七年级下册第24题压轴题平行线的拐角问题

合集下载

平行线拐点问题六种模型题型

平行线拐点问题六种模型题型

初一下学期,平行线拐角模型之猪蹄、臭脚、骨折模型,模型解题平行线拐角模型除铅笔模型外,本章介绍拐角模型剩下的三个模型:猪蹄模型、臭脚模型和骨折模型,以及利用这三个模型进行解题。

01“猪蹄”模型该模型类似英文字母“M”,我们称之为M模型,也类似猪蹄,又称之为“猪蹄”模型。

满足的条件为:点P在直线BC的左侧,在直线AB与直线CD的内部。

结论为:若AB∥CD,则∠P=∠B+∠C。

证明的方法与上一篇“铅笔”模型类似,我们提供一种思路进行验证。

02“臭脚”模型“臭脚”模型需要满足的条件为:点P在直线BC的右侧,在直线AB、CD外部。

结论为:∠P=∠ABP-∠DCP或∠P=∠DCP-∠ABP。

要证明这个结论,需要用到的知识点有:平行线的性质与三角形的外角等于两个不相邻的内角和。

当然,也可以利用作平行线的方法来进行证明。

03“骨折”模型“骨折”模型需满足的条件:点P在直线BC左侧,在直线AB与直线CD外部。

结论为:∠P=∠DCP-∠ABP。

证明的方法与前三种模型类似,这边不再重复证明,可以作任意一边的平行线为辅助线,也可以利用平行线的性质与三角形的外角等于两个不相邻的内角和来进行证明。

04模型应用例题1:(2019秋金凤区校级期末)如图1,已知AB∥CD,∠B=30°,∠D=120°;(1)若∠E=60°,则∠F=______°;(2)请探索∠E与∠F之间满足的数量关系?说明理由;(3)如图2,已知EP平分∠BEF,FG平分∠EFD,反向延长FG交EP于点P,求∠P的度数.例题2:(2019春梁园区期末)如图1,AB∥CD,点E是直线AB、CD之间的一点,连接EA、EC.(1)探究猜想:①若∠A=20°,∠C=50°,则∠AEC=______.②若∠A=25°,∠C=40°,则∠AEC= ______.③猜想图1中∠EAB、∠ECD、∠AEC的关系,并证明你的结论.(2)拓展应用:如图2,AB∥CD,线段MN把ABCD这个封闭区域分为I、Ⅱ两部分(不含边界),点E是位于这两个区域内的任意一点,请直接写出∠EMB、∠END、∠MEN的关系.在利用模型解题前,我们首先要知道这些模型的基本结构,以及证明的过程(这是关键),不单单是记住结论,因为题目千变万化,但是又万变不离其宗,解题的思路是类似的。

