第6章-暂态地电压检测技术

合集下载

变电站运维带电检测技术

变电站运维带电检测技术

变电站运维带电检测技术摘要:作为在无需停电的条件下对设备运行状态进行实时检测的重要方法,带电检测技术在设备缺陷分析、故障诊断,以及防止事故发生等方面都有重要的价值。

本文就对带电检测技术在变电运维中的应用展开分析。

关键词:带电检测技术;变电运维变电运维工作的科学实施能够有效减少故障发生率,同时还能保证供电系统稳定。

而带电监测技术与传统监测技术相比,能够在设备有缺陷的情况下进行故障检测,大大的减少了事故发生率。

而在变电运维工作当中应用带电监测技术还能够实现不断电监测,大大的确保了设备运行的稳定性,同时还能避免因停电造成的损失。

1.带电检测技术分类1.1避雷器检测技术避雷器检测技术一般被用于无间隙金属氧化物的避雷器带电检测,可以在避雷器运行过程中对其运行参数进行检测,及时掌握避雷器运行状况。

在避雷器的运行参数中,总泄露电流值能够反映避雷器绝缘能力,阻性泄露电流值能够反映避雷器绝缘质量,因此,掌握其运行参数可以确保避雷器的绝缘状态符合要求。

避雷器的带电检测要受多种影响因素干扰,为保证检测结果的准确性,需要采用补偿法对阻性泄露电流进行测量,抵抗外部干扰,为设备调试提供可靠参考。

避雷器检测技术与红外检测数据的综合使用,还可以对设备内部受潮情况进行判断,如有必要,需要停电检修。

1.2高频局部放电检测技术高频局部放电检测技术可以快速完成对3~30MHz频率信号的检测工作。

设备运行过程中如果出现放电现象,将会形成脉冲电流,之后将会出现电磁场。

此时,对高频检测装置进行应用,可以筹集脉冲波,再将收集到的脉冲波输入相应的检测装置。

同时,检测装置能够自动处理收集到的信号,分离干扰信号和放电信号,消除噪音等各项因素造成的干扰,最终给出相应的判断结果。

相关实验结果表明,应用该项技术,获取的检测结果具有较高的可靠性。

高频局部放电检测经常在复杂的环境下应用,并检测工作的重点集中在电缆接头设备和电缆终端设备。

1.3暂态地电压检测技术在设备由于发生局部放电现象而产生的电磁波流经变电设备外部金属体后,会与大地直接相连,继而产生一定暂态电压脉冲。

第六章 电磁感应与暂态过程习题及答案

第六章  电磁感应与暂态过程习题及答案

第六章 电磁感应与暂态过程一、判断题1、若感应电流的方向与楞次定律所确定的方向相反,将违反能量守恒定律。

√2、楞次定律实质上是能量守恒定律的反映。

√3、涡电流的电流线与感应电场的电场线重合。

×4、设想在无限大区域内存在均匀的磁场,想象在这磁场中作一闭合路径,使路径的平面与磁场垂直,当磁场随时间变化时,由于通过这闭合路径所围面积的磁感通量发生变化,则此闭合路径存在感生电动势。

