高一数学奇偶性

合集下载

高一数学奇偶性知识点

高一数学奇偶性知识点

高一数学奇偶性知识点高中数学中,奇偶性是一个重要的概念。

了解数的奇偶性可以在解题过程中提供便利,因此理解和掌握数的奇偶性知识点对于高一数学学习者来说至关重要。

本文将介绍高一数学中常见的奇偶性知识点,帮助学生更好地理解和应用这些知识。

一、奇数和偶数的基本概念在开始探讨更深入的奇偶性知识之前,我们先来回顾一下奇数和偶数的基本概念。

奇数是指不能被2整除的整数,偶数则恰好相反,是可以被2整除的整数。

我们可以用一个简单的公式来表示奇数和偶数:奇数:2n + 1 (n为整数)偶数:2n (n为整数)其中,n为任意整数,通过这个公式,我们可以得到所有的奇数和偶数。

二、整数性质与奇偶性的关系整数有一些特殊的性质与奇偶性密切相关。

下面介绍几个常见的性质:1. 两个奇数的和是偶数,两个偶数的和也是偶数;2. 一个奇数和一个偶数的和是奇数;3. 两个奇数的乘积是奇数,两个偶数的乘积是偶数;4. 一个奇数和一个偶数的乘积是偶数。

这些性质在解题过程中经常会被用到,同学们需要熟练掌握。

三、口诀“差奇和偶,乘偶和偶”在解题中的应用为了更好地应用奇偶性知识进行解题,我们可以借助一个简单的口诀:“差奇和偶,乘偶和偶”。

该口诀的含义是,两个数相减,若一个奇数一个偶数,则差为奇数;两个数相乘,若其中有一个数为偶数,则乘积为偶数。

通过使用这个口诀,我们可以在解答一些题目时迅速判断结果的奇偶性,从而节省时间和提高效率。

四、数列中的奇偶性在数列中,奇偶性也是一个重要的概念。

我们来看看一些常见的数列奇偶性规律:1. 交替数列:每一项与前一项的奇偶性相反。

比如:1,-2,3,-4,5,-6...2. 连续奇数数列:首项为奇数,公差为2。

3. 连续偶数数列:首项为偶数,公差为2。

通过了解数列中的奇偶性规律,我们可以更好地理解和分析数列,从而在解答与数列相关的问题时更加得心应手。

五、概率问题中的奇偶性在概率问题中,奇偶性也扮演着重要的角色。

考虑以下两个例子:1. 抛掷硬币:抛一枚公正的硬币,正面和反面的概率都是1/2。

高一数学奇偶性

高一数学奇偶性
戈林曾问过一名瑞士军官:“听说你们只有50万国防军,那么,如果我派百万大军进入贵国,你们将怎么办?”答曰:“简单。我们就每人开两枪!” 妙!一句话,就亮出了克敌制胜的信心!再看一件真人真事。 上个世纪50年代,林语堂先生曾应邀在美国哥伦比亚大学讲授中国文化 课。一位心怀恶意、轻视中国的女生曾故意在课堂上问林语堂:“你总是说你们中国好,难道我们美国就没有一样东西比中国强?”林语堂笑了笑,说:“当然有,美国的抽水马桶就比中国的好。”立刻赢得满堂的笑声和喝彩声! 妙!又是一句话!就捍卫了中国人的尊严! 能用一句 话表达出尊严与豪迈的人,让人佩服。而它的故事也常常是百姓所乐于传诵的。 168、从小学习“控制自己” 奥斯丁是我的一位美国朋友的孩子,6岁时就上了学。 奥斯丁上学没多久,父母就发现了他的变化。不小心碰了妹妹,他马上就会说“对不起”。家里来了客人,他会像主 人一样与客人握手,还要说一句“见到你很高兴”。坐车的时候,他还会提醒爸爸一定要系好安全带。这些当然都是他在学校里学到的。 奥斯丁的母亲认为,让孩子掌握这些基本的生活常识和行为规范是人生的基础课,要比多认些单词、多学点算术更重要。后来,我又看到奥斯丁从学校里 带回的一张漫画。那张漫画的上方写着“保持镇静”几个大字,下面是一道公式:1+3+10=镇静。漫画中有个大头娃娃在讲解这个公式,“1”是告诉你自己,“要镇静,放松!”;“3”指的是深呼吸三次;“10”的意思是“开始慢慢地从1数到10”。画的最下方写着“保持镇静使我能够采取负 责任的行动。”奥斯丁的母亲告诉我,这是学校里老师讲“自我控制”时发的,老师要孩子们在生气的时候按着这个公式来控制自己的情绪。 “自我控制”听起来似乎是一个成年人的话题。而在美国的中小学教育中,它其实已经成了一个重要内容。 ? 169、谁是最忠诚的人 1942 年3月,希特勒下令搜捕德国所有的犹太人,68岁的贾迪?波德默召集全家商讨对策,最后想出一个没有办法的办法,向德国的非犹太人求助,争取他们的保护。接下来是选择求生的对象。两个儿子认为,应该向银行家金?奥尼尔求助,因为他是在波德默家族的资助下发家的,一直把波德默家族视 为恩人。在不同的场合,他也曾多次表示,如果有什么需要帮助的,尽管找他。 68岁的老人却不赞成这种意见,他认为应该向拉尔夫?本内特、一位木材商人求助。波德默家族的人是跟本内特打工起家的,现在虽然很少往来,但心理上从没断绝过对他感激和思念。 第二天一早,两个儿 子出发了。在路上,二儿子说,我不能去本内特先生那儿,上次我见他时,他还提那700吨木材的事。要去,你去吧!我 要去求奥尼尔。最后,二儿子去了银行家那儿,大儿子去了木材商的家。 1948年7月,大儿子艾森?波德默辗转回到德国,他从纳粹档案中查到这么一条记录:银行家 金?奥尼尔来电,家中闯入一年轻男子,疑是犹太人。一年后,他又于奥斯维辛集中营的死亡档案中,查到他父亲、母亲、妻子、弟妻及6个孩子的名字。他们是在他和弟弟分手后第4天被捕的。 1950年1月,艾森?波德默定居美国。2003年12月4日去世,终年83岁,留下一部回忆录。回忆录主 要讲述,他在木材商本内特的帮助之下,怎样偷渡日本,保全性命的。该书的封面上写着:献给父亲贾迪?波德默先生!封底写着:许多人认为,要赢得他人的忠诚,最好的办法是给其恩惠。其实,这是对人性的误解,在现实中真正对你忠诚的,都是曾经给过你恩惠的人。 170、节俭是资源 在世界各国,节约已经成为一种潮流,一些国家保护资源的意识已经融入每个人生活中的每一个细节。也许有人会说,节约是生产力低下的产物,在物质日益丰富的今天,重提节约似乎不太合乎时宜;还有人会问,消费是刺激生产的牵引机,是现代化列车不可缺少的火车头,倡导向节约型社会 转型将会造成生产停滞不前、市场不旺,事实上这种认识是片面的。从去年开始的席卷全国的能源紧张态势,让越来越多的人明显感受到中国经济正饱受资源短缺的约束之痛,这是一个非常危险的信号。 对于每一名国人来说,我们手中都紧握着珍贵的“资源”:如果13亿人每人少用一双一次性 木筷,意味着成千上万亩森林免遭砍伐厄运;假若采用节能光源,照明用电量将下降60%,一年可节约740亿千瓦时电能,相当于节约2989万吨标准煤。可见,珍惜和节约资源,成之毁之,爱之损之都在于每个人的行动之中。 171、止谤莫如自修 张恨水先生曾写过一篇《为人应当接受批评》 ,他说:“生平很少和人打笔墨官司,就是人家指出我的名姓来教训一顿,我也不曾回复一个字。这样做,我并非怯懦,也并非过分的容忍。我有个感想,我错了,止谤莫如自修。我不错,最好借事实来答复。 这是一个办法,也许不适于他人,但至少我自己,在做人上纠正了不少错误。而 三十年来的写作生涯,略有寸进,一大半也就是根据别人的批评而得的。”恨水先生对待批评的态度,很值得当今文化人学习。 172、没有鳔,就运动肌肉 鱼在水中游动,需要不断调节沉浮。而鱼一般有一个储气的器官——鳔,需要上浮时鳔膨胀,需要下沉时鳔收缩,非常自如。同是 水中生物,鲨鱼就没有鳔,为了完成沉浮,它只能依靠肌肉的运动。由于重力的作用,只要它停下来,身子就会下沉,所以它只能做大海里的行者,永不停息地游弋。 作为水中运动生物,没有鳔可以说是不幸的。然而正是由于这一先天的不足,才成就了鲨鱼的“海洋霸主”地位。因为不停 地游弋,它身体异常强壮,从而成为了极具战斗力的水中杀手。而那些有鳔的鱼类,生存条件可谓得天独厚,却无一不成为了鲨鱼的猎物。 某些条件不如别人,不见得就是坏事。只要奋力拼搏,不断创造条件,劣势也能变成优势,从这种意义上来说,不足有时反而能成就强者——在克服不 足的过程中,人会变得日益强大。 173、心灵的掌声 在我上高中一年级的时候,班里有位叫英子的女孩,总爱蜷缩在教室的一角。上课前,她早早就已来到教室里,下课后,她总是最后一个离开教室。后来我们才知道,她的腿因为患小儿麻痹症而残疾了,她不愿意让人看到她走路的姿 势。 一天,老师让同学们走上讲台讲述一个小故事。轮到英子讲演的时候,全班40多双眼睛一齐投向了那个角落。英子立刻把头低了下去。老师是刚调来的,还不了解英子的情况。 英子犹豫了一会儿,慢慢地站了起来。我们注意到英子的眼圈儿红了。在全班同学的注视下,英子终于 一摇一晃地走上了讲台。就在刚刚站定的那一刻,不知是在谁的带动下,骤然间响起了一阵掌声,那掌声热烈、持久。 掌声渐渐平息,英子也定了定情绪。当她结束讲演的时候,班里又响起了一阵掌声。 自从那次讲演以后,英子不再那么忧郁了,高二那年,她代表我们学校参加了全 国奥林匹克数学竞赛,还获了奖。3年后,英子被的一所大学破格录取。后来,英子给我来信说:“我永远不会忘记那一次掌声。” 174、奢侈病 奢侈病,是美国康奈尔大学经济学、伦理学与公共政策教授罗伯特正在研究的现代病,专指无节制的挥霍。 罗伯特发现,一名美国CEO 需要拥有一栋15000平方英尺的住宅,仅仅是因为与其地位相同的企业老板们都拥有如此规模的住宅。假如他购买一所小一些的房子,除了会在公众面前大丢面子之外,还将面临人们对企业运营状况产生猜疑的风险。但是,如果所有CEO都将自己的宅第规模缩小的话,他们内心的窘迫便会一扫而 光。 其实,每个CEO都希望自己购买的房子面积更小一些。毕竟,房子大了就不得不雇员工进行维护,并且需要额外的管理,这是一件相当棘手的事情。 如果奢侈病只是富人们自己发烧,那么它也许还只是社会上的一道风景线。但是,上层的消费失控行为就像一种病毒,它影响并大量 激发人们追求奢华的狂热,对中等甚至低收入家庭的消费模式也起到了倡导和改变作用。在某种程度上,我们所有的人都受到了感染。 人们为什么会无节制地、炫耀性地消费呢?这是因为人们“关注相对处境”超过了“关注实际处境”。 是的,如果你的年收入10万元,你和年收入8万 元的人在一起,一定很幸福;但是和年收入15万元的人在一起,你就会觉得悲哀。如果其他的人都送99朵玫瑰给女朋友,你就不好意思只送11朵了。但是,我的一个朋友告诉我,她嫁给她老公是因为那年情人节,他非常窘迫地送给她一盒只有3颗的巧克力和一朵玫瑰。 其实,一朵玫瑰也可 以代表爱情。 175、不一样的旅游 刘先生20世纪80年代初就移民比利时,后来一直从事导游工作,接待的主要是国内游客。他向我介绍说,“国内游客的一个特点,就是安排的景点越多越好。去的景点越多越是觉得你这个导游好,来不及看没关系,只要到那里拍上一张照片就心满意足 了。” 克莱尔是我的英国朋友,今年38岁,她从小姑娘时起就跟父母去意大利的南部小城度假,每年都住在相同的旅馆,租海滩上同样的椅子。我好奇地问克莱尔,你整天躺在那里什么也不干有什么意思?她反驳说:“什么叫什么也不干,我在晒着太阳,当然你也可以游泳,打沙滩排球。 再说,你为什么一定要干点什么呢?你上班不是一直在干着什么吗?度假的目的就是什么也不干。” 欧洲人渴望不同的自我,公事私事分得清清楚楚,度假就度假,跟工作完全没有关系。中国人旅游是工作的延伸,外出手机一定带着,和单位随时保持联系,有的还带着笔记本,早晨起来第 一件事上网了解一下国内外最新动态。 国人旅游爱省事儿,他们大多选择跟团旅游,原因就是,人家都给你安排好了,多省事儿。而西方人喜欢自己决定行程和路线,讨厌别人的操作和安排,他们往往把旅行中的困难看作是旅行的一部分。西方人与中国人的旅游差异,还体现在对标志性景 点的态度。去纽约不到自由女神像,去埃及不到金字塔,去荷兰不看大风车,对于中国人来说等于没到过那些地方。我在巴黎遇到一位美国游客,他告诉我说,埃菲尔铁塔没什么好看的,我在电视里看过无数遍。 如果你留心,就会发现老外出门都要带一本厚厚的旅游介绍书籍。相比之下,