第12讲 解题技巧专题:平行线中的拐点问题--2023-2024学年七年级数学下学期

第12讲 解题技巧专题:平行线中的拐点问题--2023-2024学年七年级数学下学期

第思维导图核心考点聚焦与生活有关的平行线拐点问题【变式训练】2.如图,AB∥EF,则3.【变式】已知:AB EF∥、、满足的数量关系.∠∠∠B F C6.(1)如图①,如果AB ∥(2)如图②,AB CD ∥,根据上面的推理方法,直接写出___________.考点三、平行线中含多个拐点问题例题:7.如图,直线AB CD ∥,则23415∠+∠+∠-∠-∠的度数为(1)如图1, 1l ∥2l , 若65P ∠= , 计算并直接写出A B ∠∠+的大小.A.28︒B.54︒【变式训练】11.“绿水青山,就是金山银山”在两个景区之间建立上的一段观光索道如图所示,索道A .110︒B .11512.七年级四班在项目学习中研究生活中的平行关系,小明发现家中的护眼灯,如图是一款长臂折叠LED 护眼灯示意图,MN 平行时,120,DEF ∠=︒∠过关检测一、选择题13.如图,AB DE ∥,BC CD ⊥,系正确的是( )A .90αβ-=C .180αβ+= 14.如图,平行于主光轴MN 的光线的反向延长线交于主光轴MN16.如图,AB CD ∥,B ∠为 .三、解答题17.已知一个角的两边与另一个角的两边分别平行,请结合图形回答下列问题:(1)如图①,AB CD ,BE DF ∥,直接写出1∠与2∠的关系__________________(2)如图②,AB CD ,BE DF ∥,猜想1∠与2∠的关系,并说明理由;(3)由(1)(2),我们可以得出结论:一个角的两边与另一个角的分别平行,那么这两个角__________________;(4)应用:两个角的两边分别平行,且一个角比另一个角的3倍少60︒,求出这两个角的度数分别是多少度?①当点P在A,B两点之间运动时,②当点P在A,B两点外侧运动时(点α∠,∠β之间的数量关系,并说明理由..19.已知AB CD(1)如图1,AB CD ∥,点E 为AB 、CD 之间的一点.求证:12360MEN ∠+∠+∠=︒.(2)如图2,AB CD ∥,点E 、F 、G 、H 为AB 、CD 之间的四点.则123456∠+∠+∠+∠+∠+∠=______.(3)如图3,AB CD ∥,则123n ∠+∠+∠++∠= ______.1.66︒##66度【分析】如图所示,过点E 作EF AB ∥,则AB CD EF ∥∥,根据两直线平行内错角相等分别求出4026AEF CEF =︒=︒∠,∠,则66AEC AEF CEF =+=︒∠∠∠.【详解】解:如图所示,过点E 作EF AB ∥,∵EF AB AB CD ∥,∥,∴AB CD EF ∥∥,∴4026AEF A CEF C ==︒==︒∠∠,∠∠,∴66AEC AEF CEF =+=︒∠∠∠,故答案为:66︒.【点睛】本题主要考查了平行线的性质,正确作出辅助线求出4026AEF CEF =︒=︒∠,∠是解题的关键.2.360A C E ∠+∠+∠=︒【分析】根据两直线平行,同旁内角互补可直接得到答案.【详解】如下图所示,过点C 作//CD AB ,∵//CD AB ,∴180A ACD ∠+∠=︒(两直线平行,同旁内角互补),∵//AB EF ,//CD AB ,∴//CD EF ,∴180E DCE ∠+∠=︒(两直线平行,同旁内角互补),∴360A ACD E DCE ∠+∠+∠+∠=︒,∴360A ACE E ∠+∠+∠=︒,∴在原图中360A C E ∠+∠+∠=︒,故答案为:360A C E ∠+∠+∠=︒.【点睛】本题考查平行直线的性质,解题的关键是熟练掌握两直线平行,同旁内角互补.3.(1)见解析(2)见解析【分析】(1)利用平行线的性质即可求解.(2)过点C 作CG AB ∥,即可得出BCG B ∠=∠,由平行线公理的推论可得出∥CG EF ,故GCF F ∠=∠,即可得出BCG GCF B F ∠+∠=∠+∠,即可得出C ∠与B F ∠∠、之间的数量关系是:B F BCF ∠+∠=∠.【详解】(1)解:图(1)C ∠与B F ∠∠、之间的数量关系是:B F C ∠+∠=∠.理由:过点C 作CG AB ∥,∴BCG B ∠=∠,∵AB EF ∥,∴∥CG EF ,∴GCF F ∠=∠,∴BCG GCF B F ∠+∠=∠+∠,∴B F BCF ∠+∠=∠;图(2)C ∠与B F ∠∠、之间的数量关系是:F B C ∠-∠=∠.理由:过点C 作CG AB ∥,∴BCG B ∠=∠,∵AB EF ∥,∴∥CG EF ,∴GCF F ∠=∠,∴GCF BCG F B ∠-∠=∠-∠,∴F B BCF ∠-∠=∠;图(3)C ∠与B F ∠∠、之间的数量关系是:B F C ∠-∠=∠.理由:过点C 作CG AB ∥,∴BCG B ∠=∠,∵AB EF ∥,∴∥CG EF ,∴GCF F ∠=∠,∴BCG GCF B F ∠-∠=∠-∠,∴B F BCF ∠-∠=∠;图(4)C ∠与B F ∠∠、之间的数量关系是:360B F C ∠+∠+∠=︒.理由:过点C 作CG AB ∥,∴180BCG B ∠+∠=︒,∵AB EF ∥,∴∥CG EF ,∴180GCF F ∠+∠=︒,∴180180BCG B GCF F ∠+∠+∠+∠=︒+︒,∴360B F BCF ∠+∠+∠=︒;图(5)C ∠与B F ∠∠、之间的数量关系是:B F C ∠-∠=∠.理由:过点C 作CG AB ∥,∴BCG B ∠=∠,∵AB EF ∥,∴∥CG EF ,∴GCF F ∠=∠,∴BCG GCF B F ∠-∠=∠-∠,∴B F BCF ∠-∠=∠;图(6)C ∠与B F ∠∠、之间的数量关系是:F B C ∠-∠=∠.理由:过点C 作CG AB ∥,∴BCG B ∠=∠,∵AB EF ∥,∴∥CG EF ,∴GCF F ∠=∠,∴GCF BCG F B ∠-∠=∠-∠,∴F B BCF ∠-∠=∠;故B C F ∠∠∠、、之间的数量关系如下表:∠=∠,∴BCG B∵AB EF∥,CG EF,∴∥∠=∠,∴GCF F【详解】解:连接BD,如图,∵AB∥CD,∴∠ABD+∠CDB=180°,∵∠2+∠3+∠EBD+∠FBD=360°,∴∠2+∠3+∠EBD+∠FDB+∠ABD+∠CDB=540°,即∠1+∠2+∠3+∠4=540°.故答案为:540°.【点睛】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.5.30°##30度【分析】过A点作AB∥直线l1,过C点作CD∥直线l2,由平行线的性质可得∠5=∠1=40°,∠4=∠8,∠6=∠7,结合∠2比∠3大10°可得∠5+∠6-∠7-∠8=10°,进而可求解.【详解】解:过A点作AB∥直线l1,过C点作CD∥直线l2,∴∠5=∠1=40°,∠4=∠8,∵直线l1∥l2,∴AB∥CD,∴∠6=∠7,∵∠2比∠3大10°,∴∠2-∠3=10°,∵∠5+∠6=∠2,∠7+∠8=∠3,∴∠5+∠6-∠7-∠8=10°,∴40°-∠4=10°,解得∠4=30°.故答案为:30°.【点睛】本题主要考查平行线的性质,角的计算,作适当的辅助线是解题的关键.6.(1)见解析;(2)540︒;(3)x z y+-【分析】(1)过P 作PM AB ∥,利用平行线的判定与性质证明即可;(2)过点P 作PE AB ∥,过点Q 作QF AB ∥,根据平行线的性质即可求解;(3)过点P 作PN AB ∥,过点Q 作QM AB ∥,根据平行线的性质求解即可.【详解】(1)证明:过P 作PM AB ∥,如图,∴A APM ∠=∠,∵PM AB AB CD ∥,∥(已知),∴PM CD ∥,∴C CPM ∠=∠,∵APC APM CPM ∠=∠+∠,∴APC A C ∠=∠+∠;(2)如图,过点P 作PE AB ∥,过点Q 作QF AB ∥,∵AB DC ∥,PE AB ∥,QF AB ∥,∴AB PE QF CD ∥∥∥,∴180A APE ∠+∠=︒,180EPQ PQF ∠+∠=︒,=180FQC QCD ∠+∠︒,∴=540A APQ PQC C ∠+∠+∠+∠︒,故答案为:540︒;(3)过点P 作PE AB ∥,过点Q 作QF AB ∥,∵AB DC ∥,PE AB ∥,QF AB ∥,∴AB PE QF CD ∥∥∥,∴B BPE ∠=∠,QPE PQF ∠=∠,=FQC C ∠∠,∴=B PQC C BPQ ∠+∠∠+∠,即=x z m y ++,∴=m x z y +-,故答案为:x z y +-.【点睛】本题考查平行线的判定与性质,灵活运用平行线的性质和判定是解题的关键.7.360【分析】过E 作EF ∥CD ,过G 作GH ∥CD ,过M 作MN ∥CD ,根据平行线的判定得出EF ∥GH ∥MN ∥AB ∥CD ,根据平行线的性质得出即可.【详解】过E 作EF ∥CD ,过G 作GH ∥CD ,过M 作MN ∥CD ,如图所示:∵CD ∥AB ,∴EF ∥GH ∥MN ∥AB ∥CD ,∴∠1=∠BEF ,∠GEF +∠EGH =180°,∠HGM +∠GMN =180°,∠NMC =∠5,∵∠2=∠BEF +∠GEF ,∠3=∠EGH +∠HGM ,∠4=∠GMN +∠NMC ,∴23415∠+∠+∠-∠-∠BEF GEF EGH HGM GMN NMC BEF NMC=∠+∠+∠+∠+∠+∠-∠-∠360GEF EGH HGM GMN =∠+∠+∠+∠=︒.故答案为:360.【点睛】本题考查了平行线的性质,能灵活运用平行线的性质进行推理是解此题的关键.8.(1)65°(2)见解析(3)∠1+∠3+∠5=∠2+∠4【分析】(l)过P作PE∥l1,根据平行线的性质和角的和差即可得到结论;(2)过点P、Q分别作l1和l2的平行线分别记为l3和l4,根据平行线的性质和等量代换即可得到结论;(3)分别过P,Q,M作PC∥l1,QD∥l1,ME∥l1,根据平行线的性质和角的和差即可得到结论.【详解】(1)解:过P作PE∥l1∵l1∥l2∴PE∥l2∥l1∴∠A=∠1,∠B=∠2∴∠APB=∠1+∠2=∠A+∠B=65°即∠A+∠B=65°;(2)证明:过点P、Q分别作l1和l2的平行线分别记为l3和l4∵l1∥l2∴l1∥l2∥l3∥l4∵l1∥l3(已知)∴∠A=∠1(两直线平行,内错角相等)∵l3∥l4(已知)∴∠2=∠3(两直线平行,内错角相等)∵l2∥l4(已知)∴∠4+∠B=180°(两直线平行,同旁内角互补)∴∠A+∠3+∠4+∠B=∠1+∠2+180°又∵∠1+∠2=∠P ,∠3+∠4=∠Q ∴∠A +∠B +∠Q =∠P +180°.(3)解:如图,分别过P ,Q ,M 作PC ∥l 1,QD ∥l 1,ME ∥l 1,∵12l l ∥,∴12////////PC QD ME l l ∴∠1=∠APC ,∠QPC =∠PQD ,∠DQM =∠EMQ ,∠EMB =∠5,∴∠2=∠1+∠PQD ,∠4=∠5+∠DQM ,∴∠2+∠4=∠1+∠PQD +∠5+∠DQM =∠1+∠3+∠5,∴∠1+∠3+∠5=∠2+∠4.【点睛】本题考查了平行线的性质及平行公理的推论,熟练掌握平行线的性质是解题的关键.9.(1)A C AFC ∠∠∠+=;A C AFC ∠-∠∠=;C A AFC∠-∠∠=(2)360(3)-1180n ⨯︒()【分析】(1)根据平行线的性质可直接得到结论;(2)过点F 作AB 的平行线,利用平行线的性质,计算出A C AFC ∠∠∠++的度数;(3)过点E 作AB 的平行线,过点F 作AB 的平行线,利用平行线的性质,计算出A AEF EFC C ∠∠∠∠+++度数;通过前面的计算,找出规律.利用规律得到有n 个折点的结论;【详解】解:(1)如图1:A C AFC ∠∠∠+=,如图2:A C AFC ∠-∠∠=,如图3:C A AFC ∠-∠∠=,如图1说明理由如下:∵AB CD EF ∥∥,∴A AFE C EFC ∠∠∠∠=,=,∴A C AFE EFC ∠∠∠∠+=+,即A C AFC ∠∠∠+=;(2)如下图:过F 作FH AB ∥,∴180A AFH ∠∠︒+=,又∵AB CD ∥,∴CD FH ∥,∴180C CFH ∠∠︒+=,∴360A AFH C CFH ∠∠∠∠︒+++=,即360A C AFC ∠∠∠︒++=;故答案为:360;(3)如下图:AB CD ∥,过E 作EG AB ∥,过F 作FH AB ∥,∵AB CD ∥,∴AB EG FH CD ∥∥∥,∴180A AEG ∠∠︒+=,180GEF EFH ∠∠︒+=,180HFC C ∠∠︒+=,∴1803A AEG GEF EFH HFC C ∠∠∠∠∠∠︒⨯+++++=,即540A AEF EFC C ∠∠∠∠︒+++=;综上所述:由当平行线AB 与CD 间没有点的时候,180A C ∠∠︒+=,当A 、C 之间加一个折点F 时,2180A AFC C ∠∠∠⨯︒++=;当A 、C 之间加二个折点E 、F 时,则3180A AEF EFC C ∠∠∠∠⨯︒+++=;以此类推,如图5,1n A B A D ∥,当1A 、5A 之间加三个折点234A A A 、、时,则123454180A A A A A ∠+∠∠∠∠⨯︒+++=;…当1A 、n A 之间加n 个折点231n A A A -⋯、、时,则123-1180n A A A A n ∠∠∠⋯∠⨯︒+++=(),即1234n ∠∠∠∠∠+++++ 的度数是-1180n ⨯︒().【点睛】本题是探索型试题,主要考查了平行线的性质,根据题意作出辅助线,利用平行线的性质及三角形外角的性质等知识求解是解答此题的关键.10.B【分析】延长DC 交AE 于F ,依据AB CD ∥,77BAE ∠=︒,可得77CFE ∠=︒,再根据三角形外角性质,即可得到E DCE CFE ∠=∠-∠.【详解】解:如图,延长DC 交AE 于F ,∵AB CD ∥,77BAE ∠=︒,77CFE BAE ∴∠=∠=︒,又131DCE ∠=︒ ,E CFE DCE ∠+∠=∠,1317754E DCE CFE ∴∠=∠-∠=︒-︒=︒.故选:B .【点睛】本题主要考查了平行线的性质,解决问题的关键是掌握:两直线平行,同位角相等.11.C 【分析】过点B 作∥BD AM ,则BD AM CN ∥∥,由平行线的性质可得65ABD MAB ∠=∠=︒,55CBD NCB ∠=∠=︒,由此进行计算即可得到答案.【详解】解:如图,过点B 作∥BD AM ,,AM CN ∥,A BD M CN ∴∥∥,65MAB ∠=︒,55NCB ∠=︒,65ABD MAB ∴∠=∠=︒,55CBD NCB ∠=∠=︒,6555120ABC ABD CBD ∴∠=∠+∠=︒+︒=︒,故选:C .【点睛】本题考查了平行线的性质,熟练掌握两直线平行,内错角相等是解此题的关键.12.100︒##100度【分析】过点D 作DG AB ∥,过点E 作EH AB ∥,根据平行线的性质和垂直的定义,进行求解即可.【详解】解:过点D 作DG AB ∥,过点E 作EH AB ∥,∵EF MN ⊥,∴90MFE ∠=︒,∵AB MN ∥,∴AB DG EH MN ∥∥∥,∴180ACD CDG ∠+∠=︒,DEH GDE ∠=∠,90HEF MFE ∠=∠=︒∵120,110DEF BCD ∠=︒∠=︒,∴30GDE DEH ︒∠=∠=,18011070CDG ∠︒=︒-︒=,∴100CDE CDG GDE =∠+∠=︒∠.故答案为:100︒【点睛】本题考查了平行线的判定和性质,解题的关键是过拐点构造平行线.13.A【分析】过C 作CM ∥AB ,得到CM ∥DE ,因此ABC BCM ∠=∠,MCD EDC β∠=∠=,由垂直的定义得到90ABC β∠=︒-,由邻补角的性质即可得到答案.【详解】解:过C 作CM ∥AB ,AB ∥DE ,CM DE ∴∥,ABC BCM ∴∠=∠,MCD EDC β∠=∠=,BC CD ⊥ ,9090BCM MCD β∴∠=︒-∠=︒-,90ABC β∴∠=︒-,180ABC ABF ∠+∠=︒ ,90180βα∴︒-+=︒,∴90αβ-= .故选:A .【点睛】本题考查平行线的性质,关键是过C 作//CM AB ,得到//CM DE ,由平行线的性质来解决问题.14.C【分析】首先求出ABP ∠和CDP ∠,再根据平行线的性质求出BPN ∠和DPN ∠即可.【详解】解:∵150160ABE CDF ∠=︒∠=︒,∴18030ABP ABE ∠=︒-∠=︒,18020CDP CDF ∠=︒-∠=︒,∵AB CD MN ∥∥,∴30BPN ABP ∠=∠=︒20DPN CDP ∠=∠=︒,∴50BPN D EPF PN ∠+∠=︒∠=,故选:C .【点睛】本题考查了平行线的性质,熟知两直线平行,内错角相等是解题的关键.15.65︒##65度【分析】过点P 作PE AB ,得到PE AB CD ∥∥,进而得到1,2180A CDP ∠=∠∠=︒-∠,再利用12∠+∠计算即可.本题考查平行线的判定和性质,解题的关键是过拐点作平行线.【详解】解:过点P 作PE AB ,∵AB CD ∥,∴PE AB CD ∥∥,∴125,218040A CDP ∠=∠=︒∠=︒-∠=︒,∴1265APD ∠=∠+∠=︒;故答案为:65︒.16.120EFG BEF DGF ∠=∠+∠-︒【分析】如图,过E 作EQ AB ∥,过F 作FN AB ∥,过G 作GK AB ∥,再证明AB EQ FN GK CD ∥∥∥∥,再结合平行线的性质可得结论.【详解】解:如图,过E 作EQ AB ∥,过F 作FN AB ∥,过G 作GK AB ∥,∵AB CD ∥,∴AB EQ FN GK CD ∥∥∥∥,∵120B D ∠=∠=︒,∴18060QEB B ∠=︒-∠=︒,18060DGK D ∠=︒-∠=︒,∵QE FN GK ∥∥,∴QEF EFN ∠=∠,KFG GFN ∠=∠,∴EFG EFN GFN QEF KGF ∠=∠+∠=∠+∠,∵6060120QEF KGF BEF DGF BEF DGF ∠+∠=∠-︒+∠-︒=∠+∠-︒,∴120EFG BEF DGF ∠=∠+∠-︒;故答案为:120EFG BEF DGF ∠=∠+∠-︒【点睛】本题考查的是平行公理的应用,平行线的性质,作出合适的辅助线是解本题的关键.17.(1)12∠=∠(2)12180∠+∠=︒,理由见解析(3)相等或互补(4)这两个角的度数分别为30︒,30︒,或60︒,120︒【分析】(1)根据两直线平行,内错角相等,即可作答;(2)根据两直线平行,内错角相,同旁内角互补,即可作答;(3)根据(1)、(2)结论直接归纳即可;(4)①当两角相等时,设一个角为x ,另一个角为()360x -︒,可得方程360x x =-︒,解方程即可求解;②当两角互补时,设一个角为x ,另一个角为()360x -︒,可得方程()360180x x ︒+-=︒,解方程即可求解.【详解】(1)∵AB CD ,BE DF ∥,∴13∠=∠,32∠=∠,∴12∠=∠,故答案为:12∠=∠;(2)12180∠+∠=︒,证明:∥ AB CD ,13∠∠∴=,BE DF ,23180∴∠+∠=︒,12180∴∠+∠=︒;(3)根据(1)、(2)的结果可知:一个角的两边与另一个角的分别平行,那么这两个角相等或互补,故答案为:相等或互补;(4)①当两角相等时,设一个角为x ,另一个角为()360x -︒,360x x ∴=-︒,30x ∴=︒,36030x ∴-︒=︒②当两角互补时,设一个角为x ,另一个角为()360x -︒,()360180x x ︒∴+-=︒,60x ∴=︒,360120x ︒∴-=︒.综上所述:这两个角的度数分别为30︒,30︒,或60︒,120︒.【点睛】本题主要考查了平行线的性质,掌握两直线平行,内错角相,同旁内角互补,是解答本题的关键.18.(1)110APC ∠=︒;(2)①CPD αβ∠=∠+∠;②CPD βα∠=∠-∠或CPD αβ∠=∠-∠.【分析】本题考查了平行线的性质和判定的应用,解决问题的关键是作辅助线构造内错角以及同旁内角.(1)过P 作PE AB ∥,构造同旁内角,利用平行线性质,可得110APC ∠=︒;(2)①过P 作PE AD ∥交CD 于E ,推出AD PE BC ∥∥,根据平行线的性质得出DPE α∠=∠,CPE β∠=∠,即可得出答案;②画出图形(分两种情况:点P 在BA 的延长线上,点P 在AB 的延长线上),根据平行线的性质得出DPE α∠=∠,CPE β∠=∠,即可得出答案.【详解】(1)解:过P 作PE AB ∥,∵AB CD ∥,∴PE AB CD ∥∥,∵130PAB ∠=︒,120PCD ∠=︒.∴18050APE PAB ∠=︒-∠=︒,18060CPE PCD ∠=︒-∠=︒,∴5060110APC ∠=︒+︒=︒;(2)解:①CPD αβ∠=∠+∠:如图3,过P 作PE AD ∥交CD 于E ,∵AD BC ∥,∴AD PE BC ∥∥,∴DPE α∠=∠,CPE β∠=∠,∴CPD DPE CPE αβ∠=∠+∠=∠+∠;故答案为:CPD αβ∠=∠+∠;②当P 在AB 延长线时,CPD βα∠=∠-∠;理由:如图4,过P 作PE AD ∥交CD 于E ,∵AD BC ∥,∴AD PE BC ∥∥,∴DPE α∠=∠,CPE β∠=∠,∴CPD CPE DPE βα∠=∠-∠=∠-∠;当P 在BO 之间时,CPD ∠理由:如图5,过P 作PE ∥∵AD BC ∥,∴AD PE BC ∥∥,∴DPE α∠=∠,CPE β∠=∠CPD αβ∴∠=∠-∠综上所述,CPD ∠,α∠,∠βCPD αβ∠=∠-∠.19.(1)见解析;(2)见解析;【分析】()1过点E 作EM AB ∥∴∠=∠,ABE BEMAB CD,∥∴ ,CD EM∴∠=∠,CDE DEM∥AB CD,∴ ,AB EM FN CD∥,EM FN∴∠+∠=︒,MEF NFE180∥AB CD,∴ AB EM FN GH∥EM FN∥,FN GH ∴∠+∠=180 MEF NFE20.(1)证明见详解;(2)900︒;(3)()1801︒-n ;【分析】(1)过点E 作OE ∥A B ,可得OE AB CD ∥∥,根据平行线的性质可得1180MEO ∠+∠=︒,2180OEN ∠+∠=︒,再计算角度和即可证明;(2)分别过点E 、F 、G 、H 作AB 的平行线,在两相邻平行线间利用两直线平行同旁内角互补求得两角度和后,再将所有角度相加即可解答;(3)由(2)解答可知在AB 、CD 之间每有一条线段便可求得一个180°角度和,结合图3找出n 和线段条数的关系便可解答;【详解】(1)证明:如下图,过点E 作OE ∥A B ,∵AB CD ∥,OE ∥A B ,∴ OE CD ,根据两直线平行同旁内角互补可得:1180MEO ∠+∠=︒,2180OEN ∠+∠=︒,∴12360MEO OEN ∠+∠+∠+∠=︒,∴12360MEN ∠+∠+∠=︒;(2)解:如下图,分别过点E 、F 、G 、H 作1O E AB ∥,2O F AB ∥,3O G AB ∥,4O H AB ∥,结合(1)解答在两相邻平行线间可得:1180AME MEO ∠+∠=︒,12180O EF EFO ∠+∠=︒,23180O FG FGO ∠+∠=︒,34180O GH GHO ∠+∠=︒,4180O HN HNC ∠+∠=︒,将所有角度相加可得:1234561805900∠+∠+∠+∠+∠+∠=︒⨯=︒;(3)解:由(2)解答可知在AB 、CD 之间每有一条线段便可求得一个180°角度和,由图3可知:当AB 、CD 之间有2条线段时,3n =,当AB 、CD 之间有3条线段时,4n =,当AB 、CD 之间有4条线段时,5n =,当AB 、CD 之间有5条线段时,6n =,…,当AB 、CD 之间有()1n -条线段时,n n =,∴()1231801n n ∠+∠+∠++∠=︒- ;【点睛】本题考查了平行线公理的推论,平行线的性质,归纳总结的解题思路,通过作辅助线将角度按组计算是解题关键.。

平行线中的拐点(拐角)问题

平行线中的拐点(拐角)问题

专题一平行线中的拐点问题【学习目标】1.复习巩固平行线的性质和判定,找到解决平行线间拐点问题的基本方法,学会运用平行线转移角,建立分散的角之间的练习,提高几何推理能力。

