微积分基础阶段证明题及答案
微积分试题及答案【精选】

一、选择题(每题2分)1、设x ƒ()定义域为(1,2),则lg x ƒ()的定义域为() A 、(0,lg2)B 、(0,lg2]C 、(10,100)D 、(1,2)2、x=-1是函数x ƒ()=()221x x x x --的() A 、跳跃间断点 B 、可去间断点 C 、无穷间断点 D 、不是间断点3、试求0x →A 、-14B 、0C 、1D 、∞ 4、若1y xx y+=,求y '等于() A 、22x y y x -- B 、22y x y x -- C 、22y x x y-- D 、22x yx y +-5、曲线221xy x =-的渐近线条数为() A 、0 B 、1 C 、2 D 、3 6、下列函数中,那个不是映射()A 、2y x = (,)x R y R +-∈∈ B 、221y x =-+C 、2y x = D 、ln y x = (0)x >二、填空题(每题2分) 1、__________2、、2(1))l i m ()1x n xf x f x nx →∞-=+设 (,则 的间断点为__________3、21lim51x x bx ax→++=-已知常数 a 、b,,则此函数的最大值为__________ 4、263y x k y x k =-==已知直线 是 的切线,则 __________5、ln 2111x y y x +-=求曲线 ,在点(,)的法线方程是__________ 三、判断题(每题2分)1、221x y x =+函数是有界函数 ( )2、有界函数是收敛数列的充分不必要条件 ( )3、limββαα=∞若,就说是比低阶的无穷小 ( ) 4、可导函数的极值点未必是它的驻点 ( ) 5、曲线上凹弧与凸弧的分界点称为拐点 ( ) 四、计算题(每题6分) 1、1sin xy x=求函数 的导数2、21()arctan ln(12f x x x x dy =-+已知),求 3、2326x xy y y x y -+="已知,确定是的函数,求 4、20tan sin lim sin x x xx x→-求 5、计算6、21lim (cos )x x x +→计算 五、应用题1、设某企业在生产一种商品x 件时的总收益为2)100R x x x =-(,总成本函数为2()20050C x x x=++,问政府对每件商品征收货物税为多少时,在企业获得利润最大的情况下,总税额最大?(8分) 2、描绘函数21y x x=+的图形(12分) 六、证明题(每题6分)1、用极限的定义证明:设01lim (),lim ()x x f x A f A x+→+∞→==则 2、证明方程10,1xxe =在区间()内有且仅有一个实数一、选择题1、C2、C3、A4、B5、D6、B 二、填空题1、0x =2、6,7a b ==-3、184、35、20x y +-= 三、判断题1、√2、×3、√4、×5、× 四、计算题 1、1sin1sin1sin ln 1sin ln 22))1111cos ()ln sin 1111(cos ln sin )xxx xx xy x ee x x x x x x x x x x x'='='⎡⎤=-+⎢⎥⎣⎦=-+((2、22()112(arctan )121arctan dy f x dxxx x dx x xxdx='=+-++= 3、 解:2222)2)222302323(23)(23(22)(26)(23x y xy y y x yy x y y x y x y yy y x y--'+'=-∴'=--'----'∴''=-4、解:2223000tan sin ,1cos 21tan (1cos )12lim lim sin 2x x x x x x x x x x x x x x x →→→--∴==当时,原式=5、解:65232222261)61116116(1)166arctan 6arctanx t dx t tt t t t t tt t C C===+=++-=+=-+=-+=-+⎰⎰⎰⎰令原式(6、 解:201ln cos 01limln cos 20200012lim 1lim ln cos ln cos lim 1(sin )cos lim 2tan 1lim 22x xx x xx x x x x e ex xxx x x xx x e++→++++→→→→→-===-=-==-∴= 原式其中:原式 五、应用题1、解:设每件商品征收的货物税为a ,利润为()L x222()()()100(20050)2(50)200()45050()0,,()4(50)41(502)410250225L