高一奇偶性知识点总结

高一奇偶性知识点总结

高一奇偶性知识点总结高一阶段,奇偶性是数学中一个重要的概念。

了解奇偶性有助于我们更好地解决数学问题,尤其是在代数和图形方面。

本文将就高一奇偶性知识点进行总结,希望可以对大家的学习有所帮助。

一、奇数与偶数的定义首先,我们要了解奇数和偶数的定义。

奇数是指除以2余1的自然数,例如1、3、5等;而偶数是指能够被2整除的自然数,例如2、4、6等。

二、奇偶性性质1. 偶数加偶数等于偶数:当我们将两个偶数相加,其结果仍然是偶数。

因为两个偶数可以表示为2的倍数,所以其和也可以表示为2的倍数。

2. 奇数加奇数等于偶数:当我们将两个奇数相加,其结果是偶数。

因为两个奇数可以表示为2的倍数加1,所以其和可以表示为2的倍数再加上1,即奇数加奇数的和是偶数。

3. 偶数加奇数等于奇数:当我们将一个偶数与一个奇数相加,其结果是奇数。

因为偶数可以表示为2的倍数,奇数可以表示为2的倍数加1,所以其和可以表示为2的倍数再加上1,即偶数加奇数的和是奇数。

4. 偶数乘以偶数等于偶数:当我们将两个偶数相乘,其结果是偶数。

因为两个偶数可以表示为2的倍数,所以其积也可以表示为2的倍数。

5. 奇数乘以奇数等于奇数:当我们将两个奇数相乘,其结果是奇数。

因为两个奇数可以表示为2的倍数加1,所以其积可以表示为2的倍数加1,即奇数乘以奇数的积是奇数。

6. 偶数乘以奇数等于偶数:当我们将一个偶数与一个奇数相乘,其结果是偶数。

因为偶数可以表示为2的倍数,奇数可以表示为2的倍数加1,所以其积可以表示为2的倍数再加上偶数,即偶数乘以奇数的积是偶数。

三、应用奇偶性解题奇偶性可以帮助我们解答一些数学问题。

例如,我们可以通过奇偶性来判断一个数的因数个数。

如果一个整数可以被其他整数整除,那么这个整数一定是偶数,因为偶数可以被2整除。

而如果一个整数不能被其他整数整除,那么这个整数一定是奇数,因为奇数只能被1和自身整除。

此外,奇偶性还可以用于证明一些数学定理。

在代数方面,我们可以利用奇偶性证明某些等式的成立性。

高一数学知识点奇偶性

高一数学知识点奇偶性

高一数学知识点奇偶性数学中的奇偶性是指数的特性,即一个数是奇数还是偶数。

本文将介绍高一数学中涉及到的奇偶性相关的知识点,包括奇数、偶数、奇偶校验和函数的奇偶性。

1. 奇数与偶数奇数是能被2整除余1的整数,例如1、3、5等。

而偶数则是能被2整除的整数,例如2、4、6等。

由此可见,奇数与偶数在除以2的余数上有明显的差异。

在高一数学中,奇偶数的性质非常常见且重要。

奇数与奇数相加、相乘,结果仍为奇数。

偶数与偶数相加、相乘,结果同样为偶数。

而奇数与偶数相加,结果为奇数,相乘则为偶数。

这些性质在解题和证明中经常会用到,需要加以掌握。

2. 奇偶校验奇偶校验是一种常用的信息传输校验方式,用来检测在传输过程中是否存在错误。

它利用了奇偶性的特性来实现校验。

奇偶校验的基本原理是:给定一个二进制数,统计其中1的个数,如果结果为偶数,则在数的最高位添加一个1,构成一个奇数;如果结果为奇数,则在数的最高位添加一个0,构成一个偶数。

