高一数学《函数奇偶性》教案
函数的奇偶性教案

函数的奇偶性教案一、教学目标1. 知识与技能:(1)理解函数奇偶性的概念;(2)学会判断函数的奇偶性;(3)能够运用函数的奇偶性解决实际问题。
2. 过程与方法:(1)通过观察、分析、归纳,探索函数的奇偶性;(2)利用函数的奇偶性进行函数图像的变换。
3. 情感态度与价值观:(1)培养学生的逻辑思维能力;(2)激发学生对数学的兴趣,提高学习积极性。
二、教学重点与难点1. 教学重点:(1)函数奇偶性的概念及其判断方法;(2)函数奇偶性在实际问题中的应用。
2. 教学难点:(1)函数奇偶性的判断方法;(2)函数奇偶性在实际问题中的应用。
三、教学过程1. 导入新课:(1)复习已学过的函数性质,如单调性、周期性等;(2)提问:同学们,你们知道函数还有其他的性质吗?2. 探究新知:(1)介绍函数奇偶性的概念;(2)通过示例,让学生观察、分析、归纳函数的奇偶性;(3)引导学生掌握判断函数奇偶性的方法。
3. 典例分析:(1)分析函数f(x)=x^3的奇偶性;(2)分析函数f(x)=|x|的奇偶性;(3)分析函数f(x)=sinx的奇偶性。
4. 练习巩固:(2)运用函数的奇偶性解决实际问题。
四、课堂小结本节课,我们学习了函数的奇偶性,掌握了判断函数奇偶性的方法,并能够在实际问题中运用。
希望大家能够继续努力学习,不断提高自己的数学能力。
五、课后作业2. 运用函数的奇偶性解决实际问题:已知函数f(x)=x^2+1的图像关于y轴对称,求函数f(x)在x=-1时的值;3. 探究函数的奇偶性与单调性的关系。
六、教学活动设计1. 小组讨论:让学生分组讨论函数奇偶性的性质,以及如何判断一个函数的奇偶性。
2. 案例分析:通过具体的函数例子,让学生理解并掌握函数奇偶性的判断方法。
3. 互动提问:教师提出问题,引导学生思考并回答,以检查学生对函数奇偶性的理解和掌握程度。
七、教学评价1. 课堂问答:通过提问学生,检查他们对函数奇偶性的概念和判断方法的理解。
函数奇偶性的教案

函数奇偶性教案教学目标:1. 理解奇函数和偶函数的概念。
2. 学会判断函数的奇偶性。
3. 能够运用函数的奇偶性解决实际问题。
教学内容:一、奇函数和偶函数的定义1. 引入奇函数和偶函数的概念。
2. 讲解奇函数和偶函数的定义。
3. 通过例题让学生理解奇函数和偶函数的概念。
二、判断函数的奇偶性1. 介绍判断函数奇偶性的方法。
2. 讲解如何判断一个函数是奇函数还是偶函数。
3. 通过练习题让学生掌握判断函数奇偶性的方法。
三、函数奇偶性的性质1. 介绍函数奇偶性的性质。
2. 讲解奇函数和偶函数的性质。
3. 通过例题让学生理解函数奇偶性的性质。
四、函数奇偶性的应用1. 介绍函数奇偶性在实际问题中的应用。
2. 讲解如何运用函数奇偶性解决实际问题。
3. 通过练习题让学生学会运用函数奇偶性解决实际问题。
2. 让学生评价自己的学习效果。
3. 布置作业,巩固所学知识。
教学方法:1. 采用讲授法,讲解奇函数和偶函数的定义及性质。
2. 采用案例分析法,让学生通过例题理解奇函数和偶函数的概念。
3. 采用练习法,让学生通过练习题掌握判断函数奇偶性的方法。
4. 采用实际应用法,让学生学会运用函数奇偶性解决实际问题。
教学评价:1. 课堂讲解的清晰度和连贯性。
2. 学生练习题的完成情况。
3. 学生运用函数奇偶性解决实际问题的能力。
六、奇偶性在图像上的表现1. 介绍奇偶性在函数图像上的表现。
2. 讲解奇函数和偶函数图像的特点。
3. 通过示例让学生观察并分析奇偶性在函数图像上的表现。