×5、如果电子感应加速器的激励电流是正弦交流电,只能在第一个四分之一周期才能加速电子。

√6、自感系数I L ψ=,说明通过线圈的电流强度越小,自感系数越大。

×7、自感磁能和互感磁能可以有负值。

×8、存在位移电流,必存在位移电流的磁场。

×9、对一定的点,电磁波中的电能密度和磁能密度总相等。

√ 10、在电子感应加速器中,轨道平面上的磁场的平均磁感强度必须是轨道上的磁感强度的两倍。

√11、一根长直导线载有电流I ,I 均匀分布在它的横截面上,导线内部单位长度的磁场能量为:πμ1620I 。

√12、在真空中,只有当电荷作加速运动时,它才可能发射电磁波。

√13、振动偶极子辐射的电磁波,具有一定方向性,在沿振动偶极子轴线方向辐射最强,而与偶极子轴线垂直的方向没有辐射。

×14、一个正在充电的圆形平板电容器,若不计边缘效应,电磁场输入的功率是⎪⎪⎭⎫⎝⎛=∙=⎰⎰C q dt d A d S P 22 。

(式中C 是电容,q 是极板上的电量,dA 是柱例面上取的面元)。

√二、选择题1、一导体棒AB 在均匀磁场中绕中点O 作切割磁感线的转动AB 两点间的电势差为: (A )0(B )1/2OA ωB (C )-1/2AB ωB (D )OA ωB A2、如图所示,a 和b 是两块金属板,用绝缘物隔开,仅有一点C 是导通的,金属板两端接在一电流计上,整个回路处于均匀磁场中,磁场垂直板面,现设想用某种方法让C 点绝缘,而同时让C 点导通,在此过程中(A )电路周围的面积有变化。

电力设备带电检测技术规范

电力设备带电检测技术规范

电力设备带电检测技术规范国家电网公司2010年1月目录前言电力设备带电检测是发现设备潜伏性运行隐患的有效手段,是电力设备安全、稳定运行的重要保障。

为规范和有效开展电力设备带电检测工作,参考国内外有关标准,结合实际情况,制订本规范。

本标准附录A为规范性附录,附录B、附录C、附录D为资料性附录。

本标准由国家电网公司生产技术部提出。

本标准由国家电网公司科技部归口。

本标准主要起草单位:北京市电力公司、中国电力科学研究院、国网电力科学研究院本标准参加起草单位:江苏省电力公司、福建省电力公司、湖北省电力公司本标准的主要起草人:刘庆时、张国强、丁屹峰、韩晓昆、黄鹤鸣、杨清华、赵颖、闫春雨、毛光辉、彭江、牛进仓、孙白、王承玉本标准由国家电网公司生产部负责解释。

本标准自发布之日起实施。

1 范围本规范规定了主要电力设备带电检测的项目、周期和判断标准,用以判断在运设备是否存在缺陷,从而预防设备发生故障或损坏,保障设备安全运行。

本规范适用于10kV及以上交流电力设备的带电检测。

2 规范性引用文件下列文件中的条款通过本规范的引用而成为本规范的条款,其最新版本适用于本规范。

GB50150电气装置安装工程电气设备交接试验标准GB/T7354 局部放电测量GB/T7252 变压器油中溶解气体分析和判断标准GB7674六氟化硫封闭式组合电器GB/T8905六氟化硫设备中气体管理和检验导则GB/T 5654 液体绝缘材料工频相对介电常数、介质损耗因数和体积电阻率的测量DL/T596 电力设备预防性试验规程DL/T664 带电设备红外诊断应用规范DL 419电力用油名词术语DL 绝缘油介电强度测定法Q/GDW 168 输变电设备状态检修试验规程Q/GDW 169 油浸式变压器(电抗器)状态评价导则Q/GDW 170 油浸式变压器(电抗器)状态检修导则Q/GDW 171 SF6高压断路器状态评价导则Q/GDW 172 SF6高压断路器状态检修导则3 定义3.1带电检测一般采用便携式检测设备,在运行状态下,对设备状态量进行的现场检测,其检测方式为带电短时间内检测,有别于长期连续的在线监测。

暂态地电压局部放电检测技术

暂态地电压局部放电检测技术

28% 39%
3% 4% 0% 26%
开断与关合故障,多种原因; 载流故障,主要是接触不良、插件
拒动 载流故障
误动
绝缘故障
开断与关合故障 其他故障
偏心;
绝缘与载流故障约占30%~40%!
外力或其它故障,如加工工艺不良
等;
根据中国电科院开关设备故障统计结果分析得出,不含40.5kV以上。
14
一、高压开关柜的故障特征
二、高压开关柜局放实用检测技术
➢开关柜局放检测实用技术
电磁测量法; 声音测量法; 气体测量法; 光测量法; 温度测量法; 脉冲电流法;
23
二、高压开关柜局放实用检测技术
➢开关柜局放的电磁测量法(1)
局部放电发生时,电子快速由带电体向接地的非带电 体迁移,如柜体; 放电点产生高频电流波,并向两个方向传播; 受集肤效应的影响,电流波仅集中在金属柜体内表面 传播,而不会直接穿透; 在金属断开或绝缘连接处,电流波转移至外表面,并 以电磁波形式进入自由空间; 电磁波上升沿碰到金属外表面,产生暂态对地电压 (Transient Earth Voltage)。
标是在海量数据中发现“异常者”,总结出指导检修的普遍性规律;
信息
知识
检测技术
诊断技术
39
三、高压开关柜局放数据的分析
➢ 对高压开关柜局放数据进行分析,需要遵循下列基
本原则: 基于任何检测技术的数据都是有用的; 基于任何检测技术的数据都有其局限性; 规律隐藏在长期、连续的测试数据当中; 实施状态检修,既需要充分利用现有的规律,更需 要对现有规律的持续完善和补充;
能够精确定位,但分辨率不高, 定位精度受内部反射、折射
主要是设备精度限制;
等现象的影响,但对设备精度