这样,接收端在接收到数据后,再次进行奇偶校验,若结果与发送端的奇偶校验位相同,则说明传输没有错误。

奇偶校验在计算机领域中广泛应用,特别是在数据传输和存储方面。

了解奇偶校验的原理及其应用,对理解计算机相关知识具有重要的帮助。

3. 函数的奇偶性在高一数学中,函数的奇偶性也是一个重要的概念。

函数的奇偶性描述了函数图像关于坐标轴的对称性。

对于一个函数f(x),如果对于任意x,f(-x) = f(x),则该函数称为偶函数。

换句话说,偶函数在x轴上对称。

例如,y = x^2就是一个典型的偶函数。

另一方面,如果对于任意x,f(-x) = -f(x),则该函数称为奇函数。

奇函数关于坐标原点对称。

例如,y = x^3就是一个典型的奇函数。

通过判断函数的奇偶性,我们可以简化函数图像的绘制过程,更好地理解和分析函数的性质。

总结:奇偶性是高一数学中重要的知识点。

掌握奇数与偶数的性质,了解奇偶校验的原理和应用,以及函数的奇偶性对于解题和理解数学概念都具有重要的作用。

高一数学奇偶性

高一数学奇偶性

1.3.2函数的奇偶性
1.偶函数
一般地,对于函数f(x)的定义域内的任意一个x, 都有f(-x)=f(x),那么f(x)就叫做偶函数.
2
2 例如,函数 f ( x) x 1, f ( x) x 2 1 都是偶 函数,
它们的图象分别如下图(1)、(2)所示.
观察函数f(x)=x和f(x)=1/x的图象(下图),你能发 现两个函数图象有什么共同特征吗?
课堂练习
判断下列函数的奇偶性:
1 (1) f ( x) x x (3) f ( x) 5 (5) f ( x) x 1
(2) f ( x) x 1
2
(4) f ( x) 0 (6) f ( x) x , x [1,3]
2
3.奇偶函数图象的性质
1、奇函数的图象关于原点对称. 反过来,如果一个函数的图象关于原 点对称,那么就称这个函数为奇函数. 2、偶函数的图象关于y轴对称. 反过来,如果一个函数的图象关于y轴对称, 那么就称这个函数为偶函数.
例5、判断下列函数的奇偶性:
(1) f ( x ) x
4 5
(2) f ( x ) x
1 (3) f ( x ) x x 1 (4) f ( x) 2 x
3.用定义判断函数奇偶性的步骤:
(1)、先求定义域,看是否关于原点对称;
(2)、再判断f(-x)=-f(x)或f(-x)=f(x)是否恒成立.
注意: 1、函数是奇函数或是偶函数称为函数的奇偶性, 函数的奇偶性是函数的整体性质;
2、由函数的奇偶性定义可知,函数具有奇偶性的 一个必要条件是,对于定义域内的任意一个x,则 -x也一定是定义域内的一个自变量(即定义域关 于原点对称).

高一数学函数的奇偶性(经典复习资料)

高一数学函数的奇偶性(经典复习资料)

〖一方教育〗函数的奇偶性一、函数奇偶性的判断:1、定义域关于原点对称;2、奇函数()()x f x f -=-,偶函数()()x f x f =-;3、奇函数图像关于原点对称、偶函数图像关于y 轴对称。

1、奇偶性的判断①242)(x x x f +=; ②]1,1(,2)(3-∈+=x x x x f ; ③32)(2++=x x x f ;④24)(---=x x x f ;⑤2)(=x f ;⑥]2,1(,0)(-∈=x x f .⑦22)(34--=x x x x f ; ⑧|1||1|)(++-=x x x f ; ⑨xx x x f -+-=11)1()(; ⑩作出函数32)(2--=x x x f ;的图像.并判断函数)(x f 奇偶性(11).求证:函数⎪⎩⎪⎨⎧<--=>+=)0(2)0(0)0(222x x x x x y 是奇函数。

二、奇偶性的性质2、求值①已知函数()y f x =是定义域为R 的奇函数,求(0)f 的值.②已知函数2()(2)(1)3f x m x m x =-+-+是偶函数,求实数m 的值.③已知f(x)=x 5+2x 3+3x-8, f(-2)=10, f(2)=④若(),155,8)(57-=-+++=f cx bx ax x f 求)5(f . ⑤设()f x 为定义在R 上的奇函数,满足()()2f x f x +=-,当01x ≤≤时()f x x =,则()7.5f = 。

⑥已知函数y=()f x 是定义域为R 的偶函数,且当x ≥0时,f(x)=x 2-4x,试求方程f(x)=-3的解集。

3、求解析式①已知函数)(x f y =在R 上是奇函数,且在),0(+∞x x x f 2)(2-=,求)(x f 解析式.②已知()f x 是定义域为R 的奇函数,当x>0时,f(x)=x |x -2|,求x<0时,f(x)的解析式.③已知()f x 是定义域为R 的奇函数,且当x>0时,f(x)=x 2-2x+1,试求函数y=f(x)的表达式,并画出y=f(x)的图象。