七、函数奇偶性与坐标系的关系1. 介绍函数奇偶性与坐标系的关系。
2. 讲解奇函数和偶函数在不同坐标系中的表现。
3. 通过练习题让学生掌握函数奇偶性与坐标系的关系。
八、函数奇偶性与变换1. 介绍函数奇偶性与变换的关系。
2. 讲解奇函数和偶函数在坐标变换中的性质。
3. 通过例题让学生理解函数奇偶性与变换的关系。
九、实际问题中的函数奇偶性1. 介绍函数奇偶性在实际问题中的应用。
函数的奇偶性教案2篇

函数的奇偶性教案第一篇:函数的奇偶性教案目标:1. 了解函数的奇偶性的定义和性质。
2. 判断函数的奇偶性。
3. 通过练习题加深对函数的奇偶性的理解。
预计完成时间:1课时教学步骤:步骤一:引入话题(10分钟)教师可以用一个简单的问题引入话题,例如:你知道什么是函数的奇偶性吗?为什么需要关注函数的奇偶性?学生可以自由发言,激发学生们的兴趣。
步骤二:讲解奇偶性的概念(10分钟)教师简要讲解函数的奇偶性的概念,可以借助一些例子来说明。
奇函数和偶函数是对称的关系,奇函数关于y轴对称,而偶函数关于原点对称。
步骤三:奇偶性的判断方法(15分钟)教师讲解奇偶性的判断方法。
一般来说,对于一元函数,可以通过以下两种方法判断函数的奇偶性。
方法1:使用函数的定义式。
对于奇函数,f(-x)=-f(x)成立;对于偶函数,f(-x)=f(x)成立。
方法2:使用函数的图象。
对于奇函数,其图象关于原点对称;对于偶函数,其图象关于y轴对称。
步骤四:练习题(15分钟)教师提供一些练习题,让学生在纸上完成,然后进行讲解和讨论。
例如:1. 判断函数f(x)=x^3+3x^2-5x是否为奇函数。
2. 判断函数g(x)=2x^2-4是否为偶函数。
3. 利用函数的奇偶性,简化函数h(x)=5x^3-x^2+2x-1的图象。
步骤五:总结(10分钟)教师对本节课内容进行总结,并强调函数的奇偶性的重要性和应用。
第二篇:函数的奇偶性教案(续)目标:1. 掌握奇函数和偶函数的一些常见函数的性质。
2. 进一步加深对函数的奇偶性的理解。
3. 练习函数的奇偶性的判断和应用。
预计完成时间:1课时教学步骤:步骤一:引入话题(10分钟)教师可以复习上节课的内容,然后提问学生,你还记得什么是奇函数和偶函数吗?奇函数和偶函数有哪些性质?步骤二:常见函数的性质(15分钟)教师讲解一些常见函数的性质,例如:1. 幂函数:对于非负整数n,当n为奇数时,函数f(x)=x^n是奇函数;当n为偶数时,函数f(x)=x^n是偶函数。
高中数学教案《函数的奇偶性

高中数学教案《函数的奇偶性》一、教学目标:1. 知识与技能:理解函数奇偶性的概念,能够判断函数的奇偶性;学会运用函数的奇偶性解决一些简单问题。
2. 过程与方法:通过观察、分析、归纳等方法,探索函数奇偶性的性质及其判断方法。
3. 情感态度价值观:培养学生的逻辑思维能力,提高学生对数学的兴趣。
二、教学内容:1. 函数奇偶性的定义2. 函数奇偶性的判断方法3. 函数奇偶性的性质三、教学重点与难点:1. 教学重点:函数奇偶性的定义及其判断方法。
2. 教学难点:函数奇偶性的性质及其应用。
四、教学方法:1. 采用问题驱动法,引导学生主动探究函数奇偶性的性质;2. 通过实例分析,让学生掌握函数奇偶性的判断方法;3. 利用小组讨论,培养学生的合作能力。
五、教学过程:1. 导入:回顾上一节课的内容,引导学生思考函数的奇偶性与什么有关。
2. 新课讲解:(1)介绍函数奇偶性的定义;(2)讲解函数奇偶性的判断方法;(3)分析函数奇偶性的性质。
3. 例题解析:选取典型例题,分析解题思路,引导学生运用函数奇偶性解决问题。
4. 课堂练习:布置练习题,让学生巩固所学内容。