2.在探究的过程中,体会观察-猜想-实验-证明的探究过程,初步体会添加辅助线的目的。

【学习过程】一、复习填空.平行线的判定:①_____________________________________________.②_____________________________________________.③_____________________________________________.④_____________________________________________.平行线的定理:①_____________________________________________.②_____________________________________________.③_____________________________________________.二、探究新知假设,两根木杆AB与CD平行放置,木杆的两端B、D用一根橡皮筋连接,现在在橡皮筋BD上任取一点P,将点P向里压:例1.如图,在平行线AB,CD内任取一点P,连接DP,BP.(1)若∠ABP=45°,∠CDP=15°则∠BPD=__________.(2)若∠BPD=50°,∠CDP=10°则∠ABP=__________.(3)试猜想∠BPD与∠ABP、∠CDP之间的数量关系,并说明理由.变式练习:1.如图,直线AB∥CD,∠A=40°,∠D=45°,则∠1的度数是__________. 2.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1的度数是_____________.(1)(2)拓展提升:如图1,AB∥CD,EOF是直线AB、CD间的一条折线.(1)如果将折一次改为折二次,如图2,则∠BEO、∠O、∠P、∠PFC之间会满足怎样的数量关系,证明你的结论.(2)如果将折一次改为折三次,如图3,则∠BEO、∠O、∠P、∠Q、∠QFD之间会满足怎样的数量关系(直接写出结果不需证明)假设,现在在橡皮筋BD上任取一点P,将点P水平向外拉:例2.如图,在平行线段AB、CD外取一点P,连接BP,DP,刚才的结论还成立吗?若不成立,你又有新的发现吗?变式练习:1.某小区地下停车场入口门栏杆的平面示意图如图所示,BA垂直地面AE于点A,CD平行于地面AE,若∠BCD=110°,则∠ABC=__________.2.如图,如果a∥b,∠1=55°,∠2=130°,则∠3=___________.(1)(2)拓展提升:已知:如图,AB∥CD,试解决下列问题:(1)∠1+∠2=;(2)∠1+∠2+∠3=;(3)∠1+∠2+∠3+∠4=_;(4)试探究∠1+∠2+∠3+∠4+…+∠n=.假设,现在在橡皮筋BD上任取一点P,将点P斜上右上方拉或者斜上左上方拉:例3.如图①②,在平行线AB、CD外取一点P,连接BP,DP,这时∠ABP,∠CDP,∠BPC之间又有怎样的数量关系呢?变式训练:1.如图,BD∥EF,AE与BD交于点C,∠B=30°,∠A=75°,则∠E的度数为__________.2.如图,直线AB∥EF,点C是直线AB上一点,点D是直线AB外一点,若∠BCD=100°,∠CDE=15°,则∠DEF的度数是___________.3.如图,已知直线a∥b,则∠1、∠2、∠3的关系是______________.(1)(2)(3)三、课后练习1.如图,直线l2∥12,∠A=125°,∠B=85°,则∠1+∠2=.2.如图,如果AB∥CD,则角α、β、γ之间的关系为.3.如图,已知AB∥CD,∠ABE和∠CDE的平分线相交于F,∠E=140°.则∠BFD的度数为____________.(1)(2)(3)4.如图,直线m∥n,AB⊥BC,∠1=35°,∠2=62°,则∠BCD的度数为.5.直线l1∥l2,∠A=125°,∠B=105°,则∠1+∠2=____________.(4)(5)6.如图,已知AB∥CD,BF平分∠ABE,DF平分∠CDE,∠BED=75°.求∠BFD的度数.7.如图,一条公路修到湖边时需绕道,第一次拐角∠B=110°,第二次拐角∠C=150°,为了保持公路AB与DE平行,则第三次拐角∠D的度数为__________.8.如图,AB∥EF,BC⊥CD于C,∠ABC=30°,∠DEF=45°,则∠CDE等于()A.105°B.75°C.135°D.115°9.如图所示,两平面镜α、β的夹角为60°,入射光线AO平行于β入射到α上,经两次反射后的反射光线O′B平行于α,则∠1的度数为()A.60°B.45°C.30°D.75°10.如图,直线a∥b,直角三角形如图放置,∠DCB=90°.若∠1+∠B=70°,则∠2的度数为()A.20°B.40°C.30°D.25°(8)(9)(10)11.阅读第(1)题解题过程,解答第(2)题.(1)如图1,AB∥CD,E为AB、CD之间的一点,已知∠B=40°,∠C=30°,求∠BEC的度数.解:过点E作EM∥AB,∴∠B=().∵AB∥CD,AB∥EM,∴EM∥().∴∠2=().∴∠BEC=∠1+∠2=∠B+∠C=40°+30°=70°.(2)如图2,AB∥ED,试探究∠B、∠BCD、∠D之间的数量关系.。

