…+a7=________.[解析] 在(1-x)(1+x)4的展开式中,含x2项的系数是b,则b=C-C=2.(2-2x)7=a0+a1x+…+a7x7,令x=0,得a0=27,令x=1,得a0+a1+a2+…+a7=0,∴a1+a2+…+a7=0-27=-128.[答案] -128利用二项式定理求解的3种常用思路(1)二项式定理中最关键的是通项公式,求展开式中特定的项或者特定项的系数均是利用通项公式和方程思想解决的.(2)二项展开式的系数之和通常是通过对二项式及其展开式中的变量赋值得出的,注意根据展开式的形式给变量赋值.(3)二项展开式的最大项是通过不等式组确定的.【易错提醒】(1)通项公式表示二项展开式的任意项,只要n与r确定,该项就随之确定;(2)Tr+1是展开式中的第r+1项,而不是第r项;(3)公式中,a,b的指数和为n,且a,b不能随便颠倒位置.热点课题21 分类讨论思想在排列组合中的应用[感悟体验]1.(20xx·济南二模)某校开设5门不同的数学选修课,每位同学可以从中任选1门或2门课学习,甲、乙、丙三位同学选择的课没有一门是相同的,则不同的选法共有( )B.420种A.330种D.600种C.510种[解析] 当甲、乙、丙三位同学都只选1门,不同的选法有A=60(种);当甲、乙、丙三位同学有一位选1门,另外两位选2门,不同的选法有CCCC=90(种);当甲、乙、丙三位同学有两位选1门,另一位选2门,不同的选法有CCCC=180(种),共有60+90+180=330(种).[答案] A 2.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张.不同取法的种数为( )B.252A.232C.472D.484[解析] 由题意,不考虑特殊情况,共有C种取法,其中同一种颜色的卡片取3张,有4C种取法,3张卡片中红色卡片取2张有C·C 种取法,故所求的取法共有C-4C-C·C=560-16-72=472种,选C.[答案] C11 / 11。
2019-2020年高考数学复习教学案:排列组合及二项式定理

2019-2020年高考数学复习教学案:排列组合及二项式定理【三维目标】一、知识与技能1. 理解两个计数原理,并会应用解题;2. 理解排列组合(数)的概念产生过程,辨析常见排列组合模型的特点并掌握常用解法;3. 掌握二项式定理的内容和灵活运用解题.二、过程与方法1. 学生小组合作学习,在总结归纳知识的过程中,提高学生“建模”和解决实际问题的能力,渗透类比、化归、分类讨论等数学思想;2. 培养学生学习数学的兴趣和合作探究学习的意识,激励学生互相交流分享学习成果.三、情感态度与价值观1.发展学生的抽象能力和逻辑思维能力,培养学生分析问题和解决实际问题的能力;2.通过小组合作学习,分享学习成果的学习形式,锻炼学生组织表达能力,引导学生探究学习数学的有效方式,体验合作学习的乐趣,培养集体责任感与荣誉感.【教学重点】重点是辨析常见排列组合模型的特点并掌握常用解法.【教学难点】难点是辨析常见排列组合模型的特点并掌握常用解法.【教学过程】一、复习回顾:主干知识梳理1.分类计数原理和分步计数原理运用两个计数原理解题的关键在于正确区分“分类”与“分步”.分类就是能“一步到位”——任何一类中任何一种方法都能完成这件事情,而分步则只能“局部到位”——任何一步中任何一种方法都不能完成这件事情,只能完成事件的某一部分,只有当各步全部完成时,这件事情才完成.即:类类独立,步步关联2.排列和组合 (1)排列与组合的定义(2)排列数与组合数公式推导过程及关系组合数的性质: , (3)排列组合应用题的解题策略:①特殊元素、特殊位置优先安排的策略; ②合理分类与准确分步的策略; ③正难则反,等价转化的策略;④相邻问题捆绑法,不相邻问题插空法的策略; ⑤元素定序,先排后除的策略; ⑥排列、组合混合题先选后排策略; ⑦复杂问题构造模型策略. 3.二项式定理 (1)定理:(a +b )n =C 0n a n b 0+C 1n a n -1b +C 2n a n -2b 2+…+C r n an -r b r +…+C n n a 0b n(r =0,1,2,…,n ).(2)二项展开式的通项T r +1=C r n a n -r b r,r =0,1,2,…,n ,其中C r n 叫做二项式系数.()()()()!! 121m n n m n n n n A m n -=+---= .,,*n m N m n ≤∈并且()()()()!!!!121m n m n m m n n n n C mn -=+---= mn nm n C C -=m n m n m n C C C 11+-=+(3)二项式系数的性质①对称性:与首末两端“等距离”两项的二项式系数相等,即C 0n =C n n ,C 1n =C n -1n ,…,C k n =C n -kn ,….②最大值:当n 为偶数时,中间的一项的二项式系数 2nnC 取得最大值;当n为奇数时,中间的两项的二项式系数相等,且同时取得最大值2121-+=n nn nCC.