5. 总结与拓展:总结本节课的主要内容,提出拓展问题,激发学生的学习兴趣。
6. 课后作业:布置适量作业,巩固所学知识。
注意:在教学过程中,要关注学生的学习反馈,及时调整教学方法和节奏,确保学生能够掌握函数奇偶性的相关知识。
六、教学评估:1. 课堂提问:通过提问了解学生对函数奇偶性的理解程度,及时发现并解决学生学习中存在的问题。
2. 练习题解答:检查学生完成练习题的情况,评估学生对函数奇偶性知识的掌握情况。
3. 课后作业:批改课后作业,了解学生对课堂所学知识的巩固程度。
七、教学反思:1. 反思教学内容:检查教学内容是否全面、深入,是否适合学生的认知水平。
2. 反思教学方法:根据学生的反馈,调整教学方法,提高教学效果。
3. 反思教学效果:总结本节课的教学成果,找出不足之处,为下一节课的教学做好准备。
函数奇偶性的教案

函数奇偶性的教案第一章:函数奇偶性的概念引入教学目标:1. 理解函数奇偶性的基本概念;2. 学会判断函数的奇偶性;3. 理解奇偶性在数学中的应用。
教学内容:1. 引入函数的概念;2. 介绍奇偶性的定义;3. 举例说明奇偶性的判断方法。
教学活动:1. 引导学生回顾函数的定义,强调函数的输入输出关系;2. 引入奇偶性的概念,解释奇偶性的含义;3. 通过具体例子,让学生学会判断函数的奇偶性;4. 练习判断一些简单函数的奇偶性;5. 引导学生思考奇偶性在数学中的应用,如物理中的对称性等。
教学评价:1. 检查学生对函数奇偶性概念的理解;2. 评估学生判断函数奇偶性的能力;3. 考察学生对奇偶性应用的理解。
第二章:偶函数的性质教学目标:1. 理解偶函数的定义及其性质;2. 学会运用偶函数的性质解决问题;3. 掌握偶函数图像的特点。
教学内容:1. 偶函数的定义及其性质;2. 偶函数图像的特点;3. 偶函数在实际问题中的应用。
教学活动:1. 引导学生回顾上一章所学的内容,强调奇偶性的概念;2. 引入偶函数的定义,解释偶函数的含义;3. 通过具体例子,让学生学会运用偶函数的性质解决问题;4. 练习运用偶函数性质解决一些实际问题;5. 引导学生思考偶函数图像的特点,分析偶函数在实际问题中的应用。
教学评价:1. 检查学生对偶函数定义及其性质的理解;2. 评估学生运用偶函数性质解决问题的能力;3. 考察学生对偶函数图像特点的认识。
第三章:奇函数的性质教学目标:1. 理解奇函数的定义及其性质;2. 学会运用奇函数的性质解决问题;3. 掌握奇函数图像的特点。
教学内容:1. 奇函数的定义及其性质;2. 奇函数图像的特点;3. 奇函数在实际问题中的应用。
教学活动:1. 引导学生回顾前两章所学的内容,强调奇偶性的概念;2. 引入奇函数的定义,解释奇函数的含义;3. 通过具体例子,让学生学会运用奇函数的性质解决问题;4. 练习运用奇函数性质解决一些实际问题;5. 引导学生思考奇函数图像的特点,分析奇函数在实际问题中的应用。
高一数学函数奇偶性教案

第三节 函数奇偶性(高一秋季班组第五次课10.05)一.教学目的1.理解奇偶函数的概念,会推断函数奇偶性;2.奇偶性的应用3.奇偶性与单调性综合二.教学内容1.偶函数:一般地,假如对于函数)(x f 的定义域内随意一个x ,都有)()(x f x f =-,那么函数)(x f 就叫做偶函数。
奇函数:一般地,假如对于函数)(x f 的定义域内随意一个x ,都有)()(x f x f -=-,那么函数)(x f 就叫做奇函数。
奇偶性:假如函数)(x f 是奇函数或偶函数,那么就说明函数)(x f 具有奇偶性。