暂态对地电压检测原理

暂态对地电压检测原理

暂态对地电压检测原理你知道吗,在电气设备运行的时候啊,就像一个小世界里有各种奇妙的现象在发生呢。

暂态对地电压,简单来说,就是在设备内部发生局部放电的时候产生的一种电压现象。

想象一下,设备里面的那些小零件,就像一群小伙伴在一个小空间里工作,有时候它们之间会有点小摩擦,这个小摩擦就可能导致局部放电啦。

当局部放电发生的时候啊,就像小火花一闪,这个时候呢,电荷就会快速地移动和重新分布。

这一折腾啊,就会在设备的金属外壳和地之间产生一个暂态的电压。

这个电压呢,它可不是一直安安静静地待着的,而是像一个调皮的小脉冲一样,突然就冒出来一下。

那我们怎么检测这个暂态对地电压呢?这就像是我们要找到这个调皮小脉冲的踪迹一样。

检测设备就像是一个超级小侦探呢。

这个检测设备啊,它有一个很灵敏的传感器。

这个传感器就像是一个超级灵敏的小耳朵,专门用来听这个暂态电压发出的“小动静”。

传感器的原理呢,有点像我们用手去感受温度一样。

它能够感知到这个暂态电压产生的电场变化。

当这个暂态电压出现的时候,周围的电场就会发生改变,传感器就能够捕捉到这个变化,然后把它转化成我们能够看到或者分析的数据。

你看啊,设备内部的局部放电是很复杂的情况。

有时候可能是绝缘材料有点小问题了,就像我们穿的衣服破了个小口子,然后里面的电就可能从这个小口子跑出来一点,产生局部放电。

暂态对地电压检测就是要在这种复杂的情况下,准确地发现这些小问题的蛛丝马迹。

这个暂态对地电压的大小啊,还和很多因素有关系呢。

比如说,局部放电的强度。

如果局部放电比较厉害,就像小摩擦变成了大摩擦,那产生的暂态对地电压可能就会比较大。

还有啊,设备的结构也会影响。

如果设备内部的结构比较复杂,就像一个弯弯绕绕的迷宫一样,那这个暂态对地电压在传播的过程中可能就会受到各种影响,检测起来也就更有挑战性。

但是呢,我们的检测原理可是很聪明的哦。

它不仅仅是检测到这个电压的存在,还可以通过分析这个电压的一些特征,比如说它的波形啦,它的频率啦,来判断这个局部放电到底是怎么回事。

暂态地电压检测技术

暂态地电压检测技术

精心整理第六章暂态地电压局部放电检测技术第一节暂态地电压检测技术概述一、暂态地电压检测技术的发展历程暂态地电压检测技术(又称为TEV,Transient Earth Voltage)最早是由英国的Dr. John Reeves 于1974年首次提出,他发现电力设备内部局部放电脉冲激发的电磁波能在设备金属壳体上产生一从了测;放电模型暂态地电压检测技术超声波局放检测技术沿面放电模型不敏感敏感、有效尖端放电模型敏感、有效敏感、有效三、应用情况上世纪70年代,暂态地电压检测技术被首次提出,由于其简单、实用的特性,逐步被各国电网公司认可。