③各二项式系数的和a .C 0n +C 1n +C 2n +…+C k n +…+C n n =2n;b .C 0n +C 2n +…+C 2r n +…=C 1n +C 3n +…+C 2r +1n +…=12·2n =2n -1.(4)解决二项式定理问题的注意事项①运用二项式定理一定要牢记通项T k +1=C k n an -k b k ,注意(a +b )n 与(b +a )n 虽然相同,但具体到它们展开式的某一项时是不同的.另外,二项式系数与项的系数是两个不同概念,前者指C r n ,后者指字母外的部分.②求二项式中项的系数和,用“赋值法”解决,通常令字母变量的值为1、-1、0等.③证明整除问题一般将被除式变为有关除式的二项式的形式再展开,常采用“配凑法”、“消去法”结合整除的有关知识解决. 二.小组合作,分享交流 题型一:两个计数原理例1、现有5幅不同的国画,2幅不同的油画,7幅不同的水彩画。
高中数学排列组合及二项式定理知识点

高中数学排列组合及二项式定理知识点高中数学之排列组合二项式定理一、分类计数原理和分步计数原理:分类计数原理:完成某事有多种不同的方法,这些方法间是彼此独立的,任选其中一种方法都能达到完成此事的目的,那么完成此事的方法总数就是这些方法种数的和。
分步计数原理:完成某事必须分成几个步骤,每个步骤都有不同的方法,而每个步骤中的任何一种方法与下一步骤中的每一个方法都可以连接,只有依次完成所有各步,才能达到完成此事的目的,那么完成此事的方法总数就是这些方法种数的积。
区别:如果任何一类办法中的任何一种方法都能完成这件事,则选用分类计数原理,即类与类之间是相互独立的,即“分类完成”;如果只有当n个步骤都做完,这件事才能完成,则选用分步计数原理,即步与步之间是相互依存的,连续的,即“分步完成”。
二、排列与组合:1)排列与组合的区别和联系:都是研究从一些不同的元素中取出n个元素的问题;区别:前者有顺序,后者无顺序。
2)排列数、组合数:排列数的公式:Ann(n-1)(n-2)。
(n-m+1)=n。
注意:①全排列:Ann。
②记住下列几个阶乘数,1!=1,2!=2,3!=6,4!=24,5!=120,6!=720;排列数的性质:①AnnAn-1将从n个不同的元素中取出m(m≤n)个元素,分两步完成:第一步从n个元素中选出1个排在指定的一个位置上;第二步从余下n-1个元素中选出m-1个排在余下的m-1个位置上)②AnmAn-1An-1将从n个不同的元素中取出m(m≤n)个元素,分两类完成:第一类:m个元素中含有a,分两步完成:第一步将a排在某一位置上,有m不同的方法。
第二步从余下n-1个元素中选出m-1个排在余下的m-1个位置上)即有mAn-1种不同的方法。
第二类:m个元素中不含有a,从n-1个元素中取出m个元素排在m个位置上,有An-1种方法。
组合数的公式:Cmnmm!(n-m)!/m!组合数的性质:CnCn从n个不同的元素中取出m个元素后,剩下n-m个元素,也就是说。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
青霄有路终须到,金榜无名誓不还!
2019-2020年备考
专题26 排列组合、二项式定理
考纲解读明方向
考点内容解读要求高考示例常考题型预测热度
计数原理、排列、组合(1)分类加法计数原理、分步乘法计数
原理
①理解分类加法计数原理和分步乘法
计数原理;
②会用分类加法计数原理或分步乘法
计数原理分析和解决一些简单的实际
问题
(2)排列与组合
①理解排列、组合的概念;
②能利用计数原理推导排列数公式、
组合数公式;
③能解决简单的实际问题
掌握
2017天津,14;
2016课标全国
Ⅱ,5;
2016课标全国
Ⅲ,12;
2015四川,6;
2014安徽,8
选择题★★☆
分析解读 1.分类加法计数原理和分步乘法计数原理的共同点是把一个原始事件分解成若干个事件来完成,两个原理的区别在于一个与分类有关,一个与分步有关,这两个原理是最基本也是最重要的原理,是解答排列与组合问题,尤其是解答较复杂的排列与组合问题的基础.2.理解排列、组合及排列数与组合数公式,排列与组合的综合是高频考点.本节在高考中单独考查时,以选择题、填空题的形式出现,分值约为5分,属中档题;本节内容还经常与概率、分布列问题相结合,出现在解答题的第一问中,难度中等或中等偏上.
考点内容解读要求高考示例常考题型预测热
度
二项式定理的应
用能用计数原理证明二项式定理;
会用二项式定理解决与二项展开
式有关的简单问题
掌握
2017课标全国
Ⅰ,6;
2016课标全国
Ⅰ,14;
2015课标Ⅰ,10
选择题
填空题
★★★
分析解读 1.掌握二项式定理和二项展开式的性质.2.会用二项式定理的知识解决系数和、常数项、整除、近似值、最大值等相关问题.3.二项展开式的通项公式是高考热点.本节在高考中一般以选择题或填空题形式出现,分值约为5分,属容易题.
2018年高考全景展示
1.【2018年全国卷Ⅲ理】的展开式中的系数为
A. 10
B. 20
C. 40
D. 80
【答案】C。