正确理解函数奇偶性的定义:定义是推断或探讨函数奇偶性的根据,由定义知,若x 是定义域中的一个数值,那么-x 也必定在定义域中,因此,函数)(x f y =是奇函数或偶函数的一个必不行少的条件是:定义域在数轴上所示的区间关于原点对称。
换言之,所给函数的定义域若不关于原点对称,则这个函数必不具有奇偶性。
无奇偶性函数是非奇非偶函数;若一个函数同时满意奇函数与偶函数的性质,则既是奇函数,又是偶函数。
两个奇偶函数四则运算的性质:①两个奇函数的和仍为奇函数;②两个偶函数的和仍为偶函数;③两个奇函数的积是偶函数; ④两个偶函数的积是偶函数; ⑤一个奇函数与一个偶函数的积是奇函数。
例1.判别下列函数的奇偶性:f(x)=|x +1|+|x -1| ; f(x)=23x ; f(x)=x +x 1 ; f(x)=21xx + ; f(x)=x 2,x ∈[-2,3] 思索:f(x)=0的奇偶性?练习1.推断下列函数的奇偶性.(1)f(x)=x 2-|x|+1,x ∈[-1,4];(2)f(x)=1-x 2|x +2|-2;(3)f(x)=(x -1)1+x 1-x ; (4)f(x)=⎩⎪⎨⎪⎧-x 2+x x>0,x 2+x x<0. 2.奇函数y =f(x)(x ∈R )的图像必过点( C )A .(a ,f(-a))B .(-a ,f(a))C .(-a ,-f(a))D .(a ,f(1a)) 解析 ∵f(-a)=-f(a),即当x =-a 时,函数值y =-f(a),∴必过点(-a ,-f(a)).3.已知f(x)为奇函数,则f(x)-x 为( A )A .奇函数B .偶函数C .既不是奇函数又不是偶函数D .既是奇函数又是偶函数解析 令g(x)=f(x)-x ,g(-x)=f(-x)+x =-f(x)+x =-g(x).4.设函数f(x)和g(x)分别是R 上的偶函数和奇函数,则下列结论恒成立的是( A )A .f(x)+|g(x)|是偶函数B .f(x)-|g(x)|是奇函数C .|f(x)|+g(x)是偶函数D .|f(x)|-g(x)是奇函数解析 由f(x)是偶函数,可得f(-x)=f(x).由g(x)是奇函数,可得g(-x)=-g(x).由|g(x)|为偶函数,∴f(x)+|g(x)|为偶函数.5.设f(x)=ax 7+bx +5,已知f(-7)=-17,求f(7)的值。
高中数学教案《函数的奇偶性

高中数学教案《函数的奇偶性》章节一:函数奇偶性的概念引入教学目标:1. 理解函数奇偶性的概念;2. 学会判断函数的奇偶性;3. 掌握函数奇偶性的性质。
教学内容:1. 引入奇偶性的概念;2. 举例说明奇偶性的判断方法;3. 总结奇偶性的性质。
教学步骤:1. 引入奇偶性的概念,让学生思考日常生活中遇到的奇偶性例子;2. 给出函数奇偶性的定义,解释奇偶性的判断方法;3. 通过具体例子,让学生学会判断函数的奇偶性;4. 引导学生总结奇偶性的性质。
教学评估:1. 课堂提问,了解学生对奇偶性概念的理解程度;2. 布置练习题,让学生运用奇偶性的判断方法。
章节二:奇函数和偶函数的性质教学目标:1. 理解奇函数和偶函数的性质;2. 学会运用奇偶性解决实际问题。
教学内容:1. 介绍奇函数和偶函数的性质;2. 举例说明奇偶性在实际问题中的应用。
教学步骤:1. 回顾奇偶性的概念,引导学生理解奇函数和偶函数的性质;2. 通过具体例子,让学生学会运用奇偶性解决实际问题;3. 总结奇偶性在实际问题中的应用。
教学评估:1. 课堂提问,了解学生对奇偶性性质的理解程度;2. 布置练习题,让学生运用奇偶性解决实际问题。
章节三:函数奇偶性的判定定理教学目标:1. 理解函数奇偶性的判定定理;2. 学会运用判定定理判断函数的奇偶性。