高一数学 函数的奇偶性

奇偶性第1课时奇偶性的概念学习目标 1.理解函数奇偶性的定义.2.掌握函数奇偶性的判断和证明方法.3.会应用奇、偶函数图象的对称性解决简单问题.知识点一函数奇偶性的几何特征思考下列函数图象中,关于y轴对称的有哪些?关于原点对称的呢?答案①②关于y轴对称,③④关于原点对称.梳理一般地,图象关于y轴对称的函数称为偶函数,图象关于原点对称的函数称为奇函数.知识点二函数奇偶性的定义思考1为什么不直接用图象关于y轴(原点)对称来定义函数的奇偶性?答案因为很多函数图象我们不知道,即使画出来,细微之处是否对称也难以精确判断.思考2利用点对称来刻画图象对称有什么好处?答案好处有两点:(1)等价:只要所有点均关于y轴(原点)对称,则图象关于y轴(原点)对称,反之亦然.(2)可操作:要判断点是否关于y轴(原点)对称,只要代入解析式验证即可,不知道函数图象也能操作.梳理函数奇偶性的概念:(1)偶函数:如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数.其实质是函数f(x)上任一点(x,f(x))关于y轴的对称点(-x,f(x))也在f(x)图象上.(2)奇函数:如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数.其实质是函数f(x)上任一点(x,f(x))关于原点的对称点(-x,-f(x))也在f(x)图象上.知识点三奇(偶)函数的定义域特征思考如果一个函数f(x)的定义域是(-1,1],那么这个函数f(x)还具有奇偶性吗?答案 由函数奇偶性定义,对于定义域内任一元素x ,其相反数-x 必须也在定义域内,才能进一步判断f (-x )与f (x )的关系.而本问题中,1∈(-1,1],-1∉(-1,1],f (-1)无定义,自然也谈不上是否与f (1)相等了.所以该函数既非奇函数,也非偶函数.梳理 一般地,判断函数奇偶性要注意定义域优先原则,即首先要看定义域是否关于原点对称.类型一 证明函数的奇偶性命题角度1 已知函数解析式,证明奇偶性 例1 (1)证明f (x )=x 3-x 2x -1既非奇函数又非偶函数;(2)证明f (x )=(x +1)(x -1)是偶函数;(3)证明f (x )=1-x 2+x 2-1既是奇函数又是偶函数.证明 (1)因为它的定义域为{x |x ∈R 且x ≠1},所以对于定义域内的-1,其相反数1不在定义域内,故f (x )=x 3-x 2x -1既非奇函数又非偶函数. (2)函数的定义域为R ,因函数f (x )=(x +1)(x -1)=x 2-1,又因f (-x )=(-x )2-1=x 2-1=f (x ),所以函数为偶函数.(3)定义域为{-1,1},因为对定义域内的每一个x ,都有f (x )=0,所以f (-x )=f (x ),故函数f (x )=1-x 2+x 2-1为偶函数.又f (-x )=-f (x ),故函数f (x )=1-x 2+x 2-1为奇函数.即该函数既是奇函数又是偶函数.反思与感悟 利用定义法判断函数是否具有奇偶性时,首先应看函数定义域是否关于原点对称,即对于定义域内的任意一个x ,则-x 也一定属于定义域. 跟踪训练1 (1)证明f (x )=(x -2) 2+x2-x既非奇函数又非偶函数; (2)证明f (x )=x |x |是奇函数.证明 (1)由2+x2-x ≥0,得定义域为[-2,2),关于原点不对称,故f (x )为非奇非偶函数.(2)函数的定义域为R ,因f (-x )=(-x )|-x |=-x |x |=-f (x ),所以函数为奇函数. 命题角度2 证明分段函数的奇偶性例2 判断函数f (x )=⎩⎪⎨⎪⎧(x +5)2-4,x ∈(-6,-1],(x -5)2-4,x ∈[1,6)的奇偶性.解 由题意可知f (x )的定义域为(-6,-1]∪[1,6), 关于原点对称,当x ∈(-6,-1]时,-x ∈[1,6),所以f (-x )=(-x -5)2-4=(x +5)2-4=f (x ); 当x ∈[1,6)时,-x ∈(-6,-1],所以f (-x )=(-x +5)2-4=(x -5)2-4=f (x ). 综上可知对于任意的x ∈(-6,-1]∪[1,6), 都有f (-x )=f (x ),所以f (x )=⎩⎪⎨⎪⎧(x +5)2-4,x ∈(-6,-1],(x -5)2-4,x ∈[1,6)是偶函数.反思与感悟 分段函数也是函数,证明奇偶性也是抓住两点:(1)定义域是否关于原点对称;(2)对于定义域内的任意x ,是否都有f (-x )=f (x )(或-f (x )),只不过对于不同的x ,f (x )有不同的表达式,要逐段验证是否都有f (-x )=f (x )(或-f (x )).跟踪训练2 证明f (x )=⎩⎪⎨⎪⎧-x 2,x <0,x 2,x >0是奇函数.证明 定义域为{x |x ≠0}. 若x <0,则-x >0, ∴f (-x )=x 2,f (x )=-x 2, ∴f (-x )=-f (x ); 若x >0,则-x <0,∴f (-x )=-(-x )2=-x 2,f (x )=x 2, ∴f (-x )=-f (x );即对任意x ≠0,都有f (-x )=-f (x ). ∴f (x )为奇函数.命题角度3 证明抽象函数的奇偶性例3 f (x ),g (x )是定义在R 上的奇函数,试判断y =f (x )+g (x ),y =f (x )g (x ),y =f [g (x )]的奇偶性. 解 ∵f (x ),g (x )是定义在R 上的奇函数,∴f (-x )+g (-x )=-f (x )-g (x )=-[f (x )+g (x )],y =f (x )+g (x )是奇函数. f (-x )g (-x )=[-f (x )][-g (x )]=f (x )g (x ),y =f (x )g (x )是偶函数. f [g (-x )]=f [-g (x )]=-f [g (x )],y =f [g (x )]是奇函数.反思与感悟 利用基本的奇(偶)函数,通过加减乘除、复合,可以得到新的函数,判断这些新函数的奇偶性,主要是代入-x ,看总的结果.跟踪训练3 设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( ) A.f (x )g (x )是偶函数 B.|f (x )|g (x )是奇函数 C.f (x )|g (x )|是奇函数 D.|f (x )g (x )|是奇函数 答案 C解析 A :令h (x )=f (x )·g (x ),则h (-x )=f (-x )·g (-x )=-f (x )·g (x )=-h (x ),∴h (x )是奇函数,A 错. B :令h (x )=|f (x )|g (x ),则h (-x )=|f (-x )|g (-x )=|-f (x )|g (x )=|f (x )|g (x )=h (x ),∴h (x )是偶函数,B 错.C:令h(x)=f(x)|g(x)|,则h(-x)=f(-x)·|g(-x)|=-f(x)|g(x)|=-h(x),∴h(x)是奇函数,C正确.D:令h(x)=|f(x)·g(x)|,则h(-x)=|f(-x)·g(-x)|=|-f(x)·g(x)|=|f(x)·g(x)|=h(x),∴h(x)是偶函数,D错.类型二奇偶性的应用命题角度1奇(偶)函数图象的对称性的应用例4定义在R上的奇函数f(x)在[0,+∞)上的图象如图所示.(1)画出f(x)的图象;(2)解不等式xf(x)>0.解(1)先描出(1,1),(2,0)关于原点的对称点(-1,-1),(-2,0),连线可得f(x)的图象如图.(2)xf(x)>0即图象上横坐标、纵坐标同号.结合图象可知,xf(x)>0的解集是(-2,0)∪(0,2).引申探究把例4中的“奇函数”改为“偶函数”,重做该题.解(1)f(x)的图象如图所示:(2)xf(x)>0的解集是(-∞,-2)∪(0,2).反思与感悟鉴于奇(偶)函数图象关于原点(y轴)对称,可以用这一特性去画图,求值,求解析式,研究单调性.跟踪训练4已知奇函数f(x)的定义域为[-5,5],且在区间[0,5]上的图象如图所示.(1)画出在区间[-5,0]上的图象;(2)写出使f (x )<0的x 的取值集合. 解 (1)如图,在[0,5]上的图象上选取5个关键点O ,A ,B ,C ,D . 分别描出它们关于原点的对称点O ′,A ′,B ′,C ′,D ′, 再用光滑曲线连接即得.(2)由(1)图可知,当且仅当x ∈(-2,0)∪(2,5)时,f (x )<0. ∴使f (x )<0的x 的取值集合为(-2,0)∪(2,5). 命题角度2 利用函数奇偶性的定义求值例5 若函数f (x )=ax 2+bx +3a +b 是偶函数,定义域为[a -1,2a ],则a =________,b =________. 答案 13解析 因为偶函数的定义域关于原点对称,所以a -1=-2a ,解得a =13,f (x )=13x 2+bx +b +1.又f (x )为偶函数,∴f (-x )=13(-x )2+b (-x )+b +1=f (x )=13x 2+bx +b +1,对定义域内任意x 恒成立,即2bx =0对任意x ∈[-23,23]恒成立,∴b =0.综上,a =13,b =0.反思与感悟 函数奇偶性的定义有两处常用:①定义域关于原点对称;②对定义域内任意x ,恒有f (-x )=f (x )(或-f (x ))成立,常用这一特点得一个恒成立的等式,或对其中的x 进行赋值.跟踪训练5 已知函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x ≤0,ax 2+bx ,x >0为奇函数,则a +b =________.答案 0解析 由题意知⎩⎪⎨⎪⎧f (2)=-f (-2),f (1)=-f (-1),则⎩⎪⎨⎪⎧ 4a +2b =-2,a +b =0, 解得⎩⎪⎨⎪⎧a =-1,b =1. 当a =-1,b =1时,经检验知f (x )为奇函数,故a +b =0.1.下列函数为偶函数的是()A.f(x)=x-1B.f(x)=x2+xC.f(x)=2x-2-xD.f(x)=2x+2-x答案D解析D中,f(-x)=2-x+2x=f(x),∴f(x)为偶函数.2.函数f(x)=x(-1<x≤1)的奇偶性是()A.奇函数B.偶函数C.非奇非偶函数D.既是奇函数又是偶函数答案C3.已知函数y=f(x)+x是偶函数,且f(2)=1,则f(-2)等于()A.-1B.1C.-5D.5答案D解析函数y=f(x)+x是偶函数,∴x=±2时函数值相等.∴f(-2)-2=f(2)+2,∴f(-2)=5,故选D.4.若函数f(x)=(m-1)x2+(m-2)x+(m2-7m+12)为偶函数,则m的值是()A.1B.2C.3D.4答案B5.下列说法错误的个数是()①图象关于原点对称的函数是奇函数;②图象关于y轴对称的函数是偶函数;③奇函数的图象一定过原点;④偶函数的图象一定与y轴相交;⑤既是奇函数,又是偶函数的函数一定是f(x)=0(x∈R).A.4B.3C.2D.0答案B1.两个定义:对于f(x)定义域内的任意一个x,如果都有f(-x)=-f(x)⇔f(-x)+f(x)=0⇔f(x)为奇函数;如果都有f(-x)=f(x)⇔f(-x)-f(x)=0⇔f(x)为偶函数.2.两个性质:函数为奇函数⇔它的图象关于原点对称;函数为偶函数⇔它的图象关于y轴对称.3.证明一个函数是奇函数,必须对f(x)的定义域内任意一个x,都有f(-x)=-f(x).而证明一个函数不是奇函数,只要能举出一个反例就可以了.课时作业一、选择题1.已知一个奇函数的定义域为{-1,2,a ,b },则a +b 等于( ) A.-1 B.1 C.0 D.2 答案 A解析 因为一个奇函数的定义域为{-1,2,a ,b }, 根据奇函数的定义域关于原点对称, 所以a 与b 有一个等于1,一个等于-2, 所以a +b =1+(-2)=-1, 故选A.2.设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x 2-x ,则f (1)等于( ) A.-3 B.-1 C.1 D.3 答案 A解析 ∵f (x )是奇函数, 当x ≤0时,f (x )=2x 2-x ,∴f (1)=-f (-1)=-[2×(-1)2-(-1)]=-3.3.设函数f (x )和g (x )分别是R 上的偶函数和奇函数,则下列结论恒成立的是( ) A.f (x )+|g (x )|是偶函数 B.f (x )-|g (x )|是奇函数 C.|f (x )|+g (x )是偶函数 D.|f (x )|-g (x )是奇函数 答案 A解析 由f (x )是偶函数,可得f (-x )=f (x ), 由g (x )是奇函数可得g (-x )=-g (x ), 故|g (x )|为偶函数, ∴f (x )+|g (x )|为偶函数.4.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是( ) A.-13B.13 C.12 D.-12答案 B解析 依题意b =0,且2a =-(a -1), ∴a =13,则a +b =13.5.函数f (x )=|x +1|-|x -1|为( ) A.奇函数 B.偶函数C.既是奇函数也是偶函数D.