专题 平行线间的拐点问题(解析版)--七年级数学下册

专题 平行线间的拐点问题(解析版)--七年级数学下册

专题01平行线间的拐点问题类型一:“猪蹄”模型类型二:“铅笔”模型类型三:“鹰嘴”模型平行线间的拐点问题均过拐点作平行线的平行线,有多少个拐点就作多少条平行线。

一.选择题1.(2023•新城区校级一模)如图,直线m∥n,含有45°角的三角板的直角顶点O在直线m上,点A在直线n上,若∠1=20°,则∠2的度数为()A.15°B.25°C.35°D.45°【分析】过B作BK∥m,推出BK∥n,由平行线的性质得到∠OBK=∠1=20°,∠2=∠ABK,求出∠ABK=∠ABO﹣∠OBK=25°,即可得到∠2=25°.【解答】解:过B作BK∥m,∵m∥n,∴BK∥n,∴∠OBK=∠1=20°,∠2=∠ABK,∵∠ABO=45°,∴∠ABK=∠ABO﹣∠OBK=45°﹣20°=25°,∴∠2=∠ABK=25°.故选:B.2.(2023•海南)如图,直线m∥n,△ABC是直角三角形,∠B=90°,点C在直线n上.若∠1=50°,则∠2的度数是()A.60°B.50°C.45°D.40°【分析】根据平行线的性质可以得到∠1=∠BDC,然后直角三角形的性质,即可求得∠2的度数.【解答】解:延长AB交直线n于点D,∵m∥n,∠1=50°,∴∠1=∠BDC=50°,∵∠ABC=90°,∴∠CBD=90°,∴∠2=90°﹣∠BDC=90°﹣50°=40°,故选:D.3.(2023秋•渝中区校级期中)如图,直线AB∥CD,GE⊥EF于点E.若∠EFD=32°,则∠BGE的度数是()A.62°B.58°C.52°D.48°【分析】过点E作AB的平行线HI,利用平行线的性质即可求解.【解答】解:过点E作直线HI∥AB.∵AB∥CD,AB∥HI,∠EFD=32°,∴CD∥HI,∴∠HEF=∠EFD=32°,∵GE⊥EF于点E,∴∠GEF=90°,∴∠GEH=∠GEF﹣∠HEF=90°﹣32°=58°,∵AB∥HI,∴∠BGE=∠GEH=58°.故选:B.4.(2022秋•杜尔伯特县期末)如图,已知AB∥CD,BE,DE分别平分∠ABF和∠CDF,且交于点E,则()A.∠E=∠F B.∠E+∠F=180°C.2∠E+∠F=360°D.2∠E﹣∠F=180°【分析】过点E作EM∥AB,利用平行线的性质可证得∠BED=(∠ABF+∠CDF),可以得到∠BED 与∠BFD的关系.【解答】解:过点E作EM∥AB,如图:∵AB∥CD,EM∥AB∴CD∥EM,∴∠ABE=∠BEM,∠CDE=∠DEM,∵∠ABF的平分线与∠CDF的平分线相交于点E,∴∠ABE=∠ABF,∠CDE=∠CDF,∴∠BED=∠BEM+∠DEM=(∠ABF+∠CDF),∵∠ABF+∠BFD+∠CDF=360°,∴∠ABF+∠CDF=360°﹣∠BFD,∴∠BED=(360°﹣∠BFD),整理得:2∠BED+∠BFD=360°.故选:C.5.(2022秋•榆树市期末)如图,AB∥CD,则图中∠1、∠2、∠3关系一定成立的是()A.∠1+∠2+∠3=180°B.∠1+∠2+∠3=360°C.∠1+∠3=2∠2D.∠1+∠3=∠2【分析】首先过点E作EF∥AB,由AB∥CD,可得EF∥AB∥CD,然后根据两直线平行,内错角相等,即可求得∠AEF=∠1,∠CEF=∠3,继而可得∠1+∠3=∠2.【解答】解:过点E作EF∥AB,∵AB∥CD,∴EF∥AB∥CD,∴∠AEF=∠1,∠CEF=∠3,∵∠2=∠AEF+∠CEF=∠1+∠3.故选:D.6.(2023秋•湖北月考)将含有30°角的直角三角板在两条平行线中按如图所示摆放.若∠1=120°,则∠2为()A.120°B.130°C.140°D.150°【分析】过A作AB∥l1,得到AB∥l2,推出∠3=∠1=120°,∠2=∠BAC,即可求出∠2=∠3+∠4=30°+120°=150°.【解答】解:过A作AB∥l1,∵l1∥l2,∴AB∥l2,∴∠3=∠1=120°,∠2=∠BAC,∴∠2=∠3+∠4=30°+120°=150°.故选:D.二.填空题7.(2023•江油市开学)如图,AB∥CD,P为AB,CD之间的一点,已知∠2=28°,∠BPC=58°,则∠1=30°.【分析】过P作PQ∥AB,得到PQ∥CD,推出∠CPQ=∠2=28°,∠BPQ=∠1,求出∠BPQ=∠BPC ﹣∠CPQ=30°,即可得到∠1的度数..【解答】解:过P作PQ∥AB,∵AB∥CD,∴PQ∥CD,∴∠CPQ=∠2=28°,∠BPQ=∠1,∵∠BPQ=∠BPC﹣∠CPQ=58°﹣28°=30°,∴∠1=30°.故答案为:30°.8.(2023秋•南岗区校级期中)如图,已知DE∥BC,∠ABC=105°,点F在射线BA上,且∠EDF=125°,则∠DFB的度数为20°.【分析】过F作FM∥DE,推出FM∥BC,得到∠ABC+∠MFB=180°,∠D+∠MFD=180°,求出∠MFB=75°,∠MFD=55°,即可得到∠DFB=∠MFB﹣∠MFD=20°.【解答】解:过F作FM∥DE,∵DE∥BC,∴FM∥BC,∴∠ABC+∠MFB=180°,∠D+∠MFD=180°,∵∠ABC=105°,∠EDF=125°,∴∠MFB=75°,∠MFD=55°,∴∠DFB=∠MFB﹣∠MFD=20°.故答案为:20°.9.(2023秋•道里区校级期中)为增强学生体质,望一观音湖学校将“跳绳”引入阳光体育一小时活动.图1是一位同学跳绳时的一个瞬间.数学老师把它抽象成图2的数学问题:已知AB∥CD,∠EAB=70°,∠ECD=105°,则∠AEC=35°.【分析】过E作EF∥AB,则EF∥AB∥CD,利用平行线的性质求得∠FEA=110°,∠FEC=75°,进而可求解.【解答】解:过E作EF∥AB,∵AB∥CD,∴EF∥AB∥CD,∴∠EAB+∠FEA=180°,∠ECD+∠FEC=180°,∵∠EAB=70°,∠ECD=105°,∴∠FEA=110°,∠FEC=75°,∴∠AEC=∠FEA﹣∠FEC=35°,故答案为:35°.10.(2022秋•雅安期末)如图,AB∥CD,∠DCE的角平分线CG的反向延长线和∠ABE的角平分线BF交于点F,∠E﹣∠F=60°,则∠E=100°.【分析】过F作FH∥AB,依据平行线的性质,可设∠ABF=∠EBF=α=∠BFH,∠DCG=∠ECG=β=∠CFH,根据四边形内角和以及∠E﹣∠F=60°,即可得到∠E的度数.【解答】解:如图,过F作FH∥AB,∵AB∥CD,∴FH∥AB∥CD,∵∠DCE的角平分线CG的反向延长线和∠ABE的角平分线BF交于点F,∴可设∠ABF=∠EBF=α=∠BFH,∠DCG=∠ECG=β=∠CFH,∴∠ECF=180°﹣β,∠BFC=∠BFH﹣∠CFH=α﹣β,∴四边形BFCE中,∠E+∠BFC=360°﹣α﹣(180°﹣β)=180°﹣(α﹣β)=180°﹣∠BFC,即∠E+2∠BFC=180°,①又∵∠E﹣∠BFC=60°,∴∠BFC=∠E﹣60°,②∴由①②可得,∠E+2(∠E﹣60°)=180°,解得∠E=100°,故答案为:100°.11.(2023秋•南岗区校级期中)已知:如图,AB∥CD,∠ABG的平分线与∠CDE的平分线交于点M,∠M=45°,∠F=64°,∠E=66°,则∠G=88°°.【分析】过点G,F、E、M分别作GH∥AB,FQ∥AB,EP∥AB,MN∥AB,根据平行线的传递性得出AB∥CD∥GH∥FQ∥EP∥MN,再根据两直线平行内错角相等以及角平分线的定义即可求解;【解答】解:过点G、F、E、M分别作GH∥AB,FQ∥AB,EP∥AB,MN∥AB,∵AB∥CD,∴AB∥CD∥GH∥FQ∥EP∥MN,∴∠BNN=∠1,∠NMD=∠4,∵BM平分∠ABG,MD平分∠CDE,∴,∵∠BMD=45°,∴2∠1+2∠3=90°,∴∠5=2∠1,∠10=2∠3,∠6=∠7,∠8=∠9,∴∠GFE=∠7+∠8=∠6+∠9=64°,∠FED=∠9+∠D=∠9+2∠3=66°,∴2∠3﹣∠6=2°,∴2∠1+∠6=90°﹣2°=88°,∴∠BGF=∠5+∠6=2∠1+∠6=88°.故答案为:88°.三.解答题12.(2022秋•宝丰县期末)已知直线MN、PQ,点A、B为分别在直线MN、PQ上,点C为平面内一点,连接AC、BC,且∠C=∠NAC+∠CBQ.(1)求证:MN∥PQ;(2)如图2,射线AE、BD分别平分∠MAC和∠CBQ,AE交直线PQ于点E,BD与∠NAC内部的一条射线AD交于点D,若∠C=2∠D,求∠EAD的度数.【分析】(1)过C作CS∥MN,由已知可以得到PQ∥CS,从而得到MN∥PQ;(2)连接DC并延长交AE于点F,由已知可以得到∠DAC=∠NAC,再由∠EAD=∠EAC+∠CAD及平角的意义可以得到解答.【解答】(1)证明:过C作CS∥MN,如图,∵CS∥MN,∴∠NAC=∠ACS,∵∠ACB=∠ACS+∠BCS=∠NAC+∠CBQ,∴∠BCS=∠CBQ,∴PQ∥CS,∴MN∥PQ;(2)解:如图,连接DC并延长交AE于点F,则:∠ACF=∠DAC+∠ADC,∠BCF=∠DBC+∠BDC,∴∠ACB=∠DAC+∠DBC+∠ADB=2∠ADB,∴∠ADB=∠DAC+∠DBC,∴2∠ADB=2∠DAC+2∠DBC=2∠DAC+∠QBC,又∠ACB=∠NAC+∠CBQ=2∠ADB.∴∠NAC+∠CBQ=2∠DAC+∠QBC,即∠NAC=2∠DAC,∴∠DAC=∠NAC,∴∠EAD=∠EAC+∠CAD=∠MAC+∠NAC=(∠MAC+∠NAC)=90°.13.(2022秋•莘县期末)综合与实践如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD 于点F.(1)当所放位置如图①所示时,∠PFD与∠AEM的数量关系是∠PFD+∠AEM=90°;(2)当所放位置如图②所示时,求证:∠PFD﹣∠AEM=90°;(3)在(2)的条件下,若MN与CD交于点O,且∠DON=15°,∠PEB=30°,求∠N的度数.【分析】(1)作PH∥AB,根据平行线的性质得到∠AEM=∠HPM,∠PFD=∠HPN,根据∠MPN=90°解答;(2)根据平行线的性质得到∠PFD+∠BHN=180°,根据∠P=90°解答;(3)根据平行线的性质、对顶角相等计算.【解答】解:(1)如图①,作PH∥AB,则∠AEM=∠HPM,∵AB∥CD,PH∥AB,∴PH∥CD,∴∠PFD=∠HPN,∵∠MPN=90°,∴∠PFD+∠AEM=90°,故答案为:∠PFD+∠AEM=90°;(2)猜想:∠PFD−∠AEM=90°;理由如下:如图②,∵AB∥CD,∴∠PFD+∠BHN=180°,∵∠BHN=∠PHE,∴∠PFD+∠PHE=180°,∵∠P=90°,∴∠PHE+∠PEB=90°,∵∠PEB=∠AEM,∴∠PHE+∠AEM=90°,∴∠PFD−∠AEM=90°;(3)如图②,∵∠P=90°,∠PEB=15°,∴∠PHE=∠P−∠PEB=90°−15°=75°,∴∠BHF=∠PHE=75°,∵AB∥CD,∴∠DFH+∠BHF=180°,∴∠DFH=180°−∠BHF=105°,∴∠OFN=∠DFH=105°,∵∠DON=20°,∴∠N=180°−∠DON−∠OFN=55°.14.(2022秋•洛宁县期末)问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度数.小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠APC=50°+60°=110°.问题迁移:(1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP =∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.【分析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)化成图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案.【解答】(1)解:∠CPD=∠α+∠β,理由是:如图3,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β;(2)当P在BA延长线时,∠CPD=∠β﹣∠α;当P在AB延长线时,∠CPD=∠α﹣∠β.15.(2023春•鼎城区期末)已知直线AB∥CD,点P为直线AB,CD所确定的平面内的一点.问题提出:(1)如图1,∠A=120°,∠C=130°,求∠APC的度数;问题迁移:(2)如图2,写出∠APC,∠A,∠C之间的数量关系,并说明理由;问题应用:(3)如图3,点E在射线BA上,过点E作EF∥PC,作∠PEG=∠PEF,点G在直线CD上,作∠BEG的平分线EH交PC于点H,若∠APC=20°,∠PAB=150°,求∠PEH的度数.【分析】(1)首先过点P作PQ∥AB,则易得AB∥PQ∥CD,然后由两直线平行,同旁内角互补,即可求得∠APQ=60°,∠CPQ=50°,最后可以求出∠APC=110°;(2)作PQ∥AB,易得AB∥PQ∥CD,根据两直线平行,内错角相等,即可证得∠APC=∠A﹣∠C;(3)由(2)知,∠APC=∠PAB﹣∠PCD,先证∠BEF=∠PQB=110°、∠PEG=∠FEG,∠GEH=∠BEG,根据∠PEH=∠PEG﹣∠GEH可得答案.【解答】解:(1)∠A+∠C+∠APC=360°如图1所示,过点P作PQ∥AB,∴∠A+∠APQ=180°,∵∠A=120°,∴∠APQ=180°﹣∠A=180°﹣120°=60°,∵AB∥CD,∴PQ∥CD,∴∠C+∠CPQ=180°,∵∠C=130°,∴∠CPQ=180°﹣∠C=180°﹣130°=50°,∴∠APC=∠APQ+∠CPQ=60°+50°=110°;(2)∠APC=∠A﹣∠C,理由如下:如图2,作PQ∥AB,∴∠A=∠APQ,∵AB∥CD,∴PQ∥CD,∴∠C=∠CPQ,∵∠APC=∠APQ﹣∠CPQ,∴∠APC=∠A﹣∠C;(3)由(2)知,∠APC=∠PAB﹣∠PCD,∵∠APC=20°,∠PAB=150°,∴∠PCD=130°,∵AB∥CD,∴∠PQB=∠PCD=130°,∵EF∥PC,∴∠BEF=∠PQB=130°,∵∠PEG=∠PEF,∴∠PEG=∠FEG,∵EH平分∠BEG,∴∠GEH=∠BEG,∴∠PEH=∠PEG﹣∠GEH=∠FEG﹣∠BEG=∠BEF=65°.16.(2023秋•南岗区校级期中)已知:如图,AB∥CD,直线EF分别交AB,CD于点G,H,点P为直线EF上的点,连接AP,CP.(1)如图1,点P在线段GH上时,请你直接写出∠BAP,∠DCP,∠APC的数量关系;(2)如图2,点P在HG的延长线上时,连接CP交AB于点Q,连接HQ,AC,若∠ACP+∠PHQ=∠CQH,求证:AC∥EF;(3)在(2)的条件下,如图3,CK平分∠ACP,GK平分∠AGP,GK与CK交点K,连接AK,若∠PQH=4∠PCK+2∠PHQ,∠CKG=∠CHQ,∠AKC+∠KAC=159°,求∠BAC的大小.【分析】(1)过P作PN∥AB,根据平行线的传递性得出PN∥CD,再根据两直线平行,内错角相等即可解答;(2)过点Q作QN∥AC,证出∠PHQ=∠2,根据平行线的传递性即可证明;(3)根据三角形内角和即可算出∠1=21°,再根据角平分线定义以及已知条件即可得出∠PQH=4∠2+2∠5=84°+2∠5,结合(2)即可解出∠5=18°,过K作KM∥AC,证出∠CKG=∠1+∠3=21°+∠3,根据平行线性质得出∠EGA=∠EHC,即可得∠3=∠5°+21°=18°+21°=39°,即可求解;【解答】解:(1)过P作PN∥AB,∴∠BAP=∠1,∵AB∥CD,∴PN∥CD,∴∠DCP=∠2,∴∠APC=∠1+∠2=∠BAP+∠DCP;(2)过点Q作QN∥AC,∴∠ACP=∠1,∵∠ACP+∠PHQ=∠CQH,∠1+∠2=∠CQH,∴∠PHQ=∠2,∴QN∥EF,∴AC∥EF;(3)∵CK平分∠ACP,GK平分∠AGP,∴∠1=∠2,∠3=∠4,∵∠AKC+∠KAC=159°,∵∠1=180°﹣159°=21°,∴∠PQH=4∠PCK+2∠PHQ=4∠2+2∠5=84°+2∠5,由(2)知∠ACP+∠PHQ=∠CQH,即42°+∠5=180°﹣∠PQH,∴180°﹣42°﹣∠5=84°+2∠5,∴∠5=18°,过K作KM∥AC,∵AC∥EF,∴KM∥AC∥EF,∴∠CKM=∠1,∠GKM=∠3.∴∠CKG=∠1+∠3=21°+∠3.∵AB∥CD,∠CKG=∠CHQ,∴∠EGA=∠EHC,即2∠3=∠5+∠CHQ=∠5+∠CKG=∠5+∠3+21°,∴∠3=∠5°+21°=18°+21°=39°,∵AC∥EF,∴∠BAC=∠EGA=2∠3=78°.17.(2023秋•道里区校级期中)已知:直线AB与直线CD内部有一个点P,连接BP.(1)如图1,当点E在直线CD上,连接PE,若∠B+∠PEC=∠P,求证:AB∥CD;(2)如图2,当点E在直线AB与直线CD的内部,点H在直线CD上,连接EH,若∠ABP+∠PEH=∠P+∠EHD,求证:AB∥CD;(3)如图3,在(2)的条件下,BG、EF分别是∠ABP、∠PEH的角平分线,BG和EF相交于点G,EF和直线AB相交于点F,当BP⊥PE时,若∠BFG=∠EHD+10°,∠BGE=36°,求∠EHD的度数.【分析】(1)过点P作PF∥AB,推出∠PEC=∠EPF,进而得PF∥CD,根据平行公理的推论即可得证;(2)分别过点P和点E作PF∥AB,EM∥CD,推出∠PEM=∠FPE,进而得PF∥EM,根据平行公理的推论即可得证;(3)过点E作EN∥AB,根据(1)(2)的思路证∠FEN+∠NEH=∠BFE+∠EHD,设∠EHD=α,∠PBG =β,PEG=γ,则∠BFG=α+10°,结合角平分线的定义及(2)的条件得2β+2γ=90°+α,接着分别用含α的式子代替β和γ,代入2β+2γ=90°+α求出α的值即可.【解答】解:(1)证明:过点P作PF∥AB,∴∠B=∠BPF,∵∠B+∠PEC=∠BPE=∠BPF+∠EPF,∴∠PEC=∠EPF,∴PF∥CD,∴AB∥CD;(2)证明:如图2,分别过点P和点E作PF∥AB,EM∥CD,∴∠ABP=∠BPF,∠MEH=∠EHD,∵∠ABP+∠PEH=∠P+∠EHD,即∠ABP+∠PEM+∠MEH=∠BPF+∠FPE+∠EHD,∴∠PEM=∠FPE,∴PF∥EM,∴EM∥AB,∴AB∥CD;(3)如图3,过点E作EN∥AB,由(2)得AB∥CD,∴EN∥CD,∠BFE=∠FEN,∠NEH=∠EHD,∴∠FEH=∠FEN+∠NEH=∠BFE+∠EHD,设∠EHD=α,∠PBG=β,PEG=γ,则∠BFG=α+10°,∵BG、EF分别是∠ABP、∠PEH的角平分线,∴∠ABP=2β,∠PEH=2γ,∵BP⊥PE,∴∠P=90°,由(2)得∠ABP+∠PEH=∠P+∠EHD,∴2β+2γ=90°+α,∵∠FEH=∠FEN+∠NEH=∠BFE+∠EHD,∴γ=α+10°+α=2α+10°,∵∠BGE=36°,∠FGB=180°﹣(∠BFG+∠FBG),∠FGB=180°﹣∠BGE,∴∠BFG+∠FBG=∠BGE=36°,∴α+10°+β=36°,∴β=26°﹣α,∴2(26°﹣α)+2(2α+10°)=90°+α,∴α=18°.18.(2023秋•南岗区校级期中)已知,过∠ECF内一点A作AD∥/EC交CF于点D,作AB∥/CF交CE于点B.(1)如图1,求证:∠ABE=∠ADF;(2)如图2,射线BM,射线DN分别平分∠ABE和∠ADF,求证:BM∥DN;(3)如图3,在(2)的条件下,点G,Q在线段DF上,连接AG,AQ,AC,AQ与DN交于点H,反向延长AQ交BM于点P,如果∠GAC=∠GCA,AQ平分∠GAD,∠QAC=50°,求∠MPA+∠PQF的度数.【分析】(1)由平行线的性质得出∠A=∠ABE,∠A=∠ADF,即可得出结论;(2)过点A作AG平分∠BAD,由角平分线定义得出∠DAG=∠BAG=∠BAD,∠ABM=∠ABE,∠ADN=∠ADF,证出∠ABM=∠DAG=∠BAG=∠ADN,得出BM∥AG,DN∥AG,即可得出结论;(3)设∠GAQ=∠QAD=x,则∠DAC=50°﹣x,∠GAC=50°+x=∠GCA,得出∠BAD=100°,∠BAQ=100°+x,由平行线的性质得出∠BAC=∠GCA=50°+x,求出∠BAP=180°﹣∠BAQ=80°﹣x,过点P作PH∥AB,过点Q作QI∥AC,由平行线的性质得出∠MPH=∠ABM=50°,∠HPA=∠PAB =80°﹣x,∠QAC=∠IQA=50°,∠FQI=∠FCA=50°+x,求出∠MPA=∠MPH+∠HPA=50°+8°﹣x=130°﹣x,∠PQF=∠IQA+∠FQI=50°+50°+x=100°+x,即可得出答案.【解答】(1)证明:∵AD∥EC,AB∥CF,∴∠A=∠ABE,∠A=∠ADF,∴∠ABE=∠ADF;(2)证明:过点A作AG平分∠BAD,如图2所示:则∠DAG=∠BAG=∠BAD,∵射线BM,射线DN分别平分∠ABE和∠ADF,∴∠ABM=∠ABE,∠ADN=∠ADF,∵∠ABE=∠ADF=∠BAD,∴∠ABM=∠DAG=∠BAG=∠ADN,∴BM∥AG,DN∥AG,∴BM∥DN;(3)解:∵AQ平分∠GAD,∴∠GAQ=∠QAD,设∠GAQ=∠QAD=x,则∠DAC=50°﹣x,∠GAC=50°+x=∠GCA,∴∠BAD=100°,∴∠BAQ=100°+x,∵AB∥CF,∴∠BAC=∠GCA=50°+x,∵∠BAP+∠BAQ=180°,∴∠BAP=180°﹣∠BAQ=80°﹣x,过点P作PH∥AB,过点Q作QI∥AC,如图3所示:∵AD∥EC,∴∠BAD=∠ABE=100°,∠ABM=∠ABE=50°,∴∠MPH=∠ABM=50°,∠HPA=∠PAB=80°﹣x,∠QAC=∠IQA=50°,∠FQI=∠FCA=50°+x,∴∠MPA=∠MPH+∠HPA=50°+80°﹣x=130°﹣x,∠PQF=∠IQA+∠FQI=50°+50°+x=100°+x,∴∠MPA+∠PQF=130°﹣x+100°+x=230°.19.(2023秋•南岗区校级期中)已知,射线FG分别交射线AB、DC于点F、G,点E为射线FG上一点.(1)如图1,若∠A+∠D=∠AED,求证:AB∥CD.(2)如图2,若AB∥CD,求证:∠A﹣∠D=∠AED.(3)如图3,在(2)的条件下,DI交AI于点Ⅰ,交AE于点K,∠EDI=∠CDE,∠BAI=∠EAI,∠I=∠AED=25°,求∠EKD的度数.【分析】(1)过点E作EH∥AB,证明∠A=∠AEF,再根据已知条件证明∠D=∠DEF,从而证明EF ∥CD,最后根据平行公理的推论证明结论即可;(2)先根据平行线的性质证明∠A=∠EHG,再根据外角性质证明∠A=∠D+∠AED,通过变换得出结论即可;(3)设AE与CD交于点H,∠EAI=x,把∠BAI和∠EAB都用x表示出来,然后根据已知条件,找出角与角之间的关系,最后得出∠CHE=∠CDE+∠AED,列出关于x的方程,求出x,最后根据∠EKD=∠AKI=180°﹣∠EAI﹣∠I,求出答案即可.【解答】(1)证明:如图所示:过点E作EH∥AB,∴∠A=∠AEF,∵∠A+∠D=∠AED,∠AED=∠AEF+∠DEF,∴∠D=∠DEF,∴EF∥CD,∴AB∥CD;(2)证明:∵AB∥CD,∴∠A=∠EHG,∵∠EHG=∠D+∠AED,∴∠A=∠D+∠AED,∴∠A﹣∠D=∠AED;(3)解:设AE与CD交于点H,∠EAI=x,则∠BAI=,,∵AB∥CD,∴∠EHC=∠EAB=,∵∠I=∠AED=25°,∠EKI=∠EAI+∠I=∠EDI+∠AED,∴x+25°=∠EDI+25°,∴∠EDI=x,∵∠EDI=∠CDE,∴∠CDI=,∵∠CHE=∠CDE+∠AED,∴,解得:x=60°,∴∠EKD=∠AKI=180°﹣∠EAI﹣∠I=180°﹣60°﹣25°=95°.20.(2023春•栾城区校级期中)【问题解决】:如图①,AB∥CD,点E是AB,CD内部一点,连接BE,DE.若∠ABE=40°,∠CDE=60°,求∠BED 的度数;嘉琪想到了如图②所示的方法,请你帮她将完整的求解过程补充完整;解:过点E作EF∥AB∴∠ABE=∠BEF(两直线平行,内错角相等);∵EF∥AB,AB∥CD(已知);∴EF∥CD(平行于同一条直线的两直线平行);∴∠CDE=(∠DEF)(两直线平行,内错角相等);又∵∠BED=∠BEF+∠DEF(角的和与差);∴∠BED=∠ABE+∠CDE(等量代换);∵∠ABE=40°,∠CDE=60°(已知);∴∠BED=∠ABE+∠CDE=100°(等量代换);【问题迁移】:请参考嘉琪的解题思路,解答下面的问题:如图③,AB∥CD,射线OM与直线AB,CD分别交于点A,C,射线ON与直线AB,CD分别交于点B,D,点P在射线ON上运动,连接AP,CP,设∠BAP=α,∠DCP=β.(1)如图③,当点P在B,D两点之间运动时(点P不与点B,D重合),写出α,和∠APC之间满足的数量关系,并说明理由;(2)当点P在B,D两点外侧运动时(点P不与点B,D重合),请画出图形,并直接写出α,β和∠APC 之间满足的数量关系.【分析】问题解决:两直线平行,内错角相等;平行于同一条直线的两直线平行;∠DEF;两直线平行,内错角相等;角的和与差;等量代换;问题迁移:(1)∠APC=a+β,理由见解析;(2)∠APC=α﹣β或∠APC=β﹣α【分析】问题解决:根据过程填写依据即可;问题迁移:(1)过点P作PQ∥AB,可证∠APQ=∠BAP,∠CPQ=∠DCP,由∠APC=∠APQ+∠CPQ 即可求解;(2)①当P在BN上时,过点P作PQ∥AB,同理可证:∠APQ=∠BAP,∠CPQ=∠DCP,由∠APC =∠CPQ﹣∠APQ,即可求解;②当P在OD上时,过点P作PQ∥CD,同理可证:∠APQ=∠BAP,∠CPQ=∠DCP,由∠APC=∠APQ﹣∠CPQ,即可求解.【解答】问题解决:解:过点E作EF∥AB,∴∠ABE=∠BEF(两直线平行,内错角相等),∵AB∥CD(已知),∴EF∥CD(平行于同一条直线的两直线平行),∴∠CDE=∠DEF(两直线平行,内错角相等),又∵∠BED=∠BEF+∠DEF(角的和与差),∴∠BED=∠ABE+∠CDE(等量代换),∵∠ABE=40°,∠CDE=60°(已知),∴∠BED=∠ABE+∠CDE=100°(等量代换),问题迁移:(1)解:∠APC=a+β,理由:过点P作PQ∥AB,∴∠APQ=∠BAP(两直线平行,内错角相等),∵AB∥CD(已知),∴PQ∥CD(平行于同一直线的两直线平行),∴∠CPQ=∠DCP(两直线平行,内错角相等),又∵∠APC=∠APQ+∠CPQ(角的和与差),∴∠APC=∠BAP+∠DCP(等量代换),∵∠BAP=α,∠DCP=β(已知),∴∠APC=α+β(等量代换),(2)如图所示:解:①如图,当P在BN上时,∠APC=β﹣α,理由:过点P作PQ∥AB,由(1)同理可证:∠APQ=∠BAP,∠CPQ=∠DCP,∵∠APC=∠CPQ﹣∠APQ,∴∠APC=∠DCP﹣∠BAP,∵∠BAP=α,∠DCP=β,∴∠APC=β﹣α;②如图,当P在OD上时,∠APC=α﹣β,理由:过点P作PQ∥CD,由(1)同理可证:∠APQ=∠BAP,∠CPQ=∠DCP,∵∠APC=∠APQ﹣∠CPQ,∴∠APC=∠BAP﹣∠DCP,∵∠BAP=α,∠DCP=β,∴∠APC=α﹣β.。