教学内容:1. 介绍函数奇偶性的判定定理;2. 举例说明判定定理的运用方法。
教学步骤:1. 引导学生理解函数奇偶性的判定定理;2. 通过具体例子,让学生学会运用判定定理判断函数的奇偶性;3. 总结判定定理的运用方法。
教学评估:1. 课堂提问,了解学生对判定定理的理解程度;2. 布置练习题,让学生运用判定定理判断函数的奇偶性。
章节四:函数奇偶性在实际问题中的应用教学目标:1. 理解函数奇偶性在实际问题中的应用;2. 学会运用奇偶性解决实际问题。
教学内容:1. 介绍函数奇偶性在实际问题中的应用;2. 举例说明奇偶性在实际问题中的解决方法。
高一数学教案函数的奇偶性5篇

高一数学教案函数的奇偶性5篇使学生从形与数两方面理解函数单调性的概念,学会利用函数图像理解和研究函数的性质,初步掌握利用函数图象和单调性定义判断、证明函数奇偶性的方法.高一数学教案函数的奇偶性1一、内容与解析 (一)内容:基本初等函数习题课(一)。
(二)解析:对数函数的性质的掌握,要先根据其图像来分析与记忆,这样更形像更直观,这是学习图像与性质的基本方法,在此基础上,我们要对对数函数的两种情况的性质做一个比较,使之更好的'掌握.二、目标及其解析:(一)教学目标(1)掌握指数函数、对数函数的概念,会作指数函数、对数函数的图象,并能根据图象说出指数函数、对数函数的性质,了解五个幂函数的图象及性质及其奇偶性.(二)解析(1)基本初等函数的学习重要是学习其性质,要掌握好性质,从图像上来理解与掌握是一个很有效的办法.(2)每类基本初类函数的性质差别比较大,学习时要有一个有效的区分.三、问题诊断分析在本节课的教学中,学生可能遇到的问题是不易区分各函数的图像与性质,不容易抓住其各自的特点。
四、教学支持条件分析在本节课一次递推的教学中,准备使用P5高一数学教案函数的奇偶性2【教学目标】【知识目标】:使学生从形与数两方面理解函数单调性的概念,学会利用函数图像理解和研究函数的性质,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法.【能力目标】通过对函数单调性定义的探究,渗透数形结合数学思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力.【德育目标】通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程. 【教学重点】函数单调性的概念、判断及证明. 函数的单调性是学生第一次接触用严格的逻辑语言证明函数的性质,并在今后解决初等函数的性质、求函数的值域、不等式及比较两个数的大小等方面有广泛的实际应用,【教学难点】归纳抽象函数单调性的定义以及根据定义证明函数的单调性. 由于判断或证明函数的单调性,常常要综合运用一些知识(如不等式、因式分解、配方及数形结合的思想方法等)所以判断或证明函数的单调性是本节课的难点.【教材分析】函数的单调性是函数的重要性质之一,它把自变量的变化方向和函数值的变化方向定性的联系在一起,所以本节课在教材中的作用如下 (1)函数的单调性起着承前启后的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三节 函数奇偶性(高一秋季班组第五次课10.05)一.教学目标1.了解奇偶函数的概念,会判断函数奇偶性;2.奇偶性的应用3.奇偶性与单调性综合二.教学内容1.偶函数:一般地,如果对于函数)(x f 的定义域内任意一个x ,都有)()(x f x f =-,那么函数)(x f 就叫做偶函数。