目前已在英国、中东、新加坡、香港等40多个国家和地区广泛应用,积累了30多年的现场应用经验。

2005年前后,暂态地电压检测技术开始传入国内。

2006年起,通过与新加坡新能源电网公司进行同业对标,以北京、上海、天津为代表的一批国内电网公司率先引进暂态地电压检测技术,开展现场检测应用,并成功发现了多起开关柜内部局部放电案例,为该技术的推广应用积累了宝贵经验。

暂态地电压检测技术在2008年北京奥运会、2010年上海世博会、2010年广州亚运会等大型年,在程》为进范》1如遇到不连续的金属断开或绝缘连接处时,电流行波会由金属柜体的内表面转移到外表面,并以电磁波形式向自由空间传播,且在金属柜体外表面产生暂态地电压,而该电压可用专门设计的暂态地电压传感器进行检测。

具体如图6.1所示。

图6.1:暂态地电压信号的产生机理示意图由于配电设备柜体存在电阻,局部放电产生的电流行波在传播过程中必然存在功率损耗,金属柜体表面产生的暂态地电压也就不仅与局部放电量有关,还会受到放电位置、传播途径以及箱体内部结构和金属断口大小的影响。

因此,暂态地电压信号的强弱虽与局部放电量呈正比,但比例关系却复杂、多变且难以预见,也就无法根据暂态地电压信号的测量结果定量推算出局部放电量的多少。

暂态地电压传感器类似于传统的RF耦合电容器,其壳体兼做绝缘和保护双重功能。

电力系统暂态分析:第六章 电力系统稳定性问题概述


M E max
2M E max S Scr
Scr S
• 四、自动调节励磁系统包括: • 1、自动调节励磁系统包括: • 主励磁系统和自动调节励磁装置
• 主励磁系统是从励磁电源到发电机励磁绕组的励 磁主回路:
• 自动调节励磁装置根据发电机的运行参数,如端 电压、电流等,自动地调节主励磁系统的参数。
➢两机系统
PE1 E12G11 E1E2 Y12 sin(12 12 ) PE12 E22G22 E1E2 Y12 sin(12 12 )
PE1 PE2 δ12
• 三、异步电动机转子运动方程和电磁转矩
• 异步电动机组的转子运动方程为
TJ
0
d*
dt
(M E
Mm)
• TJ 为异步电动机组的惯性时间常数,一般约为
Re
E i
n

jYˆij
j1
n
n
Ei E j (Gij cos ij Bij sin ij ) Ei2Gii Ei Ej Yij sin( ij ij )
j 1
j 1
ji
导纳角 ij
tg1
Gij Bij
➢任一台发电机的功率角的改变,将引起全系统各机 组电磁功率的变化。稳定分析是全系统的综合问题。
➢ 机电暂态过程主要是电力系统的稳定性问题。电力系 统稳定性问题就是当系统在某一正常运行状态下受到某种干 扰后,能否经过一定的时间后回到原来的运行状态或者过渡 到一个新的稳态运行状态的问题。
如果能够,则认为系统在该正常运行状态下是稳定
的。
反之,若系统不能回到
原来的运行状态或者不能建
立一个新的稳态运行状态,
J02 SB
Wk

暂态地电压检测技术及其应用

暂态地电压检测技术及其应用摘要:随着人们对电力系统稳定性需求是提高,带电检测技术在设备状态评价中的作用日益凸显。

作为带电检测主要技术之一,暂态地电压检测能灵敏、有效发现设备的内部绝缘缺陷,在开关柜状态评价中起着重要的作用。

本文首先简述了暂态地电压检测的原理,其次介绍了暂态地电压的检测方法与数据分析,最后结合实际案例,分析了暂态地电压在开关柜检测中的应用,结果表明,暂态地电压检测发现开关柜中的局放缺陷,提高设备的稳定性。

关键词:局部放电、开关柜、暂态地电压检测1暂态地电压检测基本原理开关设备发生局部放电时,带电粒子将快速地由带电体向接地的非带电体方向移动,如高压开关柜的柜体,并在非带电体上产生高频电流行波,向各个方向快速传播,由于集肤效应,产生的电流行波通常仅集中在金属柜体的内表面,而不会直接穿透金属柜体「1」。