既不是奇函数也不是偶函数 答案 A解析 f (x )的定义域为R ,对于任意x ∈R ,f (-x )=|-x +1|-|-x -1|=|x -1|-|x +1|=-f (x ), ∴f (x )为奇函数.又f (-1)=-2,f (1)=2,f (-1)≠f (1), ∴f (x )不是偶函数.6.设奇函数f (x )在(0,+∞)上为增函数,且f (3)=0,则不等式f (x )-f (-x )2>0的解集为( )A.(-3,0)∪(3,+∞)B.(-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞)D.(-∞,-3)∪(0,3) 答案 A解析 ∵f (x )为奇函数,f (3)=0, ∴f (-3)=0.又∵f (x )在(0,+∞)上为增函数, ∴f (x )在(-∞,0)上也为增函数, ∴f (x )-f (-x )2=f (x )>0, ①当x >0时,则f (x )>f (3)=0,∴x >3; ②当x <0时,则f (x )>f (-3)=0,∴-3<x <0, 综上可得,原不等式的解集为(-3,0)∪(3,+∞). 二、填空题7.已知函数y =f (x )为偶函数,其图象与x 轴有四个交点,则方程f (x )=0的所有实根之和是________. 答案 0解析 由于偶函数的图象关于y 轴对称,所以偶函数的图象与x 轴的交点也关于y 轴对称,因此,四个交点中,有两个在x 轴的负半轴上,另两个在x 轴的正半轴上,所以四个实根的和为0. 8.若函数f (x )=x 2-1+a -x 2为偶函数且非奇函数,则实数a 的取值范围为________. 答案 a >1解析 ∵函数f (x )=x 2-1+a -x 2为偶函数且非奇函数, ∴f (-x )=f (x )且f (-x )≠-f (x ).又∵⎩⎪⎨⎪⎧x 2-1≥0,a -x 2≥0,∴a ≥1.当a =1时,函数f (x )=x 2-1+a -x 2为偶函数且为奇函数, 故a >1.9.已知函数f (x )=x 2+x +1x 2+1,若f (a )=23,则f (-a )=________.答案 43解析 根据题意,f (x )=x 2+x +1x 2+1=1+x x 2+1,而h (x )=xx 2+1是奇函数,故f (-a )=1+h (-a )=1-h (a )=2-[1+h (a )]=2-f (a )=2-23=43.10.函数f (x )=⎩⎪⎨⎪⎧x (1-x ),x <0,x (1+x ),x >0为________.(填“奇函数”或“偶函数”)答案 奇函数解析 定义域关于原点对称,且f (-x )=⎩⎪⎨⎪⎧-x (1+x ),-x <0,-x (1-x ),-x >0=⎩⎪⎨⎪⎧-x (1+x ),x >0,-x (1-x ),x <0 =-f (x ), 所以f (x )是奇函数. 三、解答题11.判断下列函数的奇偶性: (1)f (x )=x 3+x 5; (2)f (x )=|x +1|+|x -1|; (3)f (x )=2x 2+2x x +1.解 (1)函数的定义域为R .∵f (-x )=(-x )3+(-x )5=-(x 3+x 5)=-f (x ),∴f (x )是奇函数. (2)f (x )的定义域是R .∵f (-x )=|-x +1|+|-x -1|=|x -1|+|x +1|=f (x ),∴f (x )是偶函数. (3)函数f (x )的定义域是(-∞,-1)∪(-1,+∞),不关于原点对称,∴f (x )是非奇非偶函数. 12.若函数f (x )=x 2-|x +a |为偶函数,求实数a 的值. 解 ∵函数f (x )=x 2-|x +a |为偶函数, ∴f (-x )=f (x ),即(-x )2-|-x +a |=x 2-|x +a |, ∴|-x +a |=|x +a |,即|x -a |=|x +a |, ∴a =0.13.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围. 解 (1)因为f (x )为奇函数,所以f (-1)=-f (1),即1-m =-(-1+2), 解得m =2.经检验m =2时函数f (x )是奇函数. 所以m =2.(2)要使f (x )在[-1,a -2]上单调递增,结合f (x )的图象知⎩⎪⎨⎪⎧a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3]. 四、探究与拓展14.设奇函数f (x )的定义域为[-6,6],当x ∈[0,6]时,f (x )的图象如图所示,不等式f (x )<0的解集用区间表示为________.答案 [-6,-3)∪(0,3)解析 由f (x )在[0,6]上的图象知,满足f (x )<0的不等式的解集为(0,3).又f (x )为奇函数,图象关于原点对称,所以在[-6,0)上,不等式f (x )<0的解集为[-6,-3).综上可知,不等式f (x )<0的解集为[-6,-3)∪(0,3). 15.已知函数f (x )=ax +b 1+x 2是定义在(-1,1)上的奇函数,且f ⎝⎛⎭⎫12=25,求函数f (x )的解析式. 解 ∵f (x )是定义在(-1,1)上的奇函数, ∴f (0)=0,即b1+02=0,∴b =0.又∵f ⎝⎛⎭⎫12=12a 1+14=25, ∴a =1,∴f (x )=x1+x 2.第2课时 奇偶性的应用学习目标 1.掌握用奇偶性求解析式的方法.2.理解奇偶性对单调性的影响并能用以解不等式.3.理解函数的奇偶性的推广——对称性.知识点一 用奇偶性求解析式思考 函数f (x )在区间[a ,b ]上的解析式与该区间函数图象上的点(x ,y )有什么关系?答案 点(x ,y )满足y =f (x ).梳理 一般地,求解析式的任务就是要找到一个含有自变量因变量的等式,该等式同时满足两个条件: ①定义域符合要求;②图象上任意一点均满足该式.特别地,如果知道函数的奇偶性和一个区间[a ,b ]上的解析式,想求对称区间[-b ,-a ]上的解析式,那么就可以设出关于原点对称区间[-b ,-a ]上任一点(x ,y ),通过关于原点(或y 轴)的对称点(-x ,-y )(或(-x ,y ))满足的关系式间接找到(x ,y )所满足的解析式.知识点二 奇偶性与单调性思考 观察偶函数y =x 2与奇函数y =1x在(-∞,0)和(0,+∞)上的单调性,你有何猜想? 答案 偶函数y =x 2在(-∞,0)和(0,+∞)上的单调性相反;奇函数y =1x在(-∞,0)和(0,+∞)上的单调性相同.梳理 一般地,若函数f (x )为奇函数,则f (x )在关于原点对称的两个区间[a ,b ]和[-b ,-a ]上具有相同的单调性;若函数f (x )为偶函数,则f (x )在关于原点对称的两个区间[a ,b ]和[-b ,-a ]上具有相反的单调性. 知识点三 奇偶性的推广思考 对于定义域内任意x ,若f (-x )=-f (x ),则函数f (x )的图象关于(0,0)对称,那么若f (1-x )=-f (1+x ),函数f (x )的图象又有什么特点?答案 设1-x =x 1,1+x =x 2,则有⎩⎨⎧x 1+x 22=1,f (x 1)+f (x 2)2=0, 即点(x 1,f (x 1))与点(x 2,f (x 2))关于点(1,0)对称. 梳理 一般地,对于定义域内任意x , (1)若f (a -x )=2b -f (a +x ),则f (x )图象关于点(a ,b )对称.当a =b =0时,即为奇函数定义. (2)若f (a -x )=f (a +x ),则f (x )图象关于直线x =a 对称,当a =0时,即为偶函数定义.类型一 用奇偶性求解析式命题角度1 已知区间[a ,b ]上的解析式,求[-b ,-a ]上的解析式例1 函数f (x )是定义域为R 的奇函数,当x >0时,f (x )=-x +1,求当x <0时,f (x )的解析式.解 设x <0,则-x >0,∴f (-x )=-(-x )+1=x +1,又∵函数f (x )是定义域为R 的奇函数,∴f (-x )=-f (x )=x +1,∴当x <0时,f (x )=-x -1.反思与感悟 求给定哪个区间的解析式就设这个区间上的变量为x ,然后把x 转化为-x ,此时-x 成为了已知区间上的解析式中的变量,通过应用奇函数或偶函数的定义,适当推导,即可得所求区间上的解析式. 跟踪训练1 已知y =f (x )是定义在 R 上的奇函数,且当x >0时,f (x )=2x -x 2.求y =f (x )的解析式. 解 设x <0,则-x >0,因为f (x )是奇函数,所以f (x )=-f (-x )=-[2(-x )-(-x )2]=2x +x 2.因为y =f (x )是R 上的奇函数,所以f (0)=0.所以f (x )=⎩⎪⎨⎪⎧x 2+2x ,x ≤0,2x -x 2,x >0. 命题角度2 已知一奇一偶两函数之和,求这两个函数的解析式例2 设f (x )是偶函数,g (x )是奇函数,且f (x )+g (x )=1x -1,求函数f (x ),g (x )的解析式. 解 ∵f (x )是偶函数,g (x )是奇函数,∴f (-x )=f (x ),g (-x )=-g (x ),由f (x )+g (x )=1x -1. ① 用-x 代替x 得f (-x )+g (-x )=1-x -1, ∴f (x )-g (x )=1-x -1, ② (①+②)÷2,得f (x )=1x 2-1; (①-②)÷2,得g (x )=x x 2-1. 反思与感悟 f (x )+g (x )=1x -1对定义域内任意x 都成立,所以可以对x 任意赋值,如x =-x . 因为f (x ),g (x )一奇一偶,才能把-x 的负号或提或消,最终得到关于f (x ),g (x )的二元方程组,从中解出f (x )和g (x ).跟踪训练2 设f (x )是偶函数,g (x )是奇函数,且f (x )+g (x )=x 2+2x ,求函数f (x ),g (x )的解析式.解 ∵f (x )是偶函数,g (x )是奇函数,∴f (-x )=f (x ),g (-x )=-g (x ),由f (x )+g (x )=2x +x 2. ①用-x 代替x 得f (-x )+g (-x )=-2x +(-x )2,∴f (x )-g (x )=-2x +x 2, ②(①+②)÷2,得f (x )=x 2;(①-②)÷2,得g (x )=2x .类型二 奇偶性对单调性的影响命题角度1 由x 的取值情况推导f (x )的取值情况例3 设f (x )是偶函数,在区间[a ,b ]上是减函数,试证f (x )在区间[-b ,-a ]上是增函数.证明 设x 1,x 2是区间[-b ,-a ]上任意两个值,且有x 1<x 2.∵-b ≤x 1<x 2≤-a ,∴a ≤-x 2<-x 1≤b .∵f (x )在[a ,b ]上是减函数,∴f (-x 2)>f (-x 1).∵f (x )为偶函数,即f (-x )=f (x ),∴f (-x 2)=f (x 2),f (-x 1)=f (x 1).∴f (x 2)>f (x 1),即f (x 1)<f (x 2).∴函数f (x )在区间[-b ,-a ]上是增函数.引申探究区间[a ,b ]和[-b ,-a ]关于原点对称.(1)若f (x )为奇函数,且在[a ,b ]上有最大值M ,则f (x )在[-b ,-a ]上有最________值________.(2)若f (x )为奇函数,f (x )+2在[a ,b ]上有最大值M ,则f (x )+2在[-b ,-a ]上有最________值________. 答案 (1)小 -M (2)小 -M +4解析 (1)设x ∈[-b ,-a ],则-x ∈[a ,b ],∴f (-x )≤M 且存在x 0∈[a ,b ],使f (x 0)=M .∵f (x )为奇函数,∴-f (x )≤M ,f (x )≥-M ,且存在-x 0∈[-b ,-a ],使f (-x 0)=-M .∴f (x )在[-b ,-a ]上有最小值-M .(2)由(1)知,f (x )在[a ,b ]上有最大值M -2时,f (x )在[-b ,-a ]上有最小值-M +2.∴f (x )+2在[-b ,-a ]上有最小值-M +4.反思与感悟 与求解析式一样,证哪个区间上的单调性,设x 1,x 2属于哪个区间.同样,求哪个区间上的最值,也设x 属于哪个区间.跟踪训练3 已知函数y =f (x )是偶函数,当x >0时,有f (x )=x +1x +2,则当x ∈[-4,-1]时,求函数f (x )的值域.解 设1≤x 1<x 2≤4,则f (x 1)-f (x 2)=x 1+1x 1+2-x 2+1x 2+2=(x 1+1)(x 2+2)-(x 1+2)(x 2+1)(x 1+2)(x 2+2) =x 1-x 2(x 1+2)(x 2+2). 因为1≤x 1<x 2≤4,所以x 1-x 2<0,x 1+2>0,x 2+2>0,所以x 1-x 2(x 1+2)(x 2+2)<0,即f (x 1)-f (x 2)<0, 所以f (x 1)<f (x 2).故函数f (x )在[1,4]上是增函数,所以当x ∈[1,4]时,函数f (x )的值域是[23,56]. 因为y =f (x )是偶函数,所以当x ∈[-4,-1]时,函数f (x )的值域也是[23,56]. 命题角度2 由f (x )的取值情况推导x 的取值情况例4 已知偶函数f (x )在[0,+∞)上单调递减,f (2)=0.