奇函数:一般地,如果对于函数)(x f 的定义域内任意一个x ,都有)()(x f x f -=-,那么函数)(x f 就叫做奇函数。
奇偶性:如果函数)(x f 是奇函数或偶函数,那么就说明函数)(x f 具有奇偶性。
正确理解函数奇偶性的定义:定义是判断或讨论函数奇偶性的依据,由定义知,若x 是定义域中的一个数值,那么-x 也必然在定义域中,因此,函数)(x f y =是奇函数或偶函数的一个必不可少的条件是:定义域在数轴上所示的区间关于原点对称。
换言之,所给函数的定义域若不关于原点对称,则这个函数必不具有奇偶性。
无奇偶性函数是非奇非偶函数;若一个函数同时满足奇函数与偶函数的性质,则既是奇函数,又是偶函数。
两个奇偶函数四则运算的性质:①两个奇函数的和仍为奇函数;②两个偶函数的和仍为偶函数;③两个奇函数的积是偶函数; ④两个偶函数的积是偶函数; ⑤一个奇函数与一个偶函数的积是奇函数。
例1.判别下列函数的奇偶性:f(x)=|x +1|+|x -1| ; f(x)=23x ; f(x)=x +x 1 ; f(x)=21xx + ; f(x)=x 2,x ∈[-2,3] 思考:f(x)=0的奇偶性?练习1.判断下列函数的奇偶性.(1)f(x)=x 2-|x|+1,x ∈[-1,4];(2)f(x)=1-x 2|x +2|-2; (3)f(x)=(x -1)1+x 1-x ; (4)f(x)=⎩⎪⎨⎪⎧-x 2+x x>0,x 2+x x<0. 2.奇函数y =f(x)(x ∈R )的图像必过点( C )A .(a ,f(-a))B .(-a ,f(a))C .(-a ,-f(a))D .(a ,f(1a)) 解析 ∵f(-a)=-f(a),即当x =-a 时,函数值y =-f(a),∴必过点(-a ,-f(a)).3.已知f(x)为奇函数,则f(x)-x 为( A )A .奇函数B .偶函数C .既不是奇函数又不是偶函数D .既是奇函数又是偶函数解析 令g(x)=f(x)-x ,g(-x)=f(-x)+x =-f(x)+x =-g(x).4.设函数f(x)和g(x)分别是R 上的偶函数和奇函数,则下列结论恒成立的是( A )A .f(x)+|g(x)|是偶函数B .f(x)-|g(x)|是奇函数C .|f(x)|+g(x)是偶函数D .|f(x)|-g(x)是奇函数解析 由f(x)是偶函数,可得f(-x)=f(x).由g(x)是奇函数,可得g(-x)=-g(x).由|g(x)|为偶函数,∴f(x)+|g(x)|为偶函数.5.设f(x)=ax 7+bx +5,已知f(-7)=-17,求f(7)的值。
6.已知f(x)是奇函数,g(x)是偶函数,且f(x)-g(x)=11+x ,求f(x)、g(x)。
7.设f(x)是偶函数,g(x)为奇函数,又f(x)+g(x)=1x -1,则f(x)=________,g(x)=________. 答案 1x 2-1,x x 2-1解析 ∵f(x)+g(x)=1x -1, ①∴f(-x)+g(-x)=1-x -1.又f(x)为偶函数,g(x)为奇函数,∴f(x)-g(x)=1-x -1. ②①+②,得f(x)=1x 2-1,①-②,得g(x)=x x 2-1.8.已知函数f(x),对任意实数x 、y ,都有f(x+y)=f(x)+f(y),试判别f(x)的奇偶性。
9.已知f(x)是奇函数,且在[3,7]是增函数且最大值为4,那么f(x)在[-7,-3]上是 函数,且最 值是 。
10.已知函数f(x)=ax 2+bx+3a+b 为偶函数,其定义域为[a-1,2a],求函数值域。