但是,一旦电流行波遇到非连续的绝缘连接处或金属的断开处时,它会由金属柜体的内表面转移到外表面,以电磁波方式向自由空间传播,在金属柜体的外表面产生暂态地电压(Transient Earth Voltage,简称TEV),频率在3-100MHz间,而该电压可用暂态地电压传感器进行检测[2]。

暂态地电压传感器实质上是一个金属盘,前面覆盖有PVC塑料。

PVC塑料既充当了绝缘材料,又对传感器起着保护及支撑作用。

进行暂态地电压检测时,传感器紧贴在高压开关柜的金属板上,裸露的金属柜体当作平板电容器的一个极板,而传感器当作平板电容器的另外一个极板。

因此,金属柜体表面上出现任何电荷的变化都会在暂态地电压传感器金属盘上感应出相同数量的电荷变化,进而形成相应的高频感应电流,电流信号经过电路处理后得到局放强度信号(一般以dBmV为单位),这就是暂态地电压检测原理[3]。

2.暂态地电压检测方法及数据分析在对高压室内开关柜进行暂态地电压检测时,先要对暂态地电压的背景值进行测试,包括金属背景值以及空气背景值,测试金属背景值时,选择高压室内远离开关柜的金属门窗,将传感器与金属门窗的金属板垂直贴紧进行测试;测试空气背景值时,可在高压室内远离开关柜的地方,放一块20cm×20cm 的金属板,然后将传感器与该金属板垂直贴紧进行测试。

第06章电路的暂态分析


t
i
U0 R –U0
uR
变化曲线
uR = – uC = –U0e –t /RC U0 –t / RC i = – –— e
R
在零输入响应电路中,各部分电压和电流都是由 初始值按同一指数规律衰减到零。
时间常数 = RC 称为RC电路的时间常数
S F 单位
时间常数 等于电压uC衰减到初始值U0的36.8%所 需的时间。
iL(0+) uL(0+) – L +
uL(0+)=– iL(0+)(R2+R3)
=– 54V 可见 uL(0+) uL(0–)
R2
15
t=0+的电路
换路瞬间仅iL不能跃变,
电感两端的电压uL是可 以跃变的,所以不必求 uL(0-)。
6.2 RC、RL电路的响应
6.2.1 一阶电路的零输入响应 RC电路的零输入响应
u"C
的解。
t RC
du C 通解即: RC uC 0 dt
其形式为指数。设:
u"C Ae
其中:
A为积分常数
u"C 随时间变化,故通常称为自由分量或
暂态分量。
a S
2 t=0 + 10V 4
i1
8 i3 b C + 4 uC 10µ F
-
i2
-
解: uC(0+)= uC(0- ) = 104/(2+4+4)=4V, R0=(4//4+8)=10
U0=4V
uC = U0 e–t / =4e
= R0 C=10 10 10–6=10–4 s
换路定则 : 从 t=0–到 t=0+瞬间,电感元件中的电流iL和电容元 件上的电压uC不能跃变。用公式表示为

第6章暂态地电压检测技术解析

第六章暂态地电压局部放电检测技术第一节暂态地电压检测技术概述一、暂态地电压检测技术的发展历程暂态地电压检测技术(又称为TEV,Transient Earth V oltage)最早是由英国的Dr. John Reeves于1974年首次提出,他发现电力设备内部局部放电脉冲激发的电磁波能在设备金属壳体上产生一个瞬时的对地电压,这些瞬时的电压脉冲可在设备外表面安装一个特制的电容传感器所检测到,从而判断设备内部绝缘状态。

当时的英国国家配电行业研究中心(EA Technology公司的前身)基于此原理,陆续研制开发了PDL1、UltraTEV、UltraTEV Plus等一系列暂态地电压检测仪器,在英国的电网公司得到了广泛使用,并逐步被全世界其它电网公司采用。

国内的电网公司于2005年前后陆续开始引入暂态地电压检测技术,一些科研院校和设备制造企业也开始相关研究与研制工作。

目前,暂态地电压检测技术已经有30 多年的现场应用经验,成为电力设备绝缘类缺陷简单有效、使用广泛的带电检测技术。

二、暂态地电压检测技术适用性暂态地电压检测技术是一种检测电力设备内部绝缘缺陷的技术,广泛应用于开关柜、环网柜、电缆分支箱等配电设备的内部绝缘缺陷检测。

但由于暂态地电压脉冲必须通过设备金属壳体间的间断处由内表面传至外表面方可被检测到,因此该检测技术不适用于金属外壳完全密封的电力设备(如:部分GIS、C-GIS等)。