x R x C x axx x x x ax x a x L x x aaL x x L x a a ax T a T a T a =--=--++-=-+--'=-+--'==-='=-'==''=-<∴=令得此时取得最大值税收T=令得当时,T 取得最大值2、 解:()()2300,01202201D x y x x y x y x y x =-∞⋃+∞='=-'==''=+''==-,间断点为令则令则渐进线:32lim lim 001lim x x x y y y x y y x y x x→∞→→∞=∞∴=∴=+==∞∴无水平渐近线是的铅直渐近线无斜渐近线图象六、证明题 1、 证明:lim ()0,0()11101()1lim ()x x f x AM x M f x A x M M M x f A x f A x εεξε→∞→∞=∴∀>∃>>-<><<>∴-<= 当时,有取=,则当0时,有即。
微积分基础练习参考答案

微积分基础练习参考答案一、 函数的概念和性质练习1.1 函数的定义域1、(2,3)(3,8]y D =2、 [5,1)(1,5]---3、 (1,0)(0,3]-4、(1,)+∞5、 (1,2]-6、 (1,2)练习1.2 函数的对应规则1、 A2、 D3、 34、 B 。
5、 D6、 D练习1.3 判断两函数的异同1、 C2、 B3、 A练习1.4 函数的奇偶性1、 A2、 A3、 A4、 D练习1.5 复合函数的定义和分解1、x x g f sin )]([=2、x x f g sin )]([=3、 ln ,sin 1y u u v x ==+。
4、函数由u y e =,cos u v =,1x v e =+复合而成的。
二、极限与连续练习2.1 根据基本初等函数图形求极限1、02、∞+3、∞+4、05、∞+6、∞-练习2.2 分式的极限1、∞2、13、04、-85、41练习2.3 两个重要极限1、1-e 2、 2e 3、2-e 4、e5、 16、3-e 7、e 8、 19、4110、1 11、3 12、1 练习2.4 无穷小量与无穷大量1、 A2、 B3、 D4、 A5、 D练习2.5 函数的连续性与间断点1、 (,2)(2,6)(6,)-∞--+∞2、 23、 C4、 D三、一元函数微分学练习3.1 导数的定义1、 A2、 B练习3.2 导数的几何意义1、 D2、 B3、13164y x =-+ 4、 33y x =-5、 2y x =+6、 12-,11(1)2y x -=--练习3.3 导数的四则运算法则1、12、 11+--='n n xn nx y 3、 1ln +='x y4、2ln 1x x y -=' 5、2sin cos cos sin xxx x x x x y -++=' 6、2121x xy -=' 7、()313+-='x y 8、B 练习3.4 复合函数求导法则1、22)1(6+='x x y2、xy 3123--=' 3、32)1(+-='x x y4、x y 4sin 2='5、11-='x y 6、x x2cos 2sin -7、 dy=sin cos x xe dx 8、 xxe 2sin 24sin 2 9、)cos(2cos 22sin 2sin x xe xey ='10、x e x ey x x3cos 33sin 222+=' 11、322cos 3cos sin 3x x x x y +='12、xy -='121练习3.5 隐函数求导法则1、 222sin x y y x y y -'∴=- 2、522322++---='y x y x y 3、(0)1y '∴=-练习3.6 对数求导法则1、(2)(ln 21)x y x x '∴=+2、)sin ln (cos sin xxx x xy x+=' 3、))12ln(sin 12cos 2()12(cos +-++='x x x x x y x4、222)65()12(6++--x x x x +练习3.7 高阶导数的计算1、 (0)4y ''=2、 xe x e x e y xx x +-=''2322练习3.8 求参数方程的导数1、t y tan -='2、2122-='t y四、导数的应用练习4.1 判别函数的单调性1、 C2、 (,0)-∞3、 ()+∞∞-,4、 (0,)+∞练习4.2 函数的极值和最值1、 2121=-=x x 2、 有极小值41121=⎪⎭⎫ ⎝⎛y3、 极大值8)1(=-y ,极小值25)3(-=y4、最大值0)3(=y ,最小值4)1(-=y5、最大值1)0(=y ,最小值4)2(-=e y练习4.3 用洛必达法则求不定型极限1、41 2、221- 3、 322 4、315、06、0练习4.4 经济函数的最值问题1、 产量为200吨时可使平均成本达到最小,此时的总成本为1200万元。