七年级平行线中的求角度问题技巧

七年级平行线中的求角度问题技巧

七年级平行线中的求角度问题技巧全文共四篇示例,供读者参考第一篇示例:平行线中的求角度问题是中学几何学习中的重要内容,也是学生们较为关注的难点之一。

在七年级阶段,学生们开始接触平行线及其相关概念,如同位角、内错角、同旁内角等。

要想顺利解决平行线中的求角度问题,首先需要掌握基本的平行线性质,然后灵活运用各种角度间的关系和性质,通过观察图形,巧妙运用角度规律,逐步深入解决问题。

下面将介绍七年级平行线中求角度问题的解题技巧。

一、掌握基本的平行线性质在解决平行线中的求角度问题时,首先要明确以下几条基本平行线性质:1. 同位角相等:同位角是指两条直线被一条截线分成的相对的对应角,它们的大小相等。

掌握以上几条基本的平行线性质,可以快速推导出很多角度之间的关系,为解题提供便利。

二、观察图形,找到已知信息在解决平行线中的求角度问题时,要先仔细观察图形,寻找已知信息,明确题目要求。

有时候,题目中已经给出了一些角度的大小或者角度之间的关系,这些信息是解题的关键。

只有先了解已知信息,才能有针对性地解题。

三、灵活运用角度间的关系和性质在解决平行线中的求角度问题时,要灵活运用各种角度间的关系和性质,例如同位角、内错角、同旁内角等,根据题目条件构建方程,推导出未知角度的大小。