若f (x -1)>0,则x 的取值范围是________. 答案 (-1,3)解析 ∵f (x )为偶函数,∴f (x -1)=f (|x -1|),又f (2)=0,∴f (x -1)>0,即f (|x -1|)>f (2),∵|x -1|,2∈[0,+∞),且f (x )在[0,+∞)上单调递减.∴|x -1|<2,即-2<x -1<2,∴x 的取值范围为(-1,3).反思与感悟 若f (x )在[a ,b ]上单调递增,则x 1,x 2∈[a ,b ]时,可由f (x 1)<f (x 2)推知x 1<x 2.但是如果不知道x 1或x 2是否在[a ,b ]内呢?这时如果已知函数奇偶性,可以借助奇偶性把x 1,x 2转化为在已知区间[a ,b ]内,如本例中x -1是否属于[0,+∞)不确定,但是|x -1|∈[0,+∞).跟踪训练4 奇函数f (x )在[0,+∞)上单调递减,解不等式f (x -1)+f (2x +3)>0.解 ∵f (x )在[0,+∞)上单调递减且为奇函数,∴f (x )在(-∞,+∞)上单调递减,∴f (x -1)+f (2x +3)>0⇔f (x -1)>-f (2x +3)=f (-2x -3)⇔x -1<-2x -3,解得x <-23,∴原不等式解集为{x |x <-23}. 类型三 对称问题例5 定义在R 上的奇函数f (x )满足:f (x -4)=-f (x ),且x ∈[0,2]时,f (x )=x ,试画出f (x )的图象. 解 ∵f (x )是奇函数,∴f (x -4)=-f (x )=f (-x ),∴f(x)关于直线x=-2对称.反复利用f(x)关于原点对称又关于直线x=-2对称,可画出f(x)的图象如图:反思与感悟奇偶性推广到一般的对称性后,要善于抓住特征识别对称中心(或对称轴),而应用对称性与应用奇偶性完全类似.跟踪训练5定义在R上的偶函数f(x)满足:f(x-4)=-f(x),且x∈[0,2]时,f(x)=x.试画出f(x)的图象.解∵f(x)是偶函数,∴f(x)的图象关于y轴对称.又∵f(x-4)=-f(x),∴f(x)关于点C(-2,0)对称.反复利用f(x)关于(-2,0)对称又关于y轴对称,可画出的图象如图:1.f(x)=x2+|x|()A.是偶函数,在(-∞,+∞)上是增函数B.是偶函数,在(-∞,+∞)上是减函数C.不是偶函数,在(-∞,+∞)上是增函数D.是偶函数,且在(0,+∞)是增函数答案D2.已知f(x)是奇函数,且x>0时,f(x)=x-1,则x<0时f(x)等于()A.x+1B.x-1C.-x-1D.-x+1答案A3.若奇函数f(x)在R上是增函数,则函数y=f(-x)在R上是()A.单调递减的偶函数B.单调递减的奇函数C.单调递增的偶函数D.单调递增的奇函数答案B4.定义在R上的偶函数f(x)在[0,+∞)上是增函数,若f(a)<f(b),则一定可得()A.a<bB.a>bC.|a|<|b|D.0≤a<b或a>b≥0答案C5.已知对于函数f(x)=x2+ax定义域内任意x,有f(1-x)=f(1+x),则实数a等于()A.1B.-1C.2D.-2答案D1.函数的奇偶性是其相应图象特殊对称性的反映,也体现了在关于原点对称的定义域的两个区间上函数值及其性质的相互转化,这是对称思想的应用.这种对称推广,就是一般的中心对称或轴对称.2.(1)根据奇函数的定义,如果一个奇函数在原点处有定义,即f(0)有意义,那么一定有f(0)=0.有时可以用这个结论来否定一个函数为奇函数.(2)偶函数的一个重要性质:f(|x|)=f(x),它能使自变量化归到[0,+∞)上,避免分类讨论.3.具有奇偶性的函数的单调性的特点:(1)奇函数在[a,b]和[-b,-a]上具有相同的单调性.(2)偶函数在[a,b]和[-b,-a]上具有相反的单调性.课时作业一、选择题1.已知奇函数f(x)在区间[0,+∞)上单调递增,则满足f(x)<f(1)的x的取值范围是()A.(-∞,1)B.(-∞,-1)C.(0,1)D.[-1,1)答案A解析由于f(x)在[0,+∞)上单调递增,且是奇函数,所以f(x)在R上单调递增,f(x)<f(1)等价于x<1.故选A.2.若定义在R上的偶函数f(x)和奇函数g(x)满足f(x)+g(x)=x2+3x+1,则f(x)等于()A.x2B.2x2C.2x2+2D.x2+1答案D解析∵f(x)+g(x)=x2+3x+1,①∴f(-x)+g(-x)=x2-3x+1.又f(x)是偶函数,且g(x)是奇函数,∴f (x )-g (x )=x 2-3x +1.②由①②联立,得f (x )=x 2+1.3.若函数f (x )是R 上的偶函数,且在区间[0,+∞)上是增函数,则下列关系成立的是( )A.f (-3)>f (0)>f (1)B.f (-3)>f (1)>f (0)C.f (1)>f (0)>f (-3)D.f (1)>f (-3)>f (0)答案 B解析 ∵f (-3)=f (3),且f (x )在区间[0,+∞)上是增函数,∴f (-3)>f (1)>f (0).4.设f (x )是奇函数,当x ∈[0,+∞)时,f (x )≤m (m <0),则f (x )的值域是( )A.[m ,-m ]B.(-∞,m ]C.[-m ,+∞)D.(-∞,m ]∪[-m ,+∞)答案 D解析 当x ≥0时,f (x )≤m ;当x ≤0时,-x ≥0,所以f (-x )≤m ,因为f (x )是奇函数,所以f (-x )=-f (x )≤m ,即f (x )≥-m .5.定义在R 上的函数f (x )在(-∞,2)上是增函数,且f (x +2)=f (2-x )对任意x ∈R 恒成立,则( )A.f (-1)<f (3)B.f (0)>f (3)C.f (-1)=f (3)D.f (0)=f (3)答案 A解析 f (x )的图象关于直线x =2对称,所以f (3)=f (1),由于f (x )在(-∞,2)上是增函数,所以f (-1)<f (1)=f (3).6.设奇函数f (x )在(0,+∞)上为减函数,且f (1)=0,则不等式f (x )-f (-x )x<0的解集为( ) A.(-1,0)∪(1,+∞)B.(-∞,-1)∪(0,1)C.(-∞,-1)∪(1,+∞)D.(-1,0)∪(0,1)答案 C解析 ∵f (x )为奇函数,f (x )-f (-x )x <0,即f (x )x<0, ∵f (x )在(0,+∞)上为减函数且f (1)=0,∴当x >1时,f (x )<0.∵奇函数图象关于原点对称,∴在(-∞,0)上f (x )为减函数且f (-1)=0,即x <-1时,f (x )>0.综上使f (x )x<0的解集为(-∞,-1)∪(1,+∞). 二、填空题7.若函数f (x )=(k -2)x 2+(k -1)x +3是偶函数,则f (x )的递减区间是________.答案 [0,+∞)解析 利用函数f (x )是偶函数,得k -1=0,k =1,所以f (x )=-x 2+3,其单调递减区间为[0,+∞).8.已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<f (13)的x 的取值范围是________. 答案 (13,23) 解析 由于f (x )是偶函数,因此f (x )=f (|x |),∴f (|2x -1|)<f (13),再根据f (x )的单调性, 得|2x -1|<13,解得13<x <23. 9.已知y =f (x )+x 2是奇函数且f (1)=1,若g (x )=f (x )+2,则g (-1)=________.答案 -1解析 ∵y =f (x )+x 2是奇函数,∴f (-x )+(-x )2=-[f (x )+x 2],∴f (x )+f (-x )+2x 2=0,∴f (1)+f (-1)+2=0.∵f (1)=1,∴f (-1)=-3.∵g (x )=f (x )+2,∴g (-1)=f (-1)+2=-3+2=-1.10.若函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x ≥0,g (x ),x <0为奇函数,则f [g (-1)]=________. 答案 -15解析 当x <0时,则-x >0,由f (x )是奇函数,所以f (-x )=-f (x )=(-x )2-2x =x 2-2x ,所以f (x )=-x 2+2x .即g (x )=-x 2+2x ,因此,f [g (-1)]=f (-3)=-9-6=-15.三、解答题11.已知函数y =f (x )的图象关于原点对称,且当x >0时,f (x )=x 2-2x +3.(1)试求f (x )在R 上的解析式;(2)画出函数的图象,根据图象写出它的单调区间.解 (1)因为函数f (x )的图象关于原点对称,所以f (x )为奇函数,则f (0)=0.设x <0,则-x >0,因为x >0时,f (x )=x 2-2x +3.所以f (x )=-f (-x )=-(x 2+2x +3)=-x 2-2x -3.于是有f (x )=⎩⎪⎨⎪⎧ x 2-2x +3,x >0,0,x =0,-x 2-2x -3,x <0.(2)先画出函数在y 轴右侧的图象,再根据对称性画出y 轴左侧的图象,如图.由图象可知函数f (x )的单调递增区间是(-∞,-1],[1,+∞),单调递减区间是(-1,0),(0,1).12.设函数f (x )在R 上是偶函数,在区间(-∞,0)上单调递增,且f (2a 2+a +1)<f (2a 2-2a +3),求实数a 的取值范围.解 由f (x )在R 上是偶函数,在区间(-∞,0)上单调递增,可知f (x )在(0,+∞)上单调递减.∵2a 2+a +1=2(a +14)2+78>0, 2a 2-2a +3=2(a -12)2+52>0, 且f (2a 2+a +1)<f (2a 2-2a +3),∴2a 2+a +1>2a 2-2a +3,即3a -2>0,解得a >23. ∴实数a 的取值范围是a >23. 13.已知函数f (x )=ax +b x +c (a ,b ,c 是常数)是奇函数,且满足f (1)=52,f (2)=174. (1)求a ,b ,c 的值;(2)试判断函数f (x )在区间⎝⎛⎭⎫0,12上的单调性并证明.解 (1)∵f (x )为奇函数,∴f (-x )=-f (x ),∴-ax -b x +c =-ax -b x-c , ∴c =0,∴f (x )=ax +b x. 又∵f (1)=52,f (2)=174, ∴⎩⎨⎧ a +b =52,2a +b 2=174.∴a =2,b =12. 综上,a =2,b =12,c =0. (2)由(1)可知f (x )=2x +12x. 函数f (x )在区间⎝⎛⎭⎫0,12上为减函数. 证明如下:任取0<x 1<x 2<12, 则f (x 1)-f (x 2)=2x 1+12x 1-2x 2-12x 2=(x 1-x 2)⎝⎛⎭⎫2-12x 1x 2=(x 1-x 2)4x 1x 2-12x 1x 2. ∵0<x 1<x 2<12, ∴x 1-x 2<0,2x 1x 2>0,4x 1x 2-1<0.∴f (x 1)-f (x 2)>0,f (x 1)>f (x 2).∴f (x )在⎝⎛⎭⎫0,12上为减函数. 四、探究与拓展14.已知f (x )是定义域为R 的偶函数,当x ≥0时,f (x )=x 2-4x ,那么,不等式f (x +2)<5的解集是________. 答案 (-7,3)解析 因为f (x )为偶函数,所以f (|x +2|)=f (x +2),则f (x +2)<5可化为f (|x +2|)<5,则|x +2|2-4|x +2|<5,即(|x +2|+1)(|x +2|-5)<0,所以|x +2|<5,解得-7<x <3,所以不等式f (x +2)的解集是(-7,3).15.已知函数y =f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )=-x 2+ax .(1)若a =-2,求函数f (x )的解析式;(2)若函数f (x )为R 上的单调减函数,①求a 的取值范围;②若对任意实数m ,f (m -1)+f (m 2+t )<0恒成立,求实数t 的取值范围. 解 (1)当x <0时,-x >0,又∵f (x )为奇函数,且a =-2,∴f (x )=-f (-x )=x 2-2x ,∴f (x )=⎩⎪⎨⎪⎧x 2-2x ,x <0,-x 2-2x ,x ≥0. (2)①当a ≤0时,对称轴x =a 2≤0, ∴f (x )=-x 2+ax 在[0,+∞)上单调递减,由于奇函数在关于原点对称的区间上单调性相同,∴f (x )在(-∞,0)上单调递减,又在(-∞,0)上f (x )>0,在(0,+∞)上f (x )<0,∴当a ≤0时,f (x )为R 上的单调减函数.当a >0时,f (x )在(0,a 2)上单调递增,在(a 2,+∞)上单调递减,不合题意. ∴函数f (x )为单调减函数时,a 的取值范围为a ≤0.②∵f (m -1)+f (m 2+t )<0,∴f (m -1)<-f (m 2+t ),又∵f (x )是奇函数,∴f (m -1)<f (-t -m 2),又∵f (x )为R 上的单调减函数,∴m -1>-t -m 2恒成立,∴t >-m 2-m +1=-(m +12)2+54恒成立, ∴t >54.。