微积分--课后习题答案

习题1—1解答 1. 设y x xy y x f +=),(,求),(1),,(),1,1(),,(y x f y x xy f y x f y x f -- 解yxxy y x f +=--),(;x xy y y x f y x y x xy f x y xy y x f +=+=+=222),(1;),(;1)1,1(2. 设y x y x f ln ln ),(=,证明:),(),(),(),(),(v y f u y f v x f u x f uv xy f +++=),(),(),(),(ln ln ln ln ln ln ln ln )ln )(ln ln (ln )ln()ln(),(v y f u y f v x f u x f v y u y v x u x v u y x uv xy uv xy f +++=⋅+⋅+⋅+⋅=++=⋅=3. 求下列函数的定义域,并画出定义域的图形: (1);11),(22-+-=y x y x f(2);)1ln(4),(222y x y x y x f ---=(3);1),(222222cz b y a x y x f ---=(4).1),,(222zy x z y x z y x f ---++=解(1)(2) (3) (4)4(1)1limy x →→(2)lim1→→y x(3)41)42()42)(42(lim 42lim000-=+++++-=+-→→→→xy xy xy xy xy xy y x y x(4)2)sin(lim )sin(lim202=⋅=→→→→x xy xy y xy y x y x5.证明下列极限不存在:(1);lim 00yx y x y x -+→→ (2)2222200)(lim y x y x y x y x -+→→ (1)证明 如果动点),(y x P 沿x y 2=趋向)0,0( 则322lim lim0020-=-+=-+→→=→x x xx y x y x x x y x ;如果动点),(y x P 沿y x 2=趋向)0,0(,则33lim lim 0020==-+→→=→y yy x y x y y x y所以极限不存在。
微积分试卷及答案6套

微积分试题 (A 卷)一. 填空题 (每空2分,共20分)1. 已知,)(lim 1A x f x =+→则对于0>∀ε,总存在δ>0,使得当时,恒有│ƒ(x )─A│< ε。
2. 已知2235lim 2=-++∞→n bn an n ,则a = ,b= 。
3. 若当0x x →时,α与β 是等价无穷小量,则=-→ββα0limx x 。
4. 若f (x )在点x = a 处连续,则=→)(lim x f ax 。
5. )ln(arcsin )(x x f =的连续区间是 。
6. 设函数y =ƒ(x )在x 0点可导,则=-+→hx f h x f h )()3(lim000______________。
7. 曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为 。
8. ='⎰))((dx x f x d 。
9. 设总收益函数和总成本函数分别为2224Q Q R -=,52+=Q C ,则当利润最大时产量Q 是 。
二. 单项选择题 (每小题2分,共18分)1. 若数列{x n }在a 的ε 邻域(a -ε,a +ε)内有无穷多个点,则( )。
(A) 数列{x n }必有极限,但不一定等于a (B) 数列{x n }极限存在,且一定等于a(C) 数列{x n }的极限不一定存在 (D) 数列{x n }的极限一定不存在 2. 设11)(-=x arctgx f 则1=x 为函数)(x f 的( )。
(A) 可去间断点 (B) 跳跃间断点 (C) 无穷型间断点(D) 连续点 3. =+-∞→13)11(lim x x x( )。
(A) 1 (B) ∞ (C)2e (D) 3e4. 对需求函数5p eQ -=,需求价格弹性5pE d -=。
当价格=p ( )时,需求量减少的幅度小于价格提高的幅度。
(A) 3 (B) 5 (C) 6 (D) 105. 假设)(),(0)(lim ,0)(lim 0x g x f x g x f x x x x ''==→→;在点0x 的某邻域内(0x 可以除外)存在,又a 是常数,则下列结论正确的是( )。
微积分练习100题及其解答

2
1
x2
.