要注意在运用角度性质时,要保持逻辑清晰,不要遗漏任何可能的角度关系。

四、根据题目要求作答,注意单位问题在解决平行线中的求角度问题后,要根据题目要求给出最终的答案。

要注意单位问题,有时题目要求给出的是度数或者比例关系,要保持统一单位,并注意标注解题过程,使得解答清晰易懂。

五、多练习,巩固技巧要通过大量的练习来巩固求角度的解题技巧,熟练掌握平行线中的角度性质,不断提高解题能力。

通过反复练习,逐渐提高解题的速度和准确性,达到熟练运用平行线角度性质的目的。

第二篇示例:平行线是几何学中常见的概念,指在同一个平面上,不相交且方向相同的两条直线。

对于七年级的学生来说,理解和运用平行线的性质非常重要,尤其是在求解求角度问题时。

七年级数学下册平行线中的“拐点”问题专题练习

七年级数学下册平行线中的“拐点”问题专题练习

七年级数学下册平行线中的“拐点”问题专题练习模型1M型【例1】如图,已知AB∥CD,则∠B,∠BED,∠D之间有何数量关系?请说明理由.【思路点拨】由已知条件知,AB∥CD,但图形中没有截这两条平行线的第三条直线,因而不能直接用平行线的性质解决.为此可构造第三条直线,即过点E 作EF∥AB,于是BE,DE就可以作为第三条直线了.变式当点E运动到平行线的外侧1.已知AB∥CD,点E为AB,CD之外任意一点.(1)如图1,探究∠BED与∠B,∠D的数量关系,并说明理由;(2)如图2,探究∠CDE与∠B,∠BED的数量关系,并说明理由.拓展平行线间有多个拐点2.(1)如图1中,AB∥CD,则∠E+∠G与∠B+∠F+∠D有何关系?(2)在图2中,若AB∥CD,又能得到什么结论?如果出现多个拐点时,可以作多条平行线,从而将多拐点问题转化为一个拐点问题来处理.M型最终的结论为:朝左的角之和等于朝右的角之和.模型2铅笔型【例2】如图,直线AB∥CD,∠B,∠BED,∠D之间有什么关系呢?为什么?拓展平行线间有多个拐点3.(1)①如图1,MA1∥NA2,则∠A1+∠A2=度;②如图2,MA1∥NA3,则∠A1+∠A2+∠A3=度;③如图3,MA1∥NA4,则∠A1+∠A2+∠A3+∠A4=度;④图4,MA1∥NA5,则∠A1+∠A2+∠A3+∠A4+∠A5=度;从上述结论中你发现了什么规律?(2)如图5,MA1∥NA n,则∠A1+∠A2+∠A3+…+∠A n=度.小专题(二)利用平行线的性质求角的度数类型1直接利用平行线的性质与判定求角度1.如图,OC是∠AOB的平分线,l∥OB.若∠1=52°,则∠2的度数为( ) A.52°B.54°C.64°D.69°2.如图,CD∥AB,点O在AB上,OE平分∠BOD,OF⊥OE,∠D=110°,则∠AOF的度数是( )A.20°B.25°C.30°D.35°3.如图,AB∥CD,CB∥DE,∠B=50°,则∠D=.4.如图,已知EF∥AD,∠1=∠2,∠BAC=80°,求∠AGD的度数.类型2借助学具的特征求角度5.如图,将直尺与30°角的三角尺叠放在一起.若∠1=40°,则∠2的大小是( ) A.40° B.60° C.70° D.80°6.如图,一块直角三角板的两锐角的顶点刚好落在平行线l1,l2上,已知∠C是直角,则∠1+∠2的度数等于( )A.75° B.90° C.105° D.120°类型3折叠问题中求角度7.将一个长方形纸片折叠成如图所示的图形.若∠ABC=26°,则∠ACD=.8.如图,一个四边形纸片ABCD,∠B=∠D=90°,∠C=130°.把纸片按如图所示折叠,使点B落在AD边上的B′点,AE是折痕,则∠AEB的度数是.类型4抽象出平行线模型求角度(建模思想)9.如图,∠AOB的一边OA为平面镜,∠AOB=38°,一束光线(与水平线OB 平行)从点C射入经平面镜反射后,反射光线落在OB上的点E处,已知∠ADC =∠ODE.则∠DEB的度数是度.10.如图1是我们常用的折叠式小刀,图2中刀柄外形是一个梯形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图2所示的∠1与∠2,则∠1与∠2的度数和是.小专题(三)平行线的性质与判定的综合运用——教材P37T13的变式与应用教材母题(教材P37T13):完成下面的证明.(1)如图1,点D,E,F分别是三角形ABC的边BC,CA,AB上的点,DE∥BA,DF∥CA.求证:∠FDE=∠A.证明:∵DE∥BA,∴∠FDE=.∵DF∥CA,∴∠A=.∴∠FDE=∠A.(2)如图2,AB和CD相交于点O,∠C=∠COA,∠D=∠BOD.求证AC∥BD.证明:∵∠C=∠COA,∠D=∠BOD,又∠COA=∠BOD( ),∴∠C=.∴AC∥BD(内错角相等,两直线平行).(1)判定两直线平行的方法有五种:①平行线的定义;②平行公理的推论;③同位角相等,两直线平行;④内错角相等,两直线平行;⑤同旁内角互补,两直线平行.(2)判定两直线平行时,定义一般不常用,其他四种方法要灵活运用,推理时要注意书写格式.(3)由两条直线平行得到同位角相等、内错角相等或同旁内角互补,解题时应结合图形先确认所成的角是不是两平行线被第三条直线所截得的同位角或内错角或同旁内角,同时要学会简单的几何说理,做到每一步有理有据.1.如图,已知AD⊥BC,EF⊥BC,垂足分别为D,F,∠2+∠3=180°.试说明:∠GDC=∠B.下面是不完整的说理过程,请你将横线上的过程和括号里的理由补充完整.解:因为AD⊥BC,EF⊥BC(已知),①所以∠ADB=∠EFB=(垂直的定义).②所以(同位角相等,两直线平行).③所以∠1+∠2=(两直线平行,同旁内角互补).④又因为∠2+∠3=180°( ),⑤所以∠1=∠3( ).⑥所以AB∥DG( ).⑦所以∠GDC=∠B( ).2.如图,点G在射线BC上,射线DE与AB,AG分别交于点H,M.若DF∥AB,∠B=75°,∠D=105°,求证:∠AME=∠AGC.3.如图,AB∥CD,AE平分∠BAD,CD与AE相交于点F,∠CFE=∠E.求证:AD∥BC.4.如图,∠E=∠1,∠3+∠ABC=180°,BE是∠ABC的平分线.你能判断DF与AB的位置关系吗?请说明理由.5.如图,AB⊥BD于点B,点E是BD上的点,AE平分∠BAC,CE平分∠ACD,且∠1+∠2=90°.求证:CD⊥BD.6.如图,把一张长方形ABCD的纸片沿EF折叠后,ED与BC的交点为G,点D,C分别落在D′,C′的位置上.若∠EFG=55°,求∠1,∠2的度数.7.如图,已知BC∥GE,∠AFG=∠1=50°.(1)求证:AF∥DE;(2)若AQ平分∠FAC,交BC于点Q,且∠Q=15°,求∠ACQ的度数.参考答案:小专题(一)平行线中的“拐点”问题模型1M型【例1】如图,已知AB∥CD,则∠B,∠BED,∠D之间有何数量关系?请说明理由.【思路点拨】由已知条件知,AB∥CD,但图形中没有截这两条平行线的第三条直线,因而不能直接用平行线的性质解决.为此可构造第三条直线,即过点E 作EF∥AB,于是BE,DE就可以作为第三条直线了.【解答】∠BED=∠B+∠D.理由:过点E作EF∥AB,则EF∥CD.∴∠B=∠BEF,∠D=∠DEF.∴∠BED=∠BEF+∠DEF=∠B+∠D.变式当点E运动到平行线的外侧1.已知AB∥CD,点E为AB,CD之外任意一点.(1)如图1,探究∠BED与∠B,∠D的数量关系,并说明理由;(2)如图2,探究∠CDE与∠B,∠BED的数量关系,并说明理由.解:(1)∠B=∠BED+∠D.理由如下:过点E作EF∥AB,则AB∥CD∥EF.∴∠BEF=∠B,∠D=∠DEF.∵∠BEF=∠BED+∠DEF,∴∠B=∠BED+∠D.(2)∠CDE=∠B+∠BED.理由如下:过点E作EF∥AB,则AB∥CD∥EF.∴∠B+∠BEF=180°,∠CDE+∠DEF=180°.又∵∠DEF=∠BEF-∠BED,∴∠CDE+∠BEF-∠BED=∠B+∠BEF,即∠CDE=∠B+∠BED.拓展平行线间有多个拐点2.(1)如图1中,AB∥CD,则∠E+∠G与∠B+∠F+∠D有何关系?(2)在图2中,若AB∥CD,又能得到什么结论?解:(1)∠BEF+∠FGD=∠B+∠EFG+∠D.理由:过点E,F,G分别作EM∥AB,FN∥AB,GH∥AB,由AB∥CD,得AB∥EM∥FN∥GH∥CD.∴∠BEM=∠B,∠MEF=∠EFN,∠NFG=∠FGH,∠HGD=∠D.∴∠BEF+∠FGD=∠BEM+∠MEF+∠FGH+∠HGD=∠B+∠EFN+∠NFG+∠D=∠B+∠EFG+∠D.(2)在图2中,有∠E1+∠E2+∠E3+…+∠E n=∠B+∠F1+∠F2+…+∠F n-1+∠D.如果出现多个拐点时,可以作多条平行线,从而将多拐点问题转化为一个拐点问题来处理.M型最终的结论为:朝左的角之和等于朝右的角之和.模型2铅笔型【例2】如图,直线AB∥CD,∠B,∠BED,∠D之间有什么关系呢?为什么?【解答】∠B+∠BED+∠D=360°.理由:过点E作EF∥AB.∵AB∥CD,∴AB∥CD∥EF.∴∠B+∠BEF=180°,∠D+∠DEF=180°.∴∠B+∠BEF+∠D+∠DEF=360°,即∠B+∠BED+∠D=360°.拓展平行线间有多个拐点3.(1)①如图1,MA1∥NA2,则∠A1+∠A2=180度;②如图2,MA1∥NA3,则∠A1+∠A2+∠A3=360度;③如图3,MA1∥NA4,则∠A1+∠A2+∠A3+∠A4=540度;④图4,MA1∥NA5,则∠A1+∠A2+∠A3+∠A4+∠A5=720度;从上述结论中你发现了什么规律?(2)如图5,MA1∥NA n,则∠A1+∠A2+∠A3+…+∠A n=180(n-1)度.解:每增加一个角,度数增加180°.小专题(二)利用平行线的性质求角的度数类型1直接利用平行线的性质与判定求角度1.如图,OC是∠AOB的平分线,l∥OB.若∠1=52°,则∠2的度数为( C ) A.52°B.54°C.64°D.69°2.如图,CD∥AB,点O在AB上,OE平分∠BOD,OF⊥OE,∠D=110°,则∠AOF的度数是( D )A.20°B.25°C.30°D.35°3.如图,AB∥CD,CB∥DE,∠B=50°,则∠D=130°.4.如图,已知EF∥AD,∠1=∠2,∠BAC=80°,求∠AGD的度数.解:∵EF∥AD,∴∠2=∠3(两直线平行,同位角相等).∵∠1=∠2,∴∠1=∠3(等量代换).∴AB∥DG(内错角相等,两直线平行).∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补).∵∠BAC=80°,∴∠AGD=100°.类型2借助学具的特征求角度5.如图,将直尺与30°角的三角尺叠放在一起.若∠1=40°,则∠2的大小是( D ) A.40° B.60° C.70° D.80°6.如图,一块直角三角板的两锐角的顶点刚好落在平行线l1,l2上,已知∠C是直角,则∠1+∠2的度数等于( B )A.75° B.90° C.105° D.120°类型3折叠问题中求角度7.将一个长方形纸片折叠成如图所示的图形.若∠ABC=26°,则∠ACD=128°.8.如图,一个四边形纸片ABCD,∠B=∠D=90°,∠C=130°.把纸片按如图所示折叠,使点B落在AD边上的B′点,AE是折痕,则∠AEB的度数是65°.类型4抽象出平行线模型求角度(建模思想)9.如图,∠AOB的一边OA为平面镜,∠AOB=38°,一束光线(与水平线OB 平行)从点C射入经平面镜反射后,反射光线落在OB上的点E处,已知∠ADC =∠ODE.则∠DEB的度数是76度.10.如图1是我们常用的折叠式小刀,图2中刀柄外形是一个梯形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图2所示的∠1与∠2,则∠1与∠2的度数和是90°.小专题(三)平行线的性质与判定的综合运用——教材P37T13的变式与应用教材母题(教材P37T13):完成下面的证明.(1)如图1,点D,E,F分别是三角形ABC的边BC,CA,AB上的点,DE∥BA,DF∥CA.求证:∠FDE=∠A.证明:∵DE∥BA,∴∠FDE=∠BFD(两直线平行,内错角相等).∵DF∥CA,∴∠A=∠BFD(两直线平行,同位角相等).∴∠FDE=∠A.(2)如图2,AB和CD相交于点O,∠C=∠COA,∠D=∠BOD.求证AC∥BD.证明:∵∠C=∠COA,∠D=∠BOD,又∠COA=∠BOD(对顶角相等),∴∠C=∠D.∴AC∥BD(内错角相等,两直线平行).(1)判定两直线平行的方法有五种:①平行线的定义;②平行公理的推论;③同位角相等,两直线平行;④内错角相等,两直线平行;⑤同旁内角互补,两直线平行.(2)判定两直线平行时,定义一般不常用,其他四种方法要灵活运用,推理时要注意书写格式.(3)由两条直线平行得到同位角相等、内错角相等或同旁内角互补,解题时应结合图形先确认所成的角是不是两平行线被第三条直线所截得的同位角或内错角或同旁内角,同时要学会简单的几何说理,做到每一步有理有据.1.如图,已知AD⊥BC,EF⊥BC,垂足分别为D,F,∠2+∠3=180°.试说明:∠GDC=∠B.下面是不完整的说理过程,请你将横线上的过程和括号里的理由补充完整.解:因为AD⊥BC,EF⊥BC(已知),①所以∠ADB=∠EFB=90°(垂直的定义).②所以AD∥EF(同位角相等,两直线平行).③所以∠1+∠2=180°(两直线平行,同旁内角互补).④又因为∠2+∠3=180°(已知),⑤所以∠1=∠3(同角的补角相等).⑥所以AB∥DG(内错角相等,两直线平行).⑦所以∠GDC=∠B(两直线平行,同位角相等).2.如图,点G在射线BC上,射线DE与AB,AG分别交于点H,M.若DF∥AB,∠B=75°,∠D=105°,求证:∠AME=∠AGC.证明:∵DF∥AB(已知),∴∠D=∠BHM(两直线平行,同位角相等).又∵∠B=75°,∠D=105°(已知),∴∠B+∠BHM=75°+105°=180°.∴DE∥BC(同旁内角互补,两直线平行).∴∠AME=∠AGC(两直线平行,同位角相等).3.如图,AB∥CD,AE平分∠BAD,CD与AE相交于点F,∠CFE=∠E.求证:AD∥BC.证明:∵AE平分∠BAD(已知),∴∠1=∠2(角平分线的定义).∵AB∥CD(已知),∴∠1=∠CFE(两直线平行,同位角相等).又∵∠1=∠2(已证),∠CFE=∠E(已知),∴∠2=∠E(等量代换).∴AD∥BC(内错角相等,两直线平行).4.如图,∠E=∠1,∠3+∠ABC=180°,BE是∠ABC的平分线.你能判断DF与AB的位置关系吗?请说明理由.解:DF∥AB.理由:∵BE是∠ABC的平分线,∴∠1=∠2(角平分线的定义).∵∠E=∠1(已知),∴∠E=∠2(等量代换).∴AE∥BC(内错角相等,两直线平行).∴∠A+∠ABC=180°(两直线平行,同旁内角互补).∵∠3+∠ABC=180°(已知),∴∠A=∠3(等量代换).∴DF∥AB(同位角相等,两直线平行).5.如图,AB⊥BD于点B,点E是BD上的点,AE平分∠BAC,CE平分∠ACD,且∠1+∠2=90°.求证:CD⊥BD.证明:∵AE平分∠BAC,CE平分∠ACD(已知),∴∠BAC=2∠1,∠ACD=2∠2(角平分线的性质).∴∠BAC+∠ACD=2∠1+2∠2=2(∠1+∠2).∵∠1+∠2=90°(已知),∴∠BAC+∠ACD=180°.∴AB∥CD(同旁内角互补,两直线平行).∴∠B+∠D=180°(两直线平行,同旁内角互补).∴∠D=180°-∠B(等式的性质).∵AB⊥BD(已知),∴∠B=90°(垂直的定义).∴∠D=90°,即CD⊥BD.6.如图,把一张长方形ABCD的纸片沿EF折叠后,ED与BC的交点为G,点D,C分别落在D′,C′的位置上.若∠EFG=55°,求∠1,∠2的度数.解:∵AD∥BC,∠EFG=55°,∴∠2=∠GED,∠DEF=∠EFG=55°(两直线平行,内错角相等).由折叠,知∠GEF=∠DEF=55°.∴∠GED=110°.∴∠2=110°.∴∠1=180°-∠2=70°(两直线平行,同旁内角互补).7.如图,已知BC∥GE,∠AFG=∠1=50°.(1)求证:AF∥DE;(2)若AQ平分∠FAC,交BC于点Q,且∠Q=15°,求∠ACQ的度数.解:(1)证明:∵BC∥GE,∴∠E=∠1=50°.∵∠AFG=∠1=50°,∴∠E=∠AFG=50°.∴AF∥DE.(2)过点A作AP∥GE,∵BC∥GE,∴AP∥GE∥BC.∴∠FAP=∠AFG=50°,∠PAQ=∠Q=15°.∴∠FAQ=∠FAP+∠PAQ=65°.∵AQ平分∠FAC,∴∠CAQ=∠FAQ=65°.∴∠CAP=80°.∴∠ACQ=180°-∠CAP=100°.。