11.设函数(1)()()x x a f x x++=为奇函数,则a = . 12.设f(x)是(-∞,+∞)上的奇函数,f(x +2)=-f(x),当0≤x ≤1时,f(x)=x ,则f(7.5)=________.答案 -0.513.设f(x)是定义在(-∞,+∞)上的奇函数,且x>0时,f(x)=x 2+1,则f(-2)=________.答案 -5解析 由f(x)在(-∞,+∞)上是奇函数,得f(-x)=-f(x),即 f(-2)=-f(2),而f(2)= 22+1=5.∴f(-2)=-5.2.奇函数、偶函数的图像的性质:如果一个函数是奇函数,则这个函数的图像是以坐标原点为对称中心的对称图形(奇函数的图像不一定过原点);反之,如果一个函数的图像是以坐标原点为对称中心的中心对称图形,则这个函数是奇函数。
由于奇函数的图像关于原点对称,那么我们可以得出结论:如果奇函数)(x f 的定义域为R 时,那么必有0)0(=f 。
如果一个函数是偶函数,则这个函数的图像是以y 轴为对称轴的轴对称图形;反之,如果一个函数的图像是以y 轴为对称轴的轴对称图形,则这个函数是偶函数。
f(x)=f(|x|)例2.)(x f y =是偶函数,图像与x 轴有四个交点,则方程0)(=x f 所有实根之和是()(A )4 (B )2 (C )1 (D )0练习1.若函数)(x f 是定义在R 上的偶函数,在]0,(-∞上是减函数,且0)2(=f ,则使得0)(<x f 的x 的取值范围是( )(A ))2,(-∞ (B )),2(+∞ (C )),2()2,(+∞--∞ (D )(-2,2)2.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为( ) (A )(10)(1)-+∞,,(B )(1)(01)-∞-,,(C )(1)(1)-∞-+∞,,(D )(10)(01)-,, 3.设)(x f 是定义在R 上的奇函数,且)(x f y =的图象关于直线21=x 对称, 则)5()4()3()2()1(f f f f f ++++=________________. 4.已知定义域为R 的函数)(x f 在),8(+∞上为减函数,且函数)8(+=x f y 为偶函数,则( )(A ))7()6(f f > (B ))9()6(f f > (C ))9()7(f f > (D ))10()7(f f >5.下面四个结论:①偶函数的图像一定与y 轴相交;②奇函数的图像一定通过原点;③偶函数的图像关于y 轴对称;④既是奇函数,又是偶函数的函数一定是f(x)=0(x ∈R ).其中正确命题的个数是( a )A .1B .2C .3D .43.函数的奇偶性与单调性之间的关系:一般地,若)(x f 为奇函数,则)(x f 在],[b a 和],[a b --上具有相同的单调性;若)(x f 为偶函数,则)(x f 在],[b a 和],[a b --上具有相反的单调性。
若奇函数f(x)在[a ,b]上是增函数,且有最大值M ,则f(x)在[-b ,-a]上增函数,且有最小值-M .例3.定义在)1,1(-上的奇函数)(x f 在整个定义域上是减函数,若0)1()1(2<-+-a f a f ,求实数a 的取值范围。