高一数学函数奇偶性知识点归纳

高一数学函数奇偶性知识点归纳在高中数学学习中,函数是一个非常重要的内容,而其中奇偶性是函数的一个重要性质。

了解函数的奇偶性对于理解函数图像的对称性,解题以及应用等方面都有着至关重要的作用。

本文将围绕高一数学函数奇偶性的相关知识点展开归纳。

1. 函数的定义函数是一种关系,其中每个自变量的取值都唯一地确定了一个因变量的取值。

函数可以用数学符号表示为 f(x),其中 x 表示自变量,而f(x) 表示因变量。

2. 奇函数的定义与性质奇函数是指满足 f(-x)=-f(x) 的函数。

具体来说,如果对于定义域内的任意 x,都有 f(-x)=-f(x),那么函数 f(x) 就是一个奇函数。

奇函数具有如下性质:- 函数图像关于原点对称;- 如果函数在原点处定义,那么 f(0)=0;- 如果函数图像关于 y 轴对称,那么函数是奇函数。

3. 偶函数的定义与性质偶函数是指满足 f(-x)=f(x) 的函数。

具体来说,如果对于定义域内的任意 x,都有 f(-x)=f(x),那么函数 f(x) 就是一个偶函数。

偶函数具有如下性质:- 函数图像关于 y 轴对称;- 如果函数在原点处定义,那么 f(0)=0;- 如果函数图像关于原点对称,那么函数是偶函数。

4. 奇偶性与对称性函数的奇偶性与其图像的对称性密切相关。

如果一个函数是奇函数,那么它的图像关于原点对称;如果一个函数是偶函数,那么它的图像关于 y 轴对称。

5. 奇偶性的判断方法判断一个函数的奇偶性可以通过以下方法:- 观察函数的解析式,如果 f(x) 中不包含任何偶数次幂的 x,那么该函数可能是奇函数;- 判断函数图像关于原点的对称性,如果图像关于原点对称,则函数可能是奇函数;- 检验函数的定义域和值域,如果函数在原点处满足 f(0)=0,那么函数可能是奇函数;- 利用函数的性质和性质的推论来判断奇偶性。

6. 奇偶函数的性质奇偶函数有一些特殊的性质:- 奇函数与奇函数的和(或差)是奇函数;- 偶函数与偶函数的和(或差)是偶函数;- 奇函数与偶函数的积是奇函数;- 奇函数在 0 点对称的点函数值相等;- 偶函数在 0 点对称的点函数值相等。

高一数学 函数奇偶性知识点归纳25

函数奇偶性知识点归纳考点分析配经典案例分析函数的奇偶性定义:1.偶函数:一般地,对于函数()f x 的定义域内的任意一个x ,都有()()f x f x -=,那么()f x 就叫做偶函数.2.奇函数:一般地,对于函数()f x 的定义域的任意一个x ,都有()()f x f x -=-,那么()f x 就叫做奇函数.二、函数的奇偶性的几个性质1、对称性:奇(偶)函数的定义域关于原点对称;2、整体性:奇偶性是函数的整体性质,对定义域内任意一个x 都必须成立;3、可逆性:)()(x f x f =-⇔)(x f 是偶函数;)()(x f x f -=-⇔)(x f 奇函数;4、等价性:)()(x f x f =-⇔0)()(=--x f x f (||)()f x f x ⇔=;)()(x f x f -=-⇔0)()(=+-x f x f ;5、奇函数的图像关于原点对称,偶函数的图像关于y 轴对称;6、可分性:根据函数奇偶性可将函数分类为四类:奇函数、偶函数、既是奇函数又是偶函数、非奇非偶函数。