七年级数学下册平行线中 “拐点”问题专题培优训练 含解析

七年级数学下册平行线中 “拐点”问题专题培优训练 含解析

平行线中“拐点”问题专题培优训练一.选择题1.如图,直线AB∥CD,AE⊥CE,∠1=125°,则∠C等于()A.35°B.45°C.50°D.55°2.如图,BA∥DE,∠B=30°,∠D=40°,则∠C的度数是()A.10°B.35°C.70°D.80°3.如图,AB∥DE,BC⊥CD,则以下说法中正确的是()A.α,β的角度数之和为定值B.α,β的角度数之积为定值C.β随α增大而增大D.β随α增大而减小4.如图,AB∥CD,EMNF是直线AB、CD间的一条折线.若∠1=40°,∠2=60°,∠3=70°,则∠4的度数为()A.55°B.50°C.40°D.30°5.已知,如图,AB∥CD,则∠α、∠β、∠γ之间的关系为()A.∠α+∠β+∠γ=360°B.∠α﹣∠β+∠γ=180°C.∠α+∠β﹣∠γ=180°D.∠α+∠β+∠γ=180°二.填空题6.如图,a∥b,∠2=95°,∠3=150°,则∠1的度数是.7.如图,一环湖公路的AB段为东西方向,经过四次拐弯后,又变成了东西方向的FE段,则∠B+∠C+∠D+∠E的度数是.8.一大门栏杆的平面示意图如图所示,BA垂直地面AE于点A,CD平行于地面AE,若∠BCD=150°,则∠ABC=度.9.如图,AB∥CD,∠A=75°,∠C=30°,∠E的度数为.10.如图,AB∥CD,∠A=20°,∠CDP=145°,则∠P=°.11.如图,已知AB∥CD,∠AFC=120°,∠EAF=∠EAB,∠ECF=∠ECD,则∠AEC =度.三.解答题12.看图填空:如图,已知AB∥CD,∠ABE=130°,∠CDE=152°,求∠BED的度数.解:过E点作EF∥CD∴∠CDE+=180°∴∠DEF=又∵AB∥CD,∴EF∥∴∠ABE+=180°,∴∠BEF=∴∠BED=∠BEF+∠DEF=.13.如图,已知直线AB∥CD,∠ABE=60°,∠CDE=20°,求∠BED的度数.14.如图:已知AB∥CD,∠ABE与∠CDE两个角的角平分线相交于F.(1)如图1,若∠E=80°,求∠BFD的度数.(2)如图2:若∠ABM=∠ABF,∠CDM=∠CDF,写出∠M和∠E之间的数量关系并证明你的结论.15.先阅读下面的解题过程,再解答问题:如图①,已知AB∥CD,∠B=40°,∠D=30°,求∠BED的度数.解:过点E作EF∥AB,则AB∥CD∥EF,因为EF∥AB,所以∠1=∠B=40°又因为CD∥EF,所以∠2=∠D=30°所以∠BED=∠1+∠2=40°+30°=70°.如图②是小军设计的智力拼图玩具的一部分,现在小军遇到两个问题,请你帮他解决:(1)如图②∠B=45°,∠BED=75°,为了保证AB∥CD,∠D必须是多少度?请写出理由.(2)如图②,当∠G、∠GFP、∠P满足什么关系时,GH∥PQ,请直接写出满足关系的式子,并在如图②中画出需要添加的辅助线.16.如图(1)所示,AB∥CD,根据平行线的性质可知内错角∠B与∠C相等,观察图(2),(3)与(4),回答下列问题.①如图(2)所示,AB∥CD,试问∠E+∠C与∠B+∠F哪个大?请说明理由;②如图(3)所示,AB∥CD,试问∠E+∠G+∠C与∠B+∠H+∠F哪个大?(直接写出答案,不必说明理由)③根据第①,②小题的结论,在图(4)中,若AB∥CD,你又能得到什么结论?17.如图所示,直线AB∥CD,直线EF分别交AB、CD于E、F两点,∠BEF、∠DFE的平分线相交于点K.(1)求∠EKF的度数;(2)如图(2)所示,作∠BEK、∠DFK的平分线相交于点K1,问∠K1与∠K的度数是否存在某种特定的等量关系?写出结论并证明.(3)在图(2)中作∠BEK1、∠DFK1的平分线相交于点K2,作∠BEK2、∠DFK2的平分线相交于点K3,依此类推,……,请直接写出∠K4的度数.参考答案一.选择题1.解:过点E作EF∥AB,则EF∥CD,如图所示.∵EF∥AB,∴∠BAE=∠AEF.∵EF∥CD,∴∠C=∠CEF.∵AE⊥CE,∴∠AEC=90°,即∠AEF+∠CEF=90°,∴∠BAE+∠C=90°.∵∠1=125°,∠1+∠BAE=180°,∴∠BAE=180°﹣125°=55°,∴∠C=90°﹣55°=35°.故选:A.2.解:过点C作FC∥AB,∵BA∥DE,∴BA∥DE∥FC,∴∠B=∠BCF,∠D=∠DCF,∵∠B=30°,∠D=40°,∴∠BCF=30°,∠DCF=40°,∴∠BCD=70°,故选:C.3.解:过C点作CF∥AB,∵AB∥DE,∴CF∥DE,∴∠α=∠BCF,∠β+∠DCF=180°,∵BC⊥CD,∴∠BCF+∠DCF=90°,∴∠α+180°﹣∠β=90°,∴∠β﹣∠α=90°,∴β随α增大而增大,故选:C.4.解:如图2,过M作OM∥AB,PN∥AB,∵AB∥CD,∴AB∥OM∥PN∥CD,∴∠1=∠EMO,∠4=∠PNF,∠OMN=∠PNM,∴∠EMN﹣∠MNF=(∠1+∠MNP)﹣(∠MNP+∠4)=∠1﹣∠4,∴60°﹣70°=40°﹣∠4,∴∠4=50°.故选:B.5.解:过点E作EF∥AB,则EF∥CD.∵EF∥AB∥CD,∴∠α+∠AEF=180°,∠FED=∠γ,∴∠α+∠β=180°+∠γ,即∠α+∠β﹣∠γ=180°.故选:C.二.填空题6.解:过点C作CD∥a,∵a∥b,∴CD∥a∥b,∴∠1+∠ECD=180°,∠3+∠DCF=180°,∵∠2=95°,∠3=150°,∴∠1+∠2+∠3=360°,∴∠1=360°﹣∠2﹣∠3=360°﹣150°﹣95°=115°,故答案为:115°.7.解:如图,根据题意可知:AB∥EF,分别过点C,D作AB的平行线CG,DH,所以AB∥CG∥DH∥EF,则∠B+∠BCG=180°,∠GCD+∠HDC=180°,∠HDE+∠DEF=180°,∴∠B+∠BCG+∠GCD+∠HDC+∠HDE+∠DEF=180°×3=540°,∴∠B+∠BCD+∠CDE+∠E=540°.故答案为540°.8.解:如图,连接BF,BF∥CD,∵CD∥AE,∴CD∥BF∥AE,∴∠1+∠BCD=180°,∠2+∠BAE=180°,∵∠BCD=150°,∠BAE=90°,∴∠1=30°,∠2=90°,∴∠ABC=∠1+∠2=120°.故答案为:120.9.解:过点E作EF∥AB,则EF∥CD,如图所示.∵EF∥AB,EF∥CD,∴∠AEF=∠A=75°,∠CEF=∠C=30°,∴∠AEC=∠AEF﹣∠CEF=75°﹣30°=45°.故答案为:45°.10.解:如图,过点P作PE∥AB,∴∠APE=∠A=20°,∵AB∥CD,∴PE∥CD,∴∠EPD=180°﹣∠CDP=35°,∴∠APD=∠APE+∠EPD=20°+35°=55°.故答案为:55.11.解:过点E作EM∥AB,过点F作FN∥AB,如图所示.∵EM∥AB,AB∥CD,∴EM∥CD,∴∠AEM=∠EAB,∠CEM=∠ECD.同理,可得:∠AFN=∠F AB,∠CFN=∠FCD.又∵∠EAF=∠EAB,∠ECF=∠ECD,∴∠EAB=∠F AB,∠ECD=∠FCD.∴∠AEC=∠AEM+∠CEM=∠EAB+∠ECD=(∠F AB+∠FCD)=(∠AFN+∠CFN)=∠AFC=90°.故答案为:90.三.解答题12.解:过E点作EF∥CD∴∠CDE+∠DEF=180°,∴∠DEF=180°﹣152°=28°,又∵AB∥CD,∴EF∥AB,∴∠ABE+∠BEF=180°,∴∠BEF=180°﹣130°=50°,∴∠BED=∠BEF+∠DEF=27°+50°=77°.故答案为:∠DEF,180°﹣152°=28°,CD,∠BEF,180°﹣130°=50°,28°+50°=78°.13.解:如图,过点E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠1=∠ABE,∠2=∠CDE,∴∠BED=∠1+∠2=60°+20°=80°.14.解:(1)如图1,作EG∥AB,FH∥AB,∴EG∥AB∥FH∥CD,∴∠ABF=∠BFH,∠CDF=∠DFH,∠ABE+∠BEG=180°,∠GED+∠CDE=180°,∴∠ABE+∠BEG+∠GED+∠CDE=360°∵∠BED=∠BEG+∠DEG=80°,∴∠ABE+∠CDE=280°,∵∠ABF和∠CDF的角平分线相交于E,∴∠ABF+∠CDF=140°,∴∠BFD=∠BFH+∠DFH=140°;(2)∵∠ABM=∠ABF,∠CDM=∠CDF,∴∠ABF=3∠ABM,∠CDF=3∠CDM,∵∠ABE与∠CDE两个角的角平分线相交于点F,∴∠ABE=6∠ABM,∠CDE=6∠CDM,∴6∠ABM+6∠CDM+∠E=360°,∵∠M=∠ABM+∠CDM,∴6∠M+∠E=360°.15.解:(1)∠D=30°,理由如下:过E作EM∥AB,如图,则∠B=∠2=45°,∴∠1=∠BED﹣∠2=30°,∴∠1=∠D,∴EM∥CD,又∵EM∥AB,(2)当∠G+∠GFP+∠P=360°时,GH∥PQ,理由如下:过F作FN∥GH,如图,则∠G+∠4=180°,又∵∠G+∠GFP+∠P=360°∴∠3+∠P=180°,∴FN∥PQ,∴GH∥PQ.16.解:①如图,分别过E,F作AB的平行线EM,FN,∵AB∥CD,∴AB∥CD∥EM∥NF,∴∠ABE=∠BEM,∠MEF=∠EFN,∠NFC=∠FCD,∴∠BEF+∠C=∠B+∠EFC,∴∠E+∠C=∠B+∠F;②分别过E,F,G,H作AB的平行线EM,NF,GP,QH,和①的方法一样可得∠E+∠G+∠C=∠B+∠H+∠F;③∠E1+∠E2+…+∠E n+∠C=∠F1+∠F2+…+∠F n+∠B(开口朝左的所有角度之和与开口朝右的所有角度之和相等).17.解:(1)如图(1),过K作KG∥AB,交EF于G,∵AB∥CD,∴∠BEK=∠EKG,∠GKF=∠KFD,∵EK、FK分别为∠BEF与∠EFD的平分线,∴∠BEK=∠FEK,∠EFK=∠DFK,∵AB∥CD,∴∠BEK+∠FEK+∠EFK+∠DFK=180°,即2(∠BEK+∠DFK)=180°,∴∠BEK+∠DFK=90°,则∠EKF=∠EKG+∠GKF=90°;(2)∠K=2∠K1,理由为:∵∠BEK、∠DFK的平分线相交于点K1,∴∠BEK1=∠KEK1,∠KFK1=∠DFK1,∵∠BEK+∠FEK+∠EFK+∠DFK=180°,即2(∠BEK+∠KFD)=180°,∴∠BEK+∠KFD=90°,即∠BEK1+∠DFK1=45°,同理得∠K1=∠BEK1+∠DFK1=45°,则∠K=2∠K1;(3)如图(3),根据(2)中的规律可得:∠K2=∠K1=22.5°,∠K3=∠K2=11.25°,∠K4=∠K3=5.625°.。