练习1.定义在[-2,2]上的偶函数f(x)在区间[0,2]上是减函数,若f(1-m)<f(m).求实数m 的取值范围.答案 m ∈[-1,12)解析 ∵f(x)为偶函数,∴f(1-m)<f(m)可化为f(|1-m|)<f(|m|),又f(x)在[0,2]上是减函数,∴|1-m|>|m|,两边平方,得m<12,又f(x)定义域为[-2,2], ∴⎩⎪⎨⎪⎧-2≤1-m ≤2,-2≤m ≤2,解之得-1≤m ≤2,综上得m ∈[-1,12). 2,设定义在[-2,2]上的奇函数f(x)在区间[0,2]上单调递减,若f(m)+f(m -1)>0,求实数m 的取值范围.【解析】 由f(m)+f(m -1)>0,得f(m)>-f(m -1),即f(m)>f(1-m).又∵f(x)在[0,2]上为减函数且f(x)在[-2,2]上为奇函数,∴f(x)在[-2,2]上为减函数. ∴⎩⎪⎨⎪⎧ -2≤m ≤2,-2≤1-m ≤2,m<1-m ,解得⎩⎪⎨⎪⎧ -2≤m ≤2,-1≤m ≤3,m<12.∴-1≤m<12. 3.设f(x)是R 上的偶函数,且在(0,+∞)上是减函数,若x 1<0,且x 1+x 2>0,则( A )A .f(x 1)>f(-x 2)B .f(-x 1)=f(-x 2)C .f(-x 1)<f(-x 2)D .f(-x 1)与f(x 2)大小不定4..若偶函数f(x)在区间(-∞,-1]上是增函数,则( c )A .f(-1)<f(-1.5)<f(2)B .f(-1.5)<f(-1)<f(2)C .f(2)<f(-1.5)<f(-1)D .f(2)<f(-1)<f(-1.5)5.若函数y =f(x),x ∈R 是奇函数,且f(1)<f(2),则必有( B )A .f(-1)<f(-2)B .f(-1)>f(-2)C .f(-1)=f(-2)D .不确定6.已知f(x)是定义在R 上的偶函数,且有f(3)>f(1).则下列各式中一定成立的是( A )A .f(-1)<f(3)B .f(0)<f(5)C .f(3)>f(2)D .f(2)>f(0)解析 ∵f(x)为偶函数,∴f(-3)=f(3),f(-1)=f(1),又f(3)>f(1),∴f(-3)>f(-1),f(3)>f(-1)都成立.7.设f(x)为定义在(-∞,+∞)上的偶函数,且f(x)在[0,+∞)上为增函数,则f(-2),f(-π),f(3)则大小顺序是( a )A .f(-π)>f(3)>f(-2)B .f(-π)>f(-2)>f(3)C .f(-π)<f(3)<f(-2)D .f(-π)<f(-2)<f(3)解析 ∵f(x)为偶函数,∴f(-2)=f(2),f(-π)=f(π).又f(x)在[0,+∞)上为增函数,∴f(2)<f(3)<f(-π),∴f(-2)<f(3)<f(-π).8.若奇函数f(x)当1≤x≤4时的关系式是f(x)=x2-4x+5,则当-4≤x≤-1时,f(x)的最大值是( D ) A.5 B.-5 C.-2 D.-1解析当-4≤x≤-1时,1≤-x≤4,∵1≤x≤4时,f(x)=x2-4x+5.∴f(-x)=x2+4x+5,又f(x)为奇函数,∴f(-x)=-f(x),∴f(x)=-x2-4x-5=-(x+2)2-1, 当x=-2时,取最大值-1.9.若奇函数f(x)在区间[3,7]上是增函数,在区间[3,6]上的最大值为8,最小值为-1,则2f(-6)+f(-3)的值为________.答案-1510.若函数f(x)是R上的偶函数,且在[0,+∞)上是减函数,则满足f(π)<f(a)的实数a的取值范围是________.答案(-π,π)解析若a≥0,f(x)在[0,+∞)上是减函数,且f(π)<f(a),得a<π.若a<0,∵f(π)=f(-π), 则由f(x)在[0,+∞)上是减函数,得知f(x)在(-∞,0]上是增函数.由于f(-π)<f(a),得到a>-π,即-π<a<0.由上述两种情况知a∈(-π,π).。