放电模型模拟试验研究结果表明,暂态暂态地电压检测技术对尖端放电、电晕放电和绝缘子内部放电比较敏感,检测效果较好,而对沿面放电、绝缘子表面放电不敏感(见表6.1),因此,在电力设备绝缘缺陷检测时,暂态暂态地电压检测技术常常与超声波检测技术一起使用。

目前,暂态地电压检测主要以带电检测方式为主,采用手持式仪器对电力设备内部放电进行检测;部分仪器配置两个暂态地电压传感器,可通过时差法对局放源进行定位;对于需要连续监测电力设备内部放电的场合,也可采用固定安装方式,实施在线监测。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章暂态地电压局部放电检测技术第一节暂态地电压检测技术概述一、暂态地电压检测技术的发展历程暂态地电压检测技术(又称为TEV,Transient Earth Voltage)最早是由英国的Dr. John Reeves于1974年首次提出,他发现电力设备部局部放电脉冲激发的电磁波能在设备金属壳体上产生一个瞬时的对地电压,这些瞬时的电压脉冲可在设备外表面安装一个特制的电容传感器所检测到,从而判断设备部绝缘状态。

当时的英国国家配电行业研究中心(EA Technology公司的前身)基于此原理,陆续研制开发了PDL1、UltraTEV、UltraTEV Plus等一系列暂态地电压检测仪器,在英国的电网公司得到了广泛使用,并逐步被全世界其它电网公司采用。

国的电网公司于2005年前后陆续开始引入暂态地电压检测技术,一些科研院校和设备制造企业也开始相关研究与研制工作。

目前,暂态地电压检测技术已经有30 多年的现场应用经验,成为电力设备绝缘类缺陷简单有效、使用广泛的带电检测技术。

二、暂态地电压检测技术适用性暂态地电压检测技术是一种检测电力设备部绝缘缺陷的技术,广泛应用于开关柜、环网柜、电缆分支箱等配电设备的部绝缘缺陷检测。

但由于暂态地电压脉冲必须通过设备金属壳体间的间断处由表面传至外表面方可被检测到,因此该检测技术不适用于金属外壳完全密封的电力设备(如:部分GIS、C-GIS等)。

放电模型模拟试验研究结果表明,暂态暂态地电压检测技术对尖端放电、电晕放电和绝缘子部放电比较敏感,检测效果较好,而对沿面放电、绝缘子表面放电不敏感(见表 6.1),因此,在电力设备绝缘缺陷检测时,暂态暂态地电压检测技术常常与超声波检测技术一起使用。

目前,暂态地电压检测主要以带电检测方式为主,采用手持式仪器对电力设备部放电进行检测;部分仪器配置两个暂态地电压传感器,可通过时差法对局放源进行定位;对于需要连续监测电力设备部放电的场合,也可采用固定安装方式,实施在线监测。

放电模型暂态地电压检测技术超声波局放检测技术沿面放电模型不敏感敏感、有效尖端放电模型敏感、有效敏感、有效三、应用情况上世纪70年代,暂态地电压检测技术被首次提出,由于其简单、实用的特性,逐步被各国电网公司认可。

目前已在英国、中东、新加坡、等40多个国家和地区广泛应用,积累了30多年的现场应用经验。

2005年前后,暂态地电压检测技术开始传入国。

2006年起,通过与新加坡新能源电网公司进行同业对标,以、、为代表的一批国电网公司率先引进暂态地电压检测技术,开展现场检测应用,并成功发现了多起开关柜部局部放电案例,为该技术的推广应用积累了宝贵经验。