七年级压轴题24题,平行线的探索拐角问题

七年级压轴题24题,平行线的探索拐角问题

拐角问题——基本图形及辅助线方法技巧方法技巧1.过折线的拐点作平行线,用平行公理推论得到多条平行线,再转化角.2.涉及到角平分线问题,往往设未知数导角或列方程求解.题型一平行线+单拐点(+角平分线等)模型【例1】如图1,点A,C,B 不在同一条直线上,AD∥BE.(1)求证:∠B+∠ACB-∠A=180°;(2)如图2,HQ,BQ 分别为∠DAC,∠EBC 的平分线所在的直线,试探究∠C 与∠AQB 的数量关系;题型二平行线+双拐点(+角平分线等)模型【例2】如图1,AB∥CD,∠B=20°,∠D=110°.(1)若∠E=50°,求∠F 的度数;【解答】分别过点E,F 作EM∥AB,FN∥AB.∴EM∥AB∥FN.∴∠B=∠BEM=20°,∠MEF=∠EFN.又∵AB∥CD,AB∥FN.∴CD∥FN.∴∠D+∠DFN=180°,又∵∠D=110°,∴∠DFN ==70°,易得∠EFN=∠MEF=∠BEF-∠BEM=50°-20°=30°.∴∠EFD=∠EFN+∠NIFD=30°+70°=100°.(2)如图2,探索∠E 与∠F 之间满足的数量关系,并说明理由;.【解答】分别过点E,F 作EM∥AB,FN∥A B.∴EM∥AB∥FN.∴∠B=∠BEM=20°,∠MEF=∠EFN,又∵AB∥CD,AB∥FN,∴CD∥FN.∴∠D+∠DFN=180°,又∵∠D=110°,∴∠DFN=70°,∴∠BEF=∠MEF+20°,∠EFD=∠EFN+70°,∴∠EFD=∠MEF+70°,∴∠EFD=∠BEF+50°.(3)如图3,EP 平分∠BEF,FG 平分∠EFD,FG 的反向延长线交EP 于点P,求∠P 的度数.【分析】过点F 作FH∥EP,结合(2)中结论,运用模型求解.【解答】过点F 作FH∥EP,由(2)知,∠EFD=∠BEF+50°,设∠BEF=2x°,则∠EFD=(2x+50)°,∵EP 平分∠BEF,GF 平分∠EFD,∴∠PEF=1∠BEF=x°,∠EFG=1∠EFD=(x+25)°,2 2∵FH∥EP,∴∠PEF=∠EFH=x°,∠P=∠HFG,∵∠HFG=∠EFG-∠EFH=25°,∴∠P=25°.针对练习 51.如图,CD∥BE,则∠2+∠3-∠1 的度数等于()A.90°B.120°C.150°D.180°2.如图,AB∥DE,∠C:∠D:∠B=2:3:4,则∠B=.3.如图,直线l3,l4 与l1,l2 分别相交于点A,B,C,D,且∠1+∠2=180°.(1)直线l1 与l2 平行吗?为什么?(2)点E 在线段AD 上,若∠ABE=30°,∠BEC=62°,求∠DCE 的度数.【解答】(1)直线l1 与l2 平行.理由如下:∵∠1+∠BAE=180°,∠1+∠2=180°,∴∠2=∠BAE.∴l1∥l2.(2)过点E 作EF∥AB 交BC 于点F,可得∠BEF=∠ABE=30°.∴∠FEC=62°-30°=32°.∵l1∥l2,∴ EF∥CD,∴∠DCE=∠FEC=32°.5.将北斗七星分别标为A,B,C,D,E,F,G,如图,将A,B,C,D,E,F 顺次首尾连结,若AF 恰好经过点G,且AF∥DE,∠B=∠BCD+10°,∠CDE=∠E=105°.(1)求∠F 的度数;(2)计算∠B-∠CGF的度数是;(直接写出结果)(3)连接AD,∠ADE 与∠CGF 满足怎样数量关系时,BC∥AD?并说明理由.【解答】(1)∵AF∥DE,∴∠F+∠E=180°.∴∠F=180°-105°=75°.(2)作MC∥AF.∵AF∥DE,∴AF∥CM∥DE,∴∠BCM=∠FGC,∠MCD=∠CDE,∴∠BCD=∠BCM+∠MCD=∠CGF+∠CDE,∠B-∠CGF=∠BCD+10°-∠CGF=∠CGF +∠CDE+10°-∠CGF=∠CDE+10°=115°.(3)当∠ADE+∠CGF=180°时,BC∥A D.理由如下:∵AF∥DE,∴∠GAD+∠ADE=180°,∠ADE+∠CGF=180".∴∠GAD=∠CGF.∴BC∥A D.整体思想求角题型一 设单个未知数求定角方法技巧巧设题目未知数,用该未知数表示其它未知角,然后运用角的和或差计算出定角【例 1】如图 1,直线 MN 与直线 AB ,CD 分别交于点 E ,F ,AB ∥CD ,∠BEF 与∠EFD 的角平分线交于点 P ,EP 的延长线与 CD 交于点 G ,点 H 是 MN 上一点,且 CH ⊥EC .(1) 求证:PF ∥GH ;(2) 如图 2,连接 PH ,K 是 GH 上一点,∠PHK =∠HPK ,作 PQ 平分∠EPK ,问∠HPQ 的大小是否发生变化?若不变,请求出其值;若变化,请说明理由图 1 图 2【分析】(1)过点 P 作 AB 的平行线交 MN 于点 T ,运用平行线+拐点模型求∠EPF ,再根据 ∠ECH 的大小关系求解;(2)设∠PHK =∠HPK =x ,用 x 表示未知角,运用整体思想求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题压轴题平行线的拐角问题24 七年级下册第七下平行线,平面直角坐标系压轴题二.解答题(共27小题)14.如图,已知直线AB∥CD,直线EF分别与AB、CD相交于点E、F,FM平分∠EFD,点H是射线EA上一动点(不与点E重合),过点H的直线交EF于点P,HM平分∠BHP交FM于点M.(1)如图1,试说明:∠HMF=(∠BHP+∠DFP);请在下列解答中,填写相应的理由:解:过点M作MQ∥AB(过直线外一点有且只有一条直线与这条直线平行).∵AB∥CD(已知),∴MQ∥CD(如果两条直线都和第三条直线平行,那么这两条直线也互相平行)∴∠1=∠3,∠2=∠4()∴∠1+∠2=∠3+∠4(等式的性质)即∠HMF=∠1+∠2.∵FM平分∠EFD,HM平分∠BHP(已知)∵∠1=∠BHP,∠2=∠DFP().DFP)(等量代换)∠+DFP=(∠BHP+∠∴∠HMF=∠BHP的度数;,求∠HMFHP)如图2,若⊥EF(2,试说Q⊥FM于点NHFE交AB于点N,过点作NQFNP3()如图3,当点与点F 重合时,平分∠.EHF=2∠FNQ明无论点H在何处都有∠是射线H平分∠F,FMEFD,点、相交于点、分别与,直线∥.如图,已知直线14ABCDEFABCDE页(共121/ 1 12第页)题压轴题平行线的拐角问题24七年级下册第EA上一动点(不与点E重合),过点H的直线交EF于点P,HM平分∠BHP交FM于点M.(1)如图1,试说明:∠HMF=(∠BHP+∠DFP);请在下列解答中,填写相应的理由:解:过点M作MQ∥AB(过直线外一点有且只有一条直线与这条直线平行).∵AB∥CD(已知),∴MQ∥CD(如果两条直线都和第三条直线平行,那么这两条直线也互相平行)∴∠1=∠3,∠2=∠4(两直线平行,内错角相等)∴∠1+∠2=∠3+∠4(等式的性质)即∠HMF=∠1+∠2.∵FM平分∠EFD,HM平分∠BHP(已知)∵∠1=∠BHP,∠2=∠DFP(角平分线定义).DFP)(等量代换)∠DFP=(∠BHP+∠∴∠HMF=∠BHP+的度数;,求∠HMF⊥)如图2,若HPEF(2,试说于点Q作NQ⊥FM平分∠重合时,FNHFE交AB于点N,过点N)如图(33,当点P与点F.FNQH明无论点在何处都有∠EHF=2∠)根据两直线平行,内错角相等,以及角平分线定义进行判断即可;1【分析】(的度数;HMF,再根据(1)中结论即可得到∠∥CD,得到∠EHP+∠DFP=90°HP (2)先根据⊥EF,ABHFD=2平分∠EFD,即可得出∠FN平分∠HFE,FM,再根据(3)先根据题意得到∠NFQ=90°﹣∠FNQ.∠FNQ+∠HFD=180°,即可得出∠EHF=2∠NFQ,最后根据∠EHF,其依据为:两直线平行,内错角相等;2=∠41=)由MQ∥CD,得到∠∠3,∠解:【解答】(1,其依据为:角平分线定义.DFP∠1=∠BHP,∠2=平分∠平分∠由FMEFD,HMBHP,得到∠故答案为:两直线平行,内错角相等;角平分线定义.,⊥EFHP2()如图2,∵,HPE=90°∴∠页(共122/ 2 12第页)七年级下册第24题压轴题平行线的拐角问题∴∠EHP+∠HEP=180°﹣90°=90°(三角形的内角和等于180°)又∵AB∥CD,∴∠HEP=∠DFP.∴∠EHP+∠DFP=90°.=45°.=×90°HMF=(∠EHP+∠DFP)由(1)得:∠,FMNQ3,∵⊥(3)如图.)=90°(三角形的内角和等于180°NFQ+∠FNQ=180°﹣90°∴∠.FNQ∴∠NFQ=90°﹣∠,EFD,FM平分∠∵FN平分∠HFE,HFD=∠HFE+∠EFD)又∵∠NFQ=∠NFE+∠QFE=(∠.NFQHFD=2∠∴∠,CDAB∥又∵,∠HFD=180°∴∠EHF+,∠FNQFNQ)=2﹣2∠NFQ=180°2(90°﹣∠∴∠EHF=180°﹣∠HFD=180°﹣.FNQ∠H在何处都有∠EHF=2即无论点本题主要考查了平行线的性质与判定,角平分线的定义以及平行公理的运用,解决问题的【点评】关键是掌握:两直线平行,内错角相等;两直线平行,同旁内角互补.,连结并延长至点FEAC在直线n上,连结上,点∥mn,点B、F在直线mE、.如图151,直线.∠BAC和CA,使∠AEC=BA;BAC=180°+)求证:∠BFA∠(1相等的角,并加以证明;CAF)请在图1中找出与∠(2,请直接写ADC=α的角平分线交于点M,若∠CBFAF,连结BC交于点D,作∠和∠CEF23()如图的式子表示)的度数(用含α出∠M3页(共12123 / 第页)七年级下册第24题压轴题平行线的拐角问题【分析】(1)根据平行线的性质即可得到∠AEC=∠AFM,再根据∠AEC=∠BAC,可得∠AFM=∠BAC,根据∠BFA+∠AFM=180°,可得结论;(2)根据三角形内角和定理以及平行线的性质,即可得到与∠CAF相等的角;(3)过D作DH∥BF,过M作MG∥BF,根据平行线的性质,即可得到∠CED=∠HDE,∠FBD=∠HDB,再根据∠CBF和∠CEF的角平分线交于点M,可得∠CEM+∠FBM=(∠CED+∠FBD),进而得到∠M的度数.【解答】解:(1)如图1,∵直线m∥n,∴∠AEC=∠AFM,∵∠AEC=∠BAC,∴∠AFM=∠BAC,又∵∠BFA+∠AFM=180°,∴∠BFA+∠BAC=180°;(2)与∠CAF相等的角有:∠ANC,∠ABF,∠BNG.证明:∵∠AEC=∠BAC,∠ACE=∠NCA,∴∠CAE=∠ANC=∠BNG,∵m∥n,∴∠ABF=∠ANC,∴与∠CAF相等的角有:∠ANC,∠ABF,∠BNG;(3)如图2,过D作DH∥BF,过M作MG∥BF,∵BF∥CE,∴DH∥BF∥CE,MG∥BF∥CE,4 / 12第4页(共12页)七年级下册第24题压轴题平行线的拐角问题∴∠CED=∠HDE,∠FBD=∠HDB,∴∠CED+∠FBD=∠EDB=180°﹣∠ADC=180°﹣α,∵∠CBF和∠CEF的角平分线交于点M,,α=90°﹣﹣=(180°α)∴∠CEM+∠FBM=(∠CED+∠FBD),CEBF∥∵MG∥,GMBFBM=∠CEM=∠GME,∠∴∠.﹣αCEM+∠FBM=90°GMB=∴∠BME=∠GME+∠∠本题主要考查了平行线的性质的运用,解决问题的关键是作辅助线构造内错角,解题时注【点评】意:两直线平行,内错角相等.上的点.,CDN分别是AB.已知直线AB∥CD,M,16内一点.CD是AB,(1)若E之间的数量关系,并证明.MENDNE,∠,∠①如图甲所示,请写出∠BME的数量关系.与∠MENF2=∠DNE,请利用①的结论探究∠∠②如图乙所示,若∠1=BME,∠外一点.,CD)若E是AB(2之间的数量关系.E,∠END,∠EMB①如图丙所示,请直接写出∠,请在图中画出点∠EMGN=,在射线MP上找一点G,使得∠BMP=②如图丁所示,已知∠∠EMB的值.:∠GNDG的大致位置,并求∠ENG,构造内错角,依据两直线平行,同旁内角互补进行推导,即可得到∥ABE(1)①过作EF【分析】5页(共12125 / 第页)七年级下册第24题压轴题平行线的拐角问题∠BME+∠DNE+∠MEN=360°.②过F作FG∥AB,构造内错角,依据两直线平行,内错角相等,即可得到∠MFN=∠1+∠2,再结合①的结论,即可得出3∠MFN+∠MEN=360°;(2)①过E作EF∥AB,构造内错角,依据两直线平行,内错角相等进行推导计算,即可得到∠DNE,∠E=4β可得∠EMQ=3α,EMB,∠G=∠E,∠﹣∠BME=MEN;②设∠GMB=α,∠G=β,由∠BMP=∠,β∠1=α+,根据三角形外角性质以及平行线的性质,得到∠8字形结构得到∠GNQ=3α+3βGND=根据的值.GND据此可得∠ENG:∠.MEN=360°DNE+∠(1)①∠BME+∠【解答】解:,AB作EF∥证明:如图甲,过E,CDAB∥∵,CDEF∥∴,FEN=180°+∠∠FEM=180°,∠DNE∴∠BME+,180°=360°+∠FEN=180°++∴∠BME∠FEM+∠DNE.∠MEN=360°∠DNE+BME即∠+,∥ABF作FG②如图乙,过,CD∵AB∥,CD∴FG∥,NFG2=∠∠∴∠1=MFG,∠,2+∠∴∠MFN=∠1,∠DNE∠BME,∠2=又∵∠1=,2DNE=31,∠∠∴∠BME=3∠,MEN=360°+∠∠又∵∠BME+DNE,MEN=360°∠∠2+33∴∠1+;∠MEN=360°+即3∠MFN12第6页(共6 / 12页)24七年级下册第题压轴题平行线的拐角问题.∠MEN之间的数量关系为:∠DNE﹣∠BME=(2)①∠EMB,∠END,∠E,∥AB理由如下:如图丙,过E作EF,∥CD∵AB,∥CD∴EF,∠FEMFEN,∠BME=∴∠DNE=∠,∠MENFEN﹣∠FEM=又∵∠;MENBME=DNE﹣∠∠∴∠的大致位置如图丁所示:G②点,G=β,设∠GMB=α,∠NG与AB交于点F,设MG与NE交于点Q,E=4βEMQ=3α,∠,∠EMBG=∠E,可得∠由∠BMP=∠,GQNEQM=∠∵∠,GNQ+∠∠EMQ=∠G∴∠E+,+3β+3α﹣β=3α+即∠GNQ=∠E∠EMQ﹣∠G=4β的外角,是△GFM∵∠1,+α+∠GMF=β∴∠1=∠G,CD∥又∵AB,β∠1=α+∴∠GND=+β)=3):(α.(∴∠ENG:∠GND=3α+3β【点评】本题主要考查了平行线的性质以及三角形的一个外角等于与它不相邻的两个内角的和的性质的运用,过拐点作平行线,准确识图,理清图中各角度之间的关系是解决问题的关键.17.已知,AB∥CD,点E为射线FG上一点.(1)如图1,若∠EAF=30°,∠EDG=40°,则∠AED=70°;(2)如图2,当点E在FG延长线上时,此时CD与AE交于点H,则∠AED、∠EAF、∠EDG之间满足怎样的关系,请说明你的结论;7 / 12第7页(共12页)七年级下册第24题压轴题平行线的拐角问题(3)如图3,DI平分∠EDC,交AE于点K,交AI于点I,且∠EAI:∠BAI=1:2,∠AED=22°,∠I=20°,求∠EKD的度数.【分析】(1)延长DE交AB于H,依据平行线的性质,可得∠D=∠AHE=40°,再根据∠AED是△AEH的外角,即可得到∠AED=∠A+∠AHE=30°+40°=70°;(2)依据AB∥CD,可得∠EAF=∠EHC,再根据∠EHC是△DEH的外角,即可得到∠EHG=∠AED+∠EDG,即∠EAF=∠AED+∠EDG;(3)设∠EAI=α,则∠BAE=3α,进而得出∠EDK=α﹣2°,依据∠EHC=∠EAF=∠AED+∠EDG,可得3α=22°+2α﹣4°,求得∠EDK=16°,即可得出∠EKD的度数.【解答】解:(1)如图,延长DE交AB于H,∵AB∥CD,∴∠D=∠AHE=40°,∵∠AED是△AEH的外角,∴∠AED=∠A+∠AHE=30°+40°=70°,故答案为:70;(2)∠EAF=∠AED+∠EDG.理由:∵AB∥CD,∴∠EAF=∠EHC,∵∠EHC是△DEH的外角,∴∠EHG=∠AED+∠EDG,∴∠EAF=∠AED+∠EDG;(3)∵∠EAI:∠BAI=1:2,∴设∠EAI=α,则∠BAE=3α,∵∠AED=22°,∠I=20°,∠DKE=∠AKI,8 / 12第8页(共12页)七年级下册第24题压轴题平行线的拐角问题又∵∠EDK+∠DKE+∠DEK=180°,∠KAI+∠KIA+∠AKI=180°,∴∠EDK=α﹣2°,∵DI平分∠EDC,∴∠CDE=2∠EDK=2α﹣4°,∵AB∥CD,∴∠EHC=∠EAF=∠AED+∠EDG,即3α=22°+2α﹣4°,解得α=18°,∴∠EDK=16°,∴在△DKE中,∠EKD=180°﹣16°﹣22°=142°.【点评】本题主要考查了平行线的性质,三角形外角性质以及三角形内角和定理的综合应用,解决问题的关键是作辅助线构造内错角,运用三角形外角性质进行计算求解.解题时注意:三角形的一个外角等于和它不相邻的两个内角的和.19.如图1,AC平分∠DAB,∠1=∠2.(1)试说明AB与CD的位置关系,并予以证明;(2)如图2,当∠ADC=120°时,点E、F分别在CD和AC的延长线上运动,试探讨∠E和∠F的数量关系;(3)如图3,AD和BC交于点G,过点D作DH∥BC交AC于点H,若AC⊥BC,问当∠CDH为多少9 / 12第9页(共12页)七年级下册第24题压轴题平行线的拐角问题度时,∠GDC=∠ADH.【分析】(1)依据AC平分∠DAB,∠1=∠2,即可得到∠2=∠BAC,进而判定CD ∥AB.(2)当∠ADC=120°时,∠1=∠2=30°,依据∠2是△CEF的外角,可得∠E+∠F=∠2=30°.(3)依据DH∥BC,AC⊥BC,可得DH⊥AC,进而得到∠ADH=∠CDH,据此可得当∠GDC=∠ADH时,∠CDG=∠CDH=∠ADH,即可得到∠CDH=×180°=60°.【解答】解:(1)如图,∵AC平分∠DAB,∴∠1=∠BAC,又∵∠1=∠2,∴∠2=∠BAC,∴CD∥AB.(2)当∠ADC=120°时,∠1=∠2=30°,∵点E、F分别在CD和AC的延长线上运动,∴∠2是△CEF的外角,∴∠E+∠F=∠2=30°.(3)∵DH∥BC,AC⊥BC,∴DH⊥AC,又∵∠1=∠2,∴∠ADH=∠CDH,∴当∠GDC=∠ADH时,∠CDG=∠CDH=∠ADH,∴∠CDH=×180°=60°.故当∠CDH为60度时,∠GDC=∠ADH.【点评】本题主要考查了平行线的判定以及三角形外角性质的运用,两条直线被第三条所截,如果内错角相等,那么这两条直线平行.即内错角相等,两直线平行.10 / 12第10页(共12页)七年级下册第24题压轴题平行线的拐角问题22.如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E,1第二次操作,分别作∠ABE和∠DCE的平分线,交点为E,211第三次操作,分别作∠ABE和∠DCE 的平分线,交点为E,…,322第n次操作,分别作∠ABE和∠DCE的平分线,交点为E.n11nn﹣﹣(1)如图①,求证:∠BEC=∠ABE+∠DCE;(2)如图②,求证:∠BEC=∠BEC;2(3)猜想:若∠E=α度,那∠BEC等于多少度?(直接写出结论).n【分析】(1)先过E作EF∥AB,根据AB∥CD,得出AB∥EF∥CD,再根据平行线的性质,得出∠B=∠1,∠C=∠2,进而得到∠BEC=∠ABE+∠DCE;(2)先根据∠ABE和∠DCE的平分线交点为E,运用(1)中的结论,得出∠CEB=∠ABE+∠DCE=1111∠ABE+∠DCE=∠BEC;同理可得∠BEC=∠ABE+∠DCE=∠ABE+∠DCE=∠CEB=∠BEC;112122(3)根据∠ABE和∠DCE的平分线,交点为E,得出∠BEC=∠BEC;…据此得到规律∠E=∠n3232的度数.BECBEC,最后求得∠,ABEF∥(解:1)如图①,过E作【解答】,CDAB∥∵,∥CD∴AB∥EF,∠21,∠C=∴∠B=∠,21+∠∵∠BEC=∠;∠+DCE∴∠BEC=∠ABE(2)如图2,∵∠ABE和∠DCE的平分线交点为E,1∴由(1)可得,11 / 12第11页(共12页)七年级下册第24题压轴题平行线的拐角问题;BECDCE=∠=∠ABE+∠B=∠CE∠ABE+∠DCE111,EDCE的平分线交点为∵∠ABE 和∠211)可得,∴由(1;∠BEC∠CEB==DCE∠ABE+∠DCE=C=∠BE∠ABE+∠112122,E和∠DCE的平分线,交点为(3)如图2,∵∠ABE322;∠BEC∠CEB===ABE+∠DCE∠ABE+∠DCEC=∴∠BE∠223323…,BECE=∠以此类推,∠nn度.α度时,∠BEC等于2=α∴当∠E n本题主要考查了角平分线的定义以及平行线性质:两直线平行,内错角相等的运用.解决【点评】问题的关键是作平行线构造内错角,解题时注意:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.第12页(共1212 / 12页)。

相关文档
最新文档