1
解: lim x e
x 0
2
1
lim
x2
et . t t
17.求极限: lim sin x ln x .
x 0
解: lim sin x ln x lim
x 0 x 0
1 ln x tan x sin x x lim lim 0. x 0 csc x x 0 csc x cot x x 1 x 2 1 x . 1 x2 lim x 1 1 x tan 2 1 x x
cos 2x 1 2 sin 2x lim 2 x 0 sin x 2 x sin 2 x x cos 2 x 2 sin 2x 6x cos 2x 2x2 sin 2x ; 2 sin 2x 1 2 x lim x 0 2 sin 2x 3 4 cos 2 x x sin 2 x 2x lim
2.求极限: lim
e x e sin x . x 0 x sin x
( x 0) ,∴ lim
解:∵ e x 1 ~ x
e x e sin x e x sin x 1 lim e sin x 1. x 0 x sin x x0 x sin x
x 0
2
13.求极限: lim
x1
1 1 . 1 x ln x
1 1 1 1 ln x 1 x x lim lim lim x 1 1 x x 1 x 1 1 x ln x (1 x) ln x ln x ; 解: x 1 x 1 1 lim lim x 1 1 x x ln x x 1 1 ln x 1 2
大一微积分试题及答案详解

大一微积分试题及答案详解一、选择题(每题3分,共30分)1. 函数f(x) = x^2在区间(-∞, +∞)上是:A. 增函数B. 减函数C. 先减后增D. 先增后减答案:A解析:函数f(x) = x^2的导数为f'(x) = 2x,当x > 0时,f'(x) > 0,说明函数在x > 0的区间内是增函数;当x < 0时,f'(x) < 0,说明函数在x < 0的区间内是减函数。
由于整个定义域内没有区间使得函数单调递减,所以函数在整个定义域上是增函数。
2. 下列函数中,满足f(-x) = -f(x)的是:A. f(x) = x^3B. f(x) = x^2C. f(x) = |x|D. f(x) = sin(x)答案:A解析:选项A中的函数f(x) = x^3是奇函数,因为对于所有x,都有f(-x) = (-x)^3 = -x^3 = -f(x)。
选项B是偶函数,选项C和D不满足奇函数的性质。
3-10. (类似上述格式,继续编写选择题及答案详解)二、填空题(每题4分,共20分)1. 极限lim (x→0) [sin(x)/x] 的值是 _______。
答案:1解析:根据极限的性质,我们知道sin(x)/x在x趋近于0时的极限是1,这是著名的极限lim (x→0) [sin(x)/x] = 1。
2. 函数f(x) = 2x^3 - 6x^2 + 9x + 1在x = 2处的导数是 _______。
答案:23解析:首先求出函数f(x)的导数f'(x) = 6x^2 - 12x + 9,然后将x = 2代入得到f'(2) = 6(2)^2 - 12(2) + 9 = 24 - 24 + 9 = 9。
3-5. (类似上述格式,继续编写填空题及答案详解)三、解答题(共50分)1. (15分)求曲线y = x^3 - 3x + 2在点(1, 0)处的切线方程。
微积分基础阶段证明题及答案

第九章微积分证明题【基础篇】1•证明方程「十4云一3工一1 = 0有三个实根.2.证明:每一个正数有平方根.3•证明方程」丁I I 単5 = 0有一根介于1 £2之何•另有一根介于x— 1 x 2 x— 32号3之间.4•证明'若字+¥+•••+ s =0•则对于区间(0>1)内的某个心有心+ 5工1 2 〃一]+ …+ — 0.5.求证】方程e r = or' +&r +T的根不超过三个.6.设/(Q于有穷或无穷的区间34 内的任一点有有限的导函数/(工),且lim /(z) = lim /<x).证明:存在一点E W (a』〉•使得=0.7•设/(才》满足:(1)在团区何1。