暂态地电压检测技术在2008年奥运会、2010年世博会、2010年亚运会等大型活动的保电工作中发挥了重要作用。

国家电网公司在引入、推广暂态地电压检测技术方面做了大量卓有成效的工作。

2010年,在充分总结部分省市电力公司试点应用经验的基础上,结合状态检修工作的深入开展,国网电网公司颁布了《电力设备带电检测技术规(试行)》和《电力设备带电检测仪器配置原则(试行)》,首次在国网电网公司围统一了暂态地电压检测的判据、周期和仪器配置标准,暂态地电压检测技术在国网电网公司围全面推广;2014年,国网电网公司修订了《输变电设备状态检修试验规程》,正式将暂态地电压检测技术列为开关柜设备的常规带电检测试验项目之一;同年年底,为进一步规仪器选型,指导现场检测应用,国网电网公司颁布了《暂态地电压局部放电检测仪技术规》和《交流金属封闭开关设备暂态地电压局部放电带电测试技术现场应用导则》,初步建立起完整的暂态地电压检测技术标准体系。

第二节暂态地电压检测技术基本原理一、基础知识1、暂态地电压的产生机理当配电设备发生局部放电现象时,带电粒子会快速地由带电体向接地的非带电体快速迁移,如配电设备的柜体,并在非带电体上产生高频电流行波,且以光速向各个方向快速传播。

受集肤效应的影响,电流行波往往仅集中在金属柜体的表面,而不会直接穿透金属柜体。

但是,当电流行波遇到不连续的金属断开或绝缘连接处时,电流行波会由金属柜体的表面转移到外表面,并以电磁波形式向自由空间传播,且在金属柜体外表面产生暂态地电压,而该电压可用专门设计的暂态地电压传感器进行检测。

具体如图6.1所示。

图6.1:暂态地电压信号的产生机理示意图由于配电设备柜体存在电阻,局部放电产生的电流行波在传播过程中必然存在功率损耗,金属柜体表面产生的暂态地电压也就不仅与局部放电量有关,还会受到放电位置、传播途径以及箱体部结构和金属断口大小的影响。

因此,暂态地电压信号的强弱虽与局部放电量呈正比,但比例关系却复杂、多变且难以预见,也就无法根据暂态地电压信号的测量结果定量推算出局部放电量的多少。

暂态地电压传感器类似于传统的RF耦合电容器,其壳体兼做绝缘和保护双重功能。

当金属柜体外表面出现快速变化的暂态地电压信号时,传感器置的金属极板上就会感生出高频脉冲电流信号,此电流信号经电子电路处理后即可得到局部放电的强度。

如果在配电设备柜体表面同时放置两只暂态地电压传感器,则局部放电源发出的电磁波脉冲经过不同的路径先后传播到两只暂态地电压传感器,仪器通过比较或者测量电磁脉冲到达两只传感器的时间先后或者大小,则可以判断出局部放电源的空间位置。

2、暂态地电压检测的量度指标暂态地电压法局部放电检测技术属于间接法局部放电检测技术,其信号波动围大,随机性强,而且检测结果与放电源的位置和传播途径存在复杂的关联关系,因此难以按照IEC60270标准的要求进行标定。

为了实现对高压开关柜局部放电严重程度的带电检测,并考虑间接法检测的实际特点和检测设备设计的复杂性,其指标体系经常采用无线电电子学的测量单位,最经常使用的单位主要有dBmV 、dB μV 和dBm 。

2.1、dBmV对于高压开关柜来说,其局部放电所产生的暂态地电压信号的幅值一般在1mV~1V 左右。

暂态地电压测量系统一般以电压为基准,以dBmV 为单位进行测量。

按照标准定义,dBmV 是以1mV 为基准,测量电压m V (有效值或者峰-峰值)以mV 为单位进行的测量。

即有:⎪⎭⎫ ⎝⎛=mV V dBmV m1log 20 (6-1)根据定义,对于1mV 的暂态地电压信号,其对应的dBmV 值为0;而对于1V 的暂态地电压信号,其对应的dBmV 值则为60。

显然,幅值变化围为1000倍的暂态地电压信号被压缩到100以。

2.2、dBμV对于高压开关柜来说,其局部放电所产生的超声波信号幅值变化比暂态地电压还要大,围约在0.5μV ~100mV 之间。

超声波测量系统一般以电压为基准,以dB μV 为单位进行测量。

按照标准定义,dBμV 是以1uV 为基准,测量电压m V (有效值或者峰-峰值)以μV 为单位进行的测量。

即有:⎪⎪⎭⎫ ⎝⎛=V V dBuV m μ1log 20 (6-2)根据定义,对于0.5μV 的超声波信号,其对应的dB μV 值为-6;而对于100mV 的超声波信号,其对应的dB μV 值则为100。