7、判断或证明函数是否具有奇偶性的根据是定义。

8、如果一个奇函数f(x)在x=0处有意义,则这个函数在x=0处的函数值一定为0。

并且关于原点对称。

三、关于奇偶函数的图像特征 一般地:奇函数的图像关于原点对称,反过来,如果一个函数的图像关于原点对称,那么这个函数是奇函数; 即:f(x)为奇函数<=>f(x)的图像关于原点对称 点(x,y )→(-x,-y )偶函数的图像关于y 轴对称,反过来,如果一个函数的图像关于y 轴对称,那么这个函数是偶函数。

即: f(x)为偶函数<=>f(x)的图像关于Y 轴对称 点(x,y )→(-x,y )奇函数对称区间上的单调性相同(例:奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。

)偶函数对称区间上的单调性相反(例:偶函数在某一区间上单调递增,则在它的对称区间上单调递减)。

高中数学必修函数的基本性质——奇偶性


(3) h (x)=x3+1;
(非奇非偶)
(4) k( x)
1 x2 1
x [1, 2]; (非奇非偶)
(5) f (x)=(x+1) (x-1);
(偶)
(6) g (x)=x (x+1);
(7) h( x) x 3 x ;
(8) k( x)
1 x2 1.
练习
1. 判断下列函数的是否具有奇偶性 (1) f (x)=x+x3;(奇) (2) f (x)=-x2;(偶)
(3) h (x)=x3+1;
(非奇非偶)
(4) k( x)
1 x2 1
x [1, 2]; (非奇非偶)
(5) f (x)=(x+1) (x-1);
(偶)
(6) g (x)=x (x+1);
(非奇非偶)
(7) h( x) x 3 x ;
(奇)
(8) k( x)
1 x2 1.
(偶)
练习
2. 判断下列论断是否正确
1 x2 1
x [1, 2];
(5) f (x)=(x+1) (x-1);
(6) g (x)=x (x+1);
(7) h( x) x 3 x ;
(8) k( x)
1 x2 1.
练习
1. 判断下列函数的是否具有奇偶性 (1) f (x)=x+x3;(奇) (2) f (x)=-x2;
(3) h (x)=x3+1;
1.奇函数、偶函数的定义分别是什么?
2.奇函数和偶函数的定义域、图象分别 有何特征? 3.一个函数就奇偶性而言有哪几种可能 情形?
复习回顾
1. 在初中学习的轴对称图形和中心对称 图形的定义是什么?
复习回顾
1. 在初中学习的轴对称图形和中心对称 图形的定义是什么?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
tt现场
[判断题]猪的经济杂交时的父本,一般选择生长速度快、饲料转化率高、胴体品质好的品种。()A.正确B.错误 [单选,A1型题]下列哪些疾病不会出现肝脾肿大()A.川崎病B.急性病毒性肝炎C.传染性单核细胞增多症D.急慢性心力衰竭E.以上都不是 [判断题]人民币利息的金额算至厘位为止,厘以下四舍五入,各种外币利息的金额应视该货币的辅币进位而定。A.正确B.错误 [单选]既可用作保护油路安全,又可用作稳定系统油压的液压阀是:A.单向节流阀B.溢流阀C.单向阀D.截止阀 [单选]适用单元化装载以及大量或保管周期短的货品应该采用的货位编码方式是()。A.区段方式B.货品类别方式C.地址式D.坐标式 [填空题]纯毛料的缩水率是()%。全棉布缩水率是()%。 [单选]()是招标采购合同规划的根本目的。A.合理确定最小工作单元B.合理确定最小合同单元C.合理确定招标合同单元D.合理确定最小分解单元 [单选]化脓性脑膜炎与病毒性脑膜炎在脑脊液检查中有根本性区别的项目是()A.脑脊液透明度B.脑脊液压力C.脑脊液细胞总数D.蛋白增高程度E.糖和氯化物定量 [判断题]锉削软材料时,应选用齿距较小的锉刀进行工作。()A.正确B.错误 [单选,A1型题]下列哪项不符合一侧动眼神经麻痹()。A.上睑下垂,眼球不能向上、下和内侧转动B.眼球向对侧、向上、向下注视时出现复视C.眼球向外或外下方斜视D.瞳孔散大,光反射消失,调节反射存在E.瞳孔散大,光反射及调节反射均消失 [单选]低血容量时,肾的生理改变是A.肾血流明显降低B.肾小球后动脉收缩C.肾小球前后动脉收缩D.肾血流出现选择性再分布E.以上均是 [单选,A1型题]流行过程是指()A.疫源地的改变过程B.病原体的改变场所过程C.病人的改变场所过程D.携带者的改变场所过程E.医院改变场所的过程 [填空题]焦炉煤气中有毒的气体为()()。 [单选]下面哪一项是学龄期儿童的主要特点()A.好奇多问,模仿性强B.理解、分析、综合能力逐步完善C.易发生营养不良D.患感染性疾病E.易发生营养不良和消化紊乱 [填空题]测量煤泥水流量的薄壁堰,按照堰口形状可分为()、()、()三种。 [判断题]船员居住舱着火,应立即打开门窗,用水龙往内灌水,以防火势蔓延.A.正确B.错误 [单选]廉租住房租金收入主要用于()。A、维修费和利润B、维修费和管理费 C、维修费、管理费和利润D、维修费、利润和税金 [单选]压力容器的人孔通常采用()。A.凸形封头B.锥形封头C.平板封头D.蝶形封头 [单选,A2型题,A1/A2型题]下列哪一组症状不属于湿温卫气同病证的表现?()A.发热恶寒,无汗头痛B.头痛如裹,身重酸困C.肢体酸楚,口渴心烦D.小溲黄赤,脘痞E.苔腻,脉濡数 [单选]下列关于传染病流行病学特征的描述,错误的是()A.霍乱是外来性传染病B.发病率高于一般水平为流行C.流行不属于流行病学特征 [单选,A2型题,A1/A2型题]以下哪种疾病预后最好()A.偏执狂B.偏执状态C.偏执型精神分裂症D.偏执型人格障碍E.妄想阵发 [问答题,简答题]发电机励磁电压、电流、功率? [单选]以下性传播疾病不是由病毒引起的是()A.尖锐湿疣B.生殖器疱疹C.艾滋病D.扁平湿疣 [单选,A1型题]突然昏倒,口吐涎沫,四肢抽搐,牙关紧闭,醒后如常,可诊断为()A.癫B.痫C.狂D.痴呆E.厥 [单选]配送网络的处理对象是()A.商流B.信息流C.物流D.资金流 [单选]()有助于饭店经营项目专业化。A.密集性市场策略B.无差异市场策略C.差异市场策略D.分散性市场策略 [单选,A2型题,A1/A2型题]冷凝集试验正常参考值是()A.&lt;1:20B.&lt;1:40C.&lt;1:80D.&lt;1:160E.&lt;1:320 [单选]《国务院关于进一步深化城镇住房制度改革加快住房建设的通知》决定,从()开始,全国城镇停止住房实物分配,实行住房分配货币化。A、1997年下半年B、1998年下半年C、1998年D、1999年 [单选]根据物权的发生是否基于当事人的意思为标准可将物权分为()。A.自物权和他物权B.用益物权和担保物权C.主物权和从物权D.法定物权和意定物权 [单选]常见的癫痫持续状态系指()A.一侧肢体抽搐不止B.长期用药仍不时发作C.抽搐频繁发作,发作间期意识不清D.精神运动性发作持续数日E.连续小发作 [单选,A1型题]具有非特异性杀伤作用的细胞是()A.Th细胞B.CTL细胞C.TCR&alpha;&beta;T细胞D.NK细胞E.Ts细胞 [单选]国产离心泵的型号表示法中,100D45×8表示()。A.泵的流量100m3/h,单级扬程45m水柱,8级分段多级离心水泵B.泵的流量为45&times;8=360m3/h,扬程为l00m的多级式离心水泵C.泵的入口直径为l00mm,总扬程为45m水柱,8段多级离心水泵D.泵的入口直径为l00mm,单级扬程为45m [单选]流脑的主要传播途径()A.空气、飞沫B.玩具及用品C.动物传播D.通过饮用水传播E.通过食物传播 [单选,A1型题]下列各项,属于火淫证临床表现的是()。A.皮肤干燥B.干咳少痰C.口渴喜饮D.大便干燥E.小便短黄 [单选]催吐适用于哪种情况()。A.昏迷患儿B.惊厥患儿C.婴儿D.强酸中毒E.神清能合作的患儿 [单选,A1型题]下列各类疾病中,主要应采取第一级预防的是()A.职业病B.冠心病C.糖尿病D.高血压E.病因不明,难以觉察预料的疾病 [单选]用于公路路基的填料,确定其最小强度是按()。A.弯拉应力值B.弯沉值C.E0值D.CBR值 [单选]下列不属于串励直流电动机的特点()A.绕组导线截面粗B.绕组匝数少C.励磁绕组和电枢绕组串联D.需提供两个电源 [单选]论述湿热病的病因、病机、辨证施治的专著是:().A.《温热论》B.《外感温病篇》C.《湿热病篇》D.《疫病篇》 [判断题]组织文化可以通过职工的着装、标志、行为模式、组织的规范等完全反映出来。()A.正确B.错误
相关文档
最新文档