•斗]上冇定义何冇(刃1)阶连续的导臥数r"n (x)»<2)在区间(文。
・.)内布”阶导函数和卜面的尊式成立:/<^0> = /(,)=…=/(X.X XQ V/1 < … <工丿・证明在区间(比,二)内至少存在一点&使广°(W)= 0.&假设函数fS在[0.1]上连续•在(0<1)内二阶可导•过点A(0</(0)>与B(l./(1)>的立线与|11|线y = /3 相交于点C(c,/(c〉),其中0<c<l.证明:在(oj)内至少存在一点竹使r® - o.9•设/(Q在[0.2a]上连续•且/(0) = /(2G•证明在[0y]上至少存在一点 W•他 /(^) = /(^+«).10.设/(工〉和g(jr)在債•幻匕连续,且/(“》>尺(“)・/(小V R(ZO・证羽:存在ee a』)・使/XG = g・11.设m在s』]匕连续•在(a.zo内可导・H./(G = /(〃〉= o•证明:对任一实数八存在一点c W仏")•使f3 = k/M.12.设“ V几弘>0•函数/(x)在上连续•在(“”> 内可嗷•且/(“〉= /W = 0.证明:存在一点w w (a』〉,使琴 =Z<e>.13.设不怛为常数的函数/(X)闭区间[a“]上连续•在开区间(“』》内可导. 且/(a)= /W・证明在(“")内至少存在一点&使得/($)>0.14.设/(工)、尺(工)在a.bj卜.连续•在[匕・〃〕内导弄0•求证:3 c E (“』)•使/(u) /(6)g(a) J (a)g(a)/(a)b/(A)=/<e> H(权g-g = Af)(黃)肛小一g(“)7(i)15•设/(工)是处处可导的倚西数•证明:对任一5>0・总存在e W (—几小便/(c)=竽.16.设在La. 6]上连续•在(垃鼻〉内町导•证明:存在一点<a-6)<17.设珀。
微积分试卷及标准答案6套

微积分试题 (A 卷)一. 填空题 (每空2分,共20分)1.已知则对于,总存在δ>0,使得当,)(lim 1A x f x =+→0>∀ε时,恒有│ƒ(x )─A│< ε。
2.已知,则a = ,b =2235lim 2=-++∞→n bn an n 。
3.若当时,α与β 是等价无穷小量,则 。
0x x →=-→ββα0limx x 4.若f (x )在点x = a 处连续,则 。
=→)(lim x f ax 5.的连续区间是 。
)ln(arcsin )(x x f =6.设函数y =ƒ(x )在x 0点可导,则______________。
=-+→hx f h x f h )()3(lim0007.曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为 。
8. 。
='⎰))((dx x f x d 9.设总收益函数和总成本函数分别为,,则当利润最大时产2224Q Q R -=52+=Q C 量是。
Q 二. 单项选择题 (每小题2分,共18分)1.若数列{x n }在a 的ε 邻域(a -ε,a +ε)内有无穷多个点,则()。
(A) 数列{x n }必有极限,但不一定等于a (B) 数列{x n }极限存在,且一定等于a(C) 数列{x n }的极限不一定存在 (D) 数列{x n }的极限一定不存在2.设则为函数的( )。
11)(-=x arctg x f 1=x )(x f(A) 可去间断点(B) 跳跃间断点 (C) 无穷型间断点(D) 连续点3.( )。
=+-∞→13)11(lim x x x(A) 1 (B) ∞(C)(D) 2e 3e4.对需求函数,需求价格弹性。
当价格( )时,5p eQ -=5pE d -==p 需求量减少的幅度小于价格提高的幅度。
(A) 3 (B) 5 (C) 6(D) 105.假设在点的某邻域内(可以除外)存)(),(0)(lim ,0)(lim 0x g x f x g x f x x x x ''==→→得0x 0x 在,又a 是常数,则下列结论正确的是( )。