显然,幅值变化围为20000倍的超声波信号被压缩到100以。

2.3、dBmdBm 是dBmW 单位的缩写。

无论是dBmV 还是dBuV ,都是一种电压测量体系,与负载阻抗没有关系,而dBm 则是一种功率测量体系。

根据标准定义,dBmW 或dBm 是以1mW 为基准,信号功率m P 以mW 为单位进行的测量。

即有:⎪⎭⎫ ⎝⎛=mW P dBm m 1log 10 (6-3) 对于大多数射频测量设备,输入阻抗和负载阻抗一般为50欧姆。

根据定义,有:将式(6-1)代入(6-3),则有:()()99.46100050log 101log 20110001log 102250-=⨯-⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⋅⨯⨯=dBmV mV V mV R ohm V dBm m m (6-4) 其中,m V 单位是mV ,m P 单位是mW 。

对于75欧姆测量系统,则有:()()75.48100075log 101log 20110001log 102275-=⨯-⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⋅⨯⨯=dBmV mV V mV R ohm V dBm m m (6-5) 2.4、dBmV 、dB μV 和dBmW 之间的相互转换根据前面的定义,可知:6060+=⇔-=dBmV dBuV dBuV dBmV (6-6)75.4899.467550+=+=dBm dBm dBmV (6-7)二、暂态地电压传感器的工作原理暂态地电压传感器的原理电路如图6-2所示。

图6-2:暂态地电压传感器原理示意图暂态地电压传感器是一个前面覆盖有PVC 塑料的金属盘,并用同轴屏蔽电缆引出。

PVC 塑料一方面充当绝缘材料,另一方面对传感器起到保护和支撑作用。

测量时,暂态地电压传感器抵触在开关柜金属柜体上面,裸露的金属柜体可看作平板电容器的一个极板,而暂态地电压传感器则可看作平板电容器的另一个极板,中间的填充物则为PVC 塑料。

对于由金属柜体、PVC 材料和暂态地电压传感器构成的平板电容器来说,金属柜体表面出现的任何电荷变化均会在暂态地电压传感器的金属盘上感应出同样数量的电荷变化,并形成一定的高频感应电流。

该高频电流经引出线输入到检测设备部并经检测阻抗转换为与放电强度成正比的高频电压信号。

经检测设备处理后,则可得到开关柜局部放电的放电强度、重复率等特征参数。

耦合电容器的电压-电流关系为:dt du C i tevPD = (6-8)其中,PD i 为暂态地电压传感器输出的电流信号;tev u 为测量点处的暂态地电压信号;C 为用电容量表征的暂态地电压传感器设计参数。

式(6-8)表示的高频电流信号在检测设备部被检测阻抗变换为电压信号。

dt du RC u tevm = (6-9)值得注意的是,根据式(6-9),不同厂家设计的暂态地电压检测仪器可能在同一次检测中得到不同的检测结果,主要原因有:(1)暂态地电压检测设备的测量结果与暂态地电压传感器的设计参数密切相关,如果不采取补偿措施,不同的传感器设计参数可能会得到不同的检测结果;(2)暂态地电压检测设备的测量结果与暂态地电压信号的频谱特性密切相关。

不同放电类型的放电,即便具有相同的放电强度,暂态地电压检测设备也可能会给出不同的检测结果;(3)暂态地电压法的测量结果与检测仪器部的阻抗参数有关。

三、暂态地电压检测设备的基本组成及原理暂态地电压检测仪器的组成框图见图6-3,主要分暂态地电压信号检测和信号定位两大功能。

图6-3:暂态地电压检测设备框图1、暂态地电压检测功能暂态地电压检测仪器由TEV传感器及其信号调理电路、模数转换电路、微处理器电路、人机接口、存储器、通讯接口和电源管理单元组成。

